Transf ormation Rules for Designing CNOT-based
Quantum Circuits

Kazuo lwama
Sch. of Inform., Kyoto Univ.
QCI, ERATO, JST

iwama@kuis.kyoto-u.ac.jp

ABSTRACT

This papergivesa simplebut nontrivial setof local transformation
rulesfor Contol-NOT(CNOT)-basedcombinatorialcircuits. It is
shavn thatthis rule setis complete namely for ary two equivalent
circuits, S, andS,, thereis a sequencef transformationseachof
themin therule set,which changesS; to S;. Our motivationis to
usethisrule setfor developingadesigntheoryfor quantuncircuits
whoseBooleanlogic partsshouldbeimplementedy CNOT-based
circuits. As a preliminary example,we give a designprocedure
basednourtransformatiomuleswhichreduceshecostof CNOT-
basectircuits.

Categoriesand Subject Descriptors
B.6.m[LOGIC DESIGN]: Miscellaneous
General Terms

Design,Theory
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1. INTRODUCTION

It is widely consideredhat logic synthesids a maturefield in
our community However, thisis only true for corventionalAND-
OR-NOT-basedcircuitsor LSI's; new ideasmustbe neededf we
facetechnologyinnovations. The main purposeof this paperis to
introducelogic synthesigor quantumBooleancircuits[12] (QBCs
for short). The key differencebetweencornventional circuits and
guantumonesis their base-amily of logic gates,for the latter of
whichmary peopleagreethatContmol-Not (CNOT) typelogic gates
will beasinglepossibility Another(evenmoreimportant)feature
of QBCsis its severerestrictionagainswire-linking betweergates:
As we canseein a moment,only straight-line,parallelwiring is
allowed. Thus,it looks obviously hardto apply cornventionallogic
synthesigechniquegor our presenpurpose.

In spite of sucha new target, our basicstratgy approachingo
it is quite conserative. Namely our logic synthesigproposedn
this paperis basedon local transformationswhich hasbeencon-
stantlypopularandsuccessfulor corventionalcircuits[2, 3]. (One
canthink of, for example,the DeMorgans law, which hasbeen
usedmostoftento make alocal simplificationof Booleancircuits.)
More concretelywe give a setof local transformatiorrules. The
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rule setis complete which meanswe cantransformary QBC into
ary of its equivalentonesby applyingtheserules. We alsomake
someconcretesuggestionsnhow to usethesaransformatiorrules
to simplify QBCs.

It shouldbe notedthat quantumalgorithmsare often described
by using QBCs[12]. Designinga “good” QBC is thus plays a
key role to the successfuimplementatiorof a quantumalgorithm.
A little surprisingly however, relatively small attentionhasbeen
paid for the