
Automatic Generation of Fast Timed Simulation Models for Operating Systems
in SoC Design

Sungjoo Yoo Gabriela Nicolescu Lovic Gauthier Ahmed A. Jerraya

SLS Group, TIMA Laboratory
46 Avenue F��lix Viallet, 38031 Grenoble, France

�Sungjoo.Yoo,Gabriela.Nicolescu,Lovic.Gauthier,Ahmed.Jerraya�@imag.fr

Abstract

To enable fast and accurate evaluation of HW/SW imple-
mentation choices of on-chip communication, we present
a method to automatically generate timed OS simulation
models. The method generates the OS simulation mod-
els with the simulation environment as a virtual proces-
sor. Since the generated OS simulation models use final
OS code, the presented method can mitigate the OS code
equivalence problem. The generated model also simulates
different types of processor exceptions. This approach pro-
vides two orders of magnitude higher simulation speedup
compared to the simulation using instruction set simulators
for SW simulation.

1 Introduction

Communication refinement is a crucial design step in
System-on-Chip (SoC) design since it has significant im-
pact on the performance of implemented SoCs in terms of
power consumption, runtime, area, etc. [1]. Communica-
tion refinement consists of two steps: communication net-
work design and wrapper design. Communication network
can be on-chip buses [2][3], circuit switch networks [4],
packet switch networks [5][6], etc. Wrappers are required
to adapt modules to communication networks. Wrappers
are constructed in the form of software (SW), i.e. operating
system (OS)1 [7] as well as in the form of hardware (HW)
[8][9].

Due to the constraints (in terms of performance, power,
area, etc.) given to the embedded SoCs, the design of wrap-
pers needs to be optimized. For instance, the size of embed-
ded OS can be scalable or minimized [7][11]. Communica-
tion network topologies or parameters (e.g. bus priorities,
DMA sizes, slot assignments in TDMA-style buses, etc.)

1In this paper, the operating system includes device drivers.

need also to be determined to optimize the performance of
SoC design [3][10].

In terms of design space in such an optimization, there
are huge numbers of design alternatives. Thus, to obtain
practically optimal designs of communication networks and
wrappers, design space exploration (DSE) should be fast
enough to meet the given tight time-to-market. To obtain
fast DSE, a fast evaluation of design alternative is necessary.
Due to the complex behavior related to on-chip communi-
cation (e.g. bus conflicts, task scheduling effects, etc.), we
need also accurate evaluation.

During DSE of on-chip communication, the designer de-
termines a design alternative, builds a corresponding simu-
lation model, then runs simulation to evaluate the perfor-
mance of the selected design alternative. In the above pro-
cess, to obtain fast evaluation, we need automatic building
of simulation models as well as fast simulation.

To run fast simulation of HW implementation of on-chip
communication, we can run high-speed cycle-accurate sim-
ulation models that can also be synthesizable (e.g. syn-
thesizable C) [12][13] or fast simulation models of on-chip
communication networks. For the SW implementation, in-
struction set simulators (ISSs) can run the OSs and the ap-
plication SW. However, to achieve fast design space ex-
ploration by fast evaluation, the speed of ISSs can be pro-
hibitively slow. Thus, fast and accurate simulation models
of OSs and software are required.

For OS simulation models, in previous work, there are
three types of OS simulation model: native OS [14], virtual
OS [15][16] and aggregate timing model of OS [17]. Details
of previous work will be explained in Section 2. Our contri-
bution, is close to virtual OS concept, it uses OS simulation
models based on virtual processor concept. This reduces the
gap between OS simulation model and final OS code. Com-
pared with the aggregate timing model of OS, ours gives
finer grain delay models. The previous work lacks in auto-
matic building of OS simulation models (in [15][16]), ac-

1

curate timed OS simulation (in [14]), and/or code equiva-
lence between final OS code and OS simulation model (in
[15][16][17]). In our work, we present a method that auto-
matically generates timed OS simulation models with real
OS codes.

This paper is organized as follows. Section 2 presents
related work. Section 3 explains our flow of communica-
tion refinement and simulation model generation. Section
4 addresses automatic generation of fast timed OS simula-
tion models. Section 5 gives experiment results. Section 6
concludes the paper.

2 Previous Work

2.1 Three Types of Timed Simulation of Embed-
ded SW

We classify timed simulation of embedded SW into three
types: (1) functional simulation with delay annotation, (2)
usage of OS simulation models, and (3) usage of instruction
set simulators.

Functional simulation of embedded SW uses the simu-
lation environment (e.g. SystemC) for scheduling of SW
tasks and inter/intra-processor communication between SW
tasks based on events and/or signals. In this case, timing
is simulated mainly for SW applications while the timing
delays of scheduling SW tasks or communication between
them are not accurately simulated.

OS simulation models will be explained in detail in the
following subsection. Instruction set simulation enables
more accurate (e.g. instruction/cycle/phase-accurate) sim-
ulation of SW (including SW applications and OS) running
on the processor.

2.2 OS Simulation Models

There are three types of OS simulation model: native
OS, virtual OS, and aggregate timing model of OS. In the
followings, we explain each of the three types and compare
them in terms of final OS code usage, timed OS simulation
and automatic generation of OS simulation model.

2.2.1 Native OS

Native simulation runs the OS on host workstation. For in-
stance, WindRiver Systems Inc. provides VxSim as a native
simulation model of its RTOS, VxWorks [14]. The purpose
of native OS simulation is to validate the functionality of
SW applications running on the OS. When designing mul-
tiprocessor SoCs, multiple native OSs can run concurrently.
They communicate with each other using interprocess com-
munication (e.g. Unix sockets, pipes, etc.) supported by the
simulation hosts (e.g. workstations). However, they lack

in modeling the HW part that surrounds the real processors
on which the OSs run. Thus, timed cosimulation between
multiple OS simulation and HW simulation is not usually
supported. Support of final code usage and automatic gen-
eration of OS simulation models depends on OS vendors.

2.2.2 Virtual OS

The virtual OS simulates the functionality of a real OS. The
main purpose of using virtual OSs is to validate the func-
tionality and timing of design decisions of OS implementa-
tion.

CarbonKernel provides a tool for the designer to develop
OS simulation models based on a basic virtual RTOS [16].
SoCOS also enables to model final OSs with a generic OS
simulation model [15]. In both cases, the designer can add
timing delays of code sections into the virtual OS. The vir-
tual OS can be applied to various types of OSs as far as the
designer designs the simulation models specific to different
OSs and adds them to the virtual OS.

The virtual OS suffers from the code equivalence prob-
lem. This originates from the fact that the code of virtual
OS is different from final OS. For instance, the task sched-
uler code of virtual OS cannot be exactly the same to that of
a specific OS that the designer uses or designs for himself.
Thus, to fully validate the functionality of final OS, the de-
signer needs to run more accurate simulation such as using
instruction set simulators.

Another problem of virtual OS is that it is not flexible
and do not allow to try numerous candidates of OS im-
plementation. To simulate a specific OS implementation,
the designer needs to do “personalization” of the virtual
OS [16]. In this case, personalization is to add/modify
(new) functionalities of candidate OS implementation to/in
the virtual OS. Such a process is usually manual, time-
consuming and error-prone. Thus, manual personalization
cannot enable fast DSE and optimal OS implementations.

2.2.3 Aggregate Timing Model of OS

The aggregate timing model of OS is to simulate the timing
delay of OS in an aggregate delay model. For instance, a
task scheduling delay or a context switch delay can be cal-
culated as a function of the number of ready tasks or the
size of task context. Then, the delay is counted when the
task invocation or context switching is simulated in timed
simulation of embedded SW.

This model has been used in the area of real-time sys-
tems, especially to model the effect of task scheduler in
task schedulability analysis. The aggregate delay is usually
measured from the execution of real processor on a system
board or from the simulation done by RTOS vendors.

In aggregate delay models, the timing accuracy of sim-
ulation may not be satisfactory. Another drawback of this

SW wrapper
generationHW wrapper

generation

A

B

C

A B C

SystemC scheduler

Generation of
functional sim.

models

Simulation library

Ports

CAComm.
channels

Generated
timed OS sim.

models

SW wr.

A B

SW wr.

C

ISS

HW wr. HW wr.

ISS

BFM BFM

PortSystem
API’s

Comm./Sys. Services
(real and sim. models)

Device Driver
(real and sim. models)

SW wrapper
library

SHM
send, ...wait, ... P, V, ...

Timed OS
sim. model

A B C

HW wr. HW wr.

Communication network

Timed OS
sim. model

HW wrapper
library

Proc. adapters

Ch. adaptors

HW services
(e.g. timer)

SW wr.

HW wr.

A B

SW wr.

HW wr.

C

Comm. network

µP DSP

Generated
RTL sim. models

with ISS’s

Macro-
architecture

Micro-
architecture

Com. network

Figure 1. Micro-architecture generation flow.

model is poor flexibility. To enable DSE in OS optimiza-
tion, the aggregate delay model needs to be applicable to
each of OS implementation candidates (e.g. customized
task scheduling policies). However, current practice of
measuring delays (by simulation or measurement) cannot
be flexible enough to give fast calculation of delays in spe-
cific OS implementations.

In the review of previous work, new OS simulation mod-
els need to support (1) final OS code (as much as possible
to mitigate the code equivalence problem), (2) timed simu-
lation, and (3) automatic generation of OS simulation mod-
els.

3 Communication Refinement of Multipro-
cessor SoCs

Figure 1 shows our flow of communication refinement
from the system specification at macro-architecture level to
the SoC implementation at micro-architecture level. The
macro-architecture specification consists of modules and
channels. In the figure, three modules (A, B, and C) and
two channels (arrows) are exemplified. A module con-
sists of behavioral part (shown as blank rectangles in the
figure) and ports. The behavioral part requests communi-
cation and system services to its external world via ports.
Channels provide ports with communication services such

as FIFOs, semaphores, registers, etc. Ports themselves can
provide the behavioral part of module with system services
such as timers, scheduling, exception handling, etc. The de-
signer writes the macro-architecture specification and then
validates the functionality by automatically generating the
functional simulation models at macro-architecture level.

To generate the micro-architecture implementation, con-
ventionally, RTL implementation, two types of wrapper are
generated: HW and SW wrappers.2 The communication
and system services provided by the communication chan-
nels and ports are implemented by HW and SW wrappers
and by the communication network at micro-architecture
level. In Figure 1, for instance, two modules, A and B in the
macro-architecture specification have been mapped on a �P
in the micro-architecture implementation. The two macro-
architecture communication channels between modules A,
B, and C are implemented on HW and SW wrappers and a
communication network at micro-architecture level.

In terms of implementation, the HW wrapper is a proces-
sor interface that connects the processor to the communica-
tion network at micro-architecture level (for further details,
refer to [9]). The SW wrapper is an OS that enables the ap-
plication SW to perform inter/intra-processor communica-
tion (for further details, refer to [7]). To generate HW and
SW wrappers, two libraries are used: SW and HW wrap-

2In this paper, we use two terms, OS and SW wrapper, interchangeably.

per libraries (Figure 1). According to the design decisions
made by the designer, the wrapper generation can give dif-
ferent implementations of SW and HW wrappers. Thus,
automatic wrapper generation can enable the designer to try
alternative design choices in communication refinement.

The generation of HW and SW wrappers includes gen-
eration of simulation models as well as synthesizable codes
[18]. Thus, in the SW and HW wrapper libraries, there are
simulation models as well as synthesizable codes. At micro-
architecture level, the designer can perform two types of
simulation: cycle-accurate simulation with instruction set
simulators (ISSs) and cycle-approximate simulation with
timed OS simulation models. In Figure 1, two types of sim-
ulation are exemplified. In this paper, we present a method
to generate timed OS simulation models (the path shown in
the figure with bold arrows).

4 Automatic Generation of Fast Timed OS
Simulation Models

4.1 Basic Strategies and Requirements

In generating timed OS simulation models, our basic
strategies are

� OS simulation with final OS code with delay annota-
tion and without using ISSs

� Generation of OS simulation models is generating the
final OS with the simulation environment as a virtual
processor target.

To run OS simulation, the simulation environments are
required to support (1) processes and events and (2) dy-
namic sensitivity. We map a process of simulation environ-
ment to each of SW tasks running on the OS. Dynamic sen-
sitivity is to be able to change the sensitivity list of process
during run time. It is necessary to simulate the preemption
and resumption of task execution.

Figure 2 shows a micro-architecture level simulation
model of a VDSL (Very high bit-rate Digital Subscriber
Line) application that we use in our experiments. In the
figure, two OS simulation models are shaded, one for each
of two processors. An OS simulation model simulates com-
munication and system services and includes a bus func-
tional model (BFM) of processor.

4.2 Automatic Generation of Application-Specific
OSs

To generate OS simulation models, we use the same
method used to generate/configure final OS codes [7]. The
basic idea of this method is to find the OS services that are

Communication Network (SystemC)

Comm. Signals…

IP
(SystemC)

T1 T2 T3

Communication
services

System
services

BFM

OS Simulation Model

Hw Wrapper

…Processor Signals

Comm. Signals…

Processor 1

T3 T4 T5 T6 T7 T8

Communication
services

System
services

BFM

OS Simulation Model

Hw Wrapper

…Processor Signals

Comm. Signals…

Processor 2

Figure 2. A timed cosimulation model of VDSL
modem application.

TaskCreateTask

ContextSwitchSchedule
Wait

Wakeup

Priority

Load

Semaphore V

P

TaskContext

Sync BlockTask

UnBlockTask

assembly code

Figure 3. An example of service dependency.

required by the application SW and then to generate their
codes according to the target processor. Figure 3 exempli-
fies how to find required OS services.

In the figure, ovals represent OS services (and their
codes) and rectangles code sections related to the OS ser-
vices. Arrows represent relationship between service/code
provider and requester. For instance, scheduling ser-
vices, Priority, Load, Wait, and Wakeup use code sec-
tion Schedule and service ContextSwitch. Such a rela-
tionship can be transitive. For instance, semaphore services
P and V use the four scheduling services through services
BlockTask and UnblockTask and code sections Sync and
Semaphore. Thus, if semaphore services P and V are used
by the application SW, according to the dependency chain
shown in the figure, all the codes of services and related
code sections shown in the figure are required to be included
into the OS to be generated.

When the codes of required services are generated, they
can be high-level codes such as C or low-level code such
as assembly code. In the figure, the codes of TaskCon-
text and ContextSwitch are denoted as assembly codes.
OS codes can be processor-dependent (e.g. assembly codes
or processor-dependent C codes) or processor-independent
(e.g. normal C codes).

Based on the dependency of services, the OS generation

Figure 4. An example of processor depen-
dency in the OS codes.

process performs a composition of the corresponding code
sections as explained in [7].

4.3 Targeting OSs with Simulation Environments
as Virtual Processors

As mentioned in section 4.1, the generation of OS simu-
lation models is generating the final OS with the simulation
environment as a virtual processor target. Figure 4 shows
how to treat simulation environments as virtual processor
targets. The figure shows a tree relationship in the codes
of each OS service. In the figure, ovals represent code
sections that are processor-independent (denoted with All)
or processor-dependent (denoted with the names of proces-
sors). For instance, OS code sections of the same service
can be different depending on ARM or 68xxx processor, or
ARM6, ARM7, and ARM9 in the ARM processor family.
If the designer determines ARM7 as the target processor,
then the corresponding C or assembly codes of ovals All,
ARM, and ARM7 are used to generate the code of each of
OS services. Note that such a tree relationship is applied to
the code of each of OS services, independently.

To generate OS simulation models, we use another level
in the figure. For instance, if we have two simulation envi-
ronments, SystemC and SpecC, then the oval ARM7 has
three child ovals, C/asm, SystemC, and SpecC. That
is, OS simulation codes specific to the simulation environ-
ments are prepared with the simulation environments as vir-
tual processors. Then, if the designer needs to generate
the OS code for implementation, the code section denoted
C/asm is used to generate the OS. If he/she needs to sim-
ulate the final OS code on a simulation environment, for
instance, SystemC, then the simulation code of oval Sys-
temC is used to generate the OS code. In this case, the
generated OS code is the OS simulation model that runs on
the selected simulation environment.

Figure 5 shows the comparison of generating the OS
code and the OS simulation model. In Figure 5 (a),
four ovals are OS services, solid arrows represent service

�
�

�
�

�
�

�
�

�
�

�
�

���
�

���
�

�
�

�
�

����
�

����
�

	
���� 	
���� 	
���� 	
����

���������

��
�����

���������

�����
����

�����
��
��

���
����
���� ����
�����
��
�������
�����

���

���

���

Figure 5. Generated OS codes and simulation
models.

provider and requester relationship, and dashed arrows cor-
respondence between services and codes. In the generated
OS code, as shown in Figure 5 (b), for two OS services ��
and ��, two C codes �� and �� are used, for the other two
OS services �� and ��, two assembly codes ���� and ����

are used. In the generated OS simulation model, for �� and
��, assuming that the C codes are processor-independent,
the same C codes ��and ��are used with delay annotation.
For ��and ��, their functional simulation models ���	�and
���	�are used to simulate their functionality with delay an-
notation. Details of functional simulation models will be
given in section 4.4.4.

As shown in the figure, by using the same codes (�� and
�� in this example) in both the final OS and the OS simula-
tion model, the code equivalence problem of virtual OS can
be mitigated in our method. In the final OS code, the as-
sembly code constitutes less than 5% of the total code size.
Thus, more than 95% of our OS simulation model can be
the final OS code.

4.4 Timed OS Simulation Models

4.4.1 Timed RPC Process

In OS simulation, to have a single thread of execution of
each SW task, communication and system services and
BFM are called via RPCs (remote procedural calls).

For timed simulation of OS as well as the application
SW, we use a function called delay to add delay annotation
into the code. In our simulation implementation, we use
a global clock in both SW and HW simulation involved in
multiprocessor SoC simulation. Thus, the delay function
synchronizes SW and HW simulation.

To use the delay function in any SW task codes, ser-
vices, and the BFM, RPC functions should also enable the
simulation time to advance. We call such an RPC function
a timed RPC process. The implementation of timed RPC
process depends on the simulation environment. Our im-

1 // Assembly code for SWI routine
2 _SWI_Routine
3 STMIA r13,{r0-r14}^ ; Push USER registers
4 MRS r0,spsr ; Get spsr
5 STMDBr13!,{r0,lr} ; Push spsr and lr_svc
6 LDR r0,[lr,#-4] ; Load swi instruction
7 BIC r0,r0,#0xff000000
8 BL __trap_trap
9 LDMIA r13!,{r0,lr} ; Pop return address and spsr
10 MSR spsr_cf,r0 ; Restore spsr for swi
11 LDMIA r13,{r0-r14}^ ; Restore registers and return to user mode
12 NOP ; NOP
13 MOVS pc,lr ; Return from SWI
14
15 // C code to use SWI
16 __swi(0) void __trap_trap(int, int, int);
17 __trap_trap(0, id, 0);

corresponding to
SWI_Enter

Figure 6. SWI handler: assembly and C
codes.

SWI_Return() {
CPSR = CPSR_save;
SPSR = SPSR_save;

}

// Counterparts of SWI enter and return
SWI_Enter() {

CPSR_save = CPSR;
SPSR_save = SPSR;
CPSR = SVC;

}

// Counterpart of C code
SWI_Enter() ; delay(24);
__trap_trap(0,id,0);
SWI_Return(); delay(23);

Figure 7. A simulation model of SWI handler.

plementation will be given in section 5.

4.4.2 Simulation of Processor Exception Handling

To simulate the timing behavior of OS, modeling processor
exception handlers is necessary. Processors can have sev-
eral types of processor exception. For instance, ARM pro-
cessor has seven different types of exception: reset, unde-
fined instruction, software interrupt (SWI), prefetch abort,
data abort, IRQ, and FIQ [19].

We observe that to validate the functionality and perfor-
mance of communication refinement, all the exceptions are
not required to be modeled. For instance, the exception
of undefined instruction is not related to the communica-
tion refinement. In the case of ARM processor, three ex-
ceptions, SWI, IRQ, and FIQ are related to communication
refinement. Thus, they are required to be modeled for OS
simulation.

To show how to model exception handlers in OS simula-
tion, an example of SWI handler code of ARM7 processor
is shown in Figure 6. The figure shows a SWI handler in as-
sembly code (SWI Routine) and a C code section to call
a generic SWI function called trap trap with SWI num-
ber 0 (defined by swi(0)). When the function in line 17
is called, the processor execution jumps to the vector table
element of SWI, then the SWI handler in line 2 is executed.

// fifo_write is an RPC_process
Void OS::fifo_write(int f_id, int data) {

disable_interrupt(); delay(10);
// The exec. time of disable_interrupt() is 10 clk cycles.

if(fifo_full(f_id) == true) {
enable_interrupt(); delay(5);
block(f_id); // task execution is suspended.
disable_interrupt(); delay(10);

}

write(f_id, data);
enable_interupt(); delay(5); sync_int();

}

Figure 8. A simulation model of processor-
independent OS code.

To model such exception handlers, our strategy is to
model the minimal set of elements to have fast OS simu-
lation. In the case of ARM processor, the minimal set of
elements is made of processor mode registers (CPSR and
SPSRs) that contain control bits such as interrupt masks
specific to each processor mode.

Figure 7 shows a model of SWI routine for OS simula-
tion and their usage in C code to simulate the SWI call. Two
functions SWI Enter and SWI Return model the entry and
return operations of SWI routine. For instance, the function
SWI Enter corresponds to the code section, line 3 to line 7
in Figure 6. In the functions, only the change of mode regis-
ters (CPSR and SPSR) is simulated. In the C code that calls
SWI, each of the two functions is added before and after the
SWI call shown in Figure 7. We model the other exception
handlers such as HW interrupt handlers in the same way.

To model HW interrupts, we insert a function sync int
where we need to simulate the preemption of task execution
by HW interrupts. The function of sync int is to check the
values of interrupt pins (nIRQ and nFIQ in the case of ARM
processor) to see if a new interrupt arrives. If there is a new
interrupt, the simulation model of interrupt service routines
(ISRs) corresponding to the interrupt is called. If not, the
function sync int just returns without advancing the simu-
lation time.

The frequency of calling sync int can determine the tim-
ing accuracy of simulating HW interrupt handling. How-
ever, too frequent execution of sync int can also degrade
simulation performance. Thus, in our simulation flow, the
designer can locate sync int functions by trading off be-
tween simulation performance and accuracy.

In terms of modeling task preemption, a method to
model interrupt handling is presented in [20]. In the work,
processor modes are not separately modeled and it is as-
sumed that the order of task execution does not change by
the interrupt handling. In our modeling method, ISRs can
call task schedulers to invoke new tasks before returning to

__cxt_switch ;r0, old stack pointer, r1, new stack pointer
STMIA r0!,{r0-r14} ; save the registers of current task
LDMIA r1!,{r0-r14} ; restore the registers of new task
SUB pc,lr,#0 ; return
END

RPC_Process context_sw(int cur_task_id, int new_task_id)
{

delay(34);
wakeup_event[new_task_id].notify();
wait(wakeup_event[cur_task_id]);
delay(3);

}

(a) Context switch: assembly code

(b) Context switch: simulation model

Figure 9. Context switch: assembly code and
simulation model.

the task execution preempted by the interrupt.

4.4.3 Simulation Models of Processor-Independent
Codes

In the cases of processor-independent OS codes, to obtain
simulation models, we insert delay and sync int functions
into the final OS codes. Figure 8 shows an example of sim-
ulation model of processor-independent OS code (a com-
munication service called fifo write). In the figure, delay
and sync int functions are inserted into the final OS code
to simulate the advance of simulation time in the function
fifo write and to simulate the preemption of task execution.

4.4.4 Simulation Models of Processor-Dependent
Codes

Examples of processor-dependent codes are boot code, task
state code, context switch code, exception handlers, device
drivers, etc. For such processor-dependent assembly codes,
we use their functional models with performance annota-
tion (using delay functions). Figure 9 shows an example
of assembly code and a simulation model of context switch
code of ARM7 processor. In the figure, a list of events,
wakeup event is used to suspend (by wait function) and
to resume (by notify function) task execution. We simulate
also the execution delay of context switch using the delay
functions.

The boot code sets vector tables, stack ranges, etc. We
use a behavioral model of the boot code that is simulated
at the initialization (i.e. the constructor function) of the
OS simulation model. At the beginning of simulation, to
serialize the execution of SW tasks, each task suspends
its execution by waiting for the synchronization event (i.e.
wakeup event) coming from the task scheduler service. In
our OS simulation models, since we do not simulate the ac-
tual processor, task states such as registers and stacks are

VDSL Modem

CPU1
(ARM7)

Local
memory

Shared
memory

DSP
(STxxx)

CPU2
(ARM7)Local

memory

Local
memory

Host PC

FIFO

ASIC

R
e
g

iste
rs

Analog
front-end

Twisted-pair
copper line

Figure 10. VDSL modem application.

not simulated. One can advocate that for this part we still
have a code equivalence problem. This is true. However,
since the assembly code occupies generally less than 5% of
the total OS code, the code equivalence problem is signifi-
cantly mitigated.

4.5 Timing Calculation and Application to Con-
figurable OSs

To calculate the execution delay values used in de-
lay functions, we can use conventional estimation meth-
ods of SW execution time [17][21][22]. To have processor-
dependent delay values, before the OS simulation model is
generated, the delay values are calculated for the target pro-
cessor and then included in the OS simulation model.

To apply the automatic generation of timed OS simula-
tion model to configurable OSs [11], the required steps are
as follows.

� Insert delay and sync int functions into the existing
codes of OS.

� Prepare the simulation models of processor-dependent
codes.

� Apply the automatic OS generation/configuration flow
(in [7]) with the simulation environment as a virtual
processor target.

5 Experiments

We applied the presented method to the design of a
VDSL modem design as shown in Figure 10. The VDSL
modem uses Discrete Multi-Tone (DMT) modulation. 3 We
design a part of the system with two ARM7 processors.
The part we design as a multiprocessor SoC is shown
on the left of Figure 10, inside the shaded region. The

3DMT uses 247 Quadrature Amplitude Modulated (QAM) carriers on
channels of 4kHz bandwidth, and a total bandwidth of 11.04 MHz.

VDSL core functions, the analog interface, and the DSP
core are implemented in a third-party block. The DSP and
the ASIC block execute functions such as (I)FFT, Reed-
Solomon (de)coding, (de)scrambling, and (de)framing.

To configure, monitor and synchronize the DSP and the
ASIC block, we map the control tasks, the host interface
tasks, and the high-level VDSL code on two ARM7 proces-
sors (CPU1 and CPU2 in Figure 10). CPU1 runs three con-
current SW tasks and CPU2 runs six concurrent SW tasks.

To generate OSs, we use our OS generation tool [7]. As
a simulation environment, in our experiments, we use Sys-
temC [23]. We map a SW task to a thread in SystemC.
Since SystemC provides dynamic sensitivity in the member
functions of module, we map an RPC process to a member
function of OS model in SystemC.

Refining the VDSL application down to micro-
architecture level implementation, we generate the simula-
tion models of HW wrappers and OSs as shown in Figure
2. We run two types of simulation: one using two ISSs (one
for each ARM7 processor) for SW simulation and the other
using the generated OS models for SW simulation. For the
other HW parts, we use the same simulation models in Sys-
temC.

In our experiments, the generated OS simulation models
give more than two orders of magnitude higher simulation
speedup compared to the use of ISSs. When the number
of ISSs is larger than in our case (two ISSs in our case),
this speedup will be even larger due to the synchronization
overhead between multiple ISSs. We will also investigate
the effects of frequent calls of sync int in terms of simula-
tion runtime and simulation accuracy.

6 Conclusion

In this paper, we presented a method of automatic gen-
eration of timed OS simulation models. Automatic gen-
eration of OS simulation models will enable the designer
to try more design alternatives of OS implementation dur-
ing design space exploration of communication refinement.
Since the generated OS simulation models contain final OS
codes, compared to virtual OS approaches, our method mit-
igates the OS code equivalence problem. The simulation
speedup in experimental results shows the effectiveness of
our method.

References

[1] K. Lahiri, A. Raghunathan, G. Lakshminarayana, and S. Dey, “Com-
munication Architecture Tuners: A Methodology for the Design
of High-Performance Communication Architectures for System-on-
Chips”, Proc. Design Automation Conf., pp. 513–518, June 2000.

[2] AMBA Specification, ARM Ltd. Hall.

[3] Sonics, Inc., “Silicon Backplane �Network”, available at
http://www.sonicsinc.com/Pages/Networks.html.

[4] J. A. J. Leijten et al., “PROPHID: A Heterogeneous Multi-Processor
Architecture for Multimedia”, Proc. Int’l Conference on Computer
Design, 1997.

[5] P. Guerrier and A. Greiner, “A Generic Architecture for On-Chip
Packet-Switched Interconnections”, Proc. Design Automation and
Test in Europe, 2000.

[6] W. J. Dally and B. Towles, “Route Packets, Not Wires: On-Chip
Interconnection Networks”, Proc. Design Automation Conf., 2001.

[7] L. Gauthier, S. Yoo, and A. A. Jerraya, “Automatic Generation and
Targeting of Application Specific Operating Systems and Embedded
Systems Software”, Proc. Design Automation and Test in Europe,
Mar. 2001.

[8] C. K. Lennard, P. Schaumont, G. de Jong, A. Haverinen, and
P. Hardee, “Standards for System-Level Design: Practical Reality
or Solution in Search of a Question?”, Proc. Design Automation and
Test in Europe, pp. 576–585, Mar. 2000.

[9] D. Lyonnard, S. Yoo, A. Baghdadi, and A. A. Jerraya, “Automatic
Generation of Application-Specific Architectures for Heterogeneous
Multiprocessor System-on-Chip”, Proc. Design Automation Conf.,
June 2001.

[10] K. Lahiri, A. Raghunathan, and S. Dey, “Efficient Exploration of the
SoC Communication Architecture Design Space”, Proc. Int’l Conf.
on Computer Aided Design, pp. 424 – 430, Nov. 2000.

[11] E. Verhulst, “From a distributed embedded RTOS to a programatic
framework for multi-core SoC”, MP SoC school, Aix-les-Bains,
France, July 2001.

[12] Synopsys, Inc., “CoCentric SystemC Compiler”, available at
http://www.synopsys.com/.

[13] Coware, Inc., “N2C”, available at
http://www.coware.com/cowareN2C.html.

[14] WindRiver Systems, Inc., “VxWorks 5.4”, available at
http://www.wrs.com/products/html/vxwks54.html.

[15] D. Desmet, D. Verkest, and H. De Man, “Operating System Based
Software Generation for Systems-on-Chip”, Proc. Design Automa-
tion Conf., June 2000.

[16] “CarbonKernel”, available at http://www.carbonkernel.org/.

[17] Cadence Design Systems, Inc., Virtual Component Codesign.

[18] S. Yoo, G. Nicolescu, D. Lyonnard, A. Baghdadi, and A. A. Jerraya,
“A Generic Wrapper Architecture for Multi-Processor SoC Cosim-
ulation and Design”, Proc. Int’l Workshop on Hardware-Software
Codesign, 2001.

[19] D. Jaggar, Advanced RISC Machines Architectural Reference Man-
ual, Prentice Hall, July 1996.

[20] J. Cockx, “Efficient Modeling of Preemption in a Virtual Prototype”,
Proc. IEEE International Workshop on Rapid System Prototyping,
June 2000.

[21] M. Lajolo, M. Lazarescu, and A. Sangiovanni-Vincentelli,
“A Compilation-based Software Estimation Scheme for Hard-
ware/Software Co-Simulation”, Proc. Int’l Workshop on Hardware-
Software Codesign, May 1999.

[22] K. Suzuki and A. Sangiovanni-Vincentelli, “Efficient Software Per-
formance Estimation Methods for Hardware/Software Codesign”,
Proc. Design Automation Conf., June 1996.

[23] Synopsys, Inc., “SystemC, Version 2.0”, available at
http://www.systemc.org/.

	Main Page
	DATE'02
	Front Matter
	Table of Contents
	Session Index
	Author Index

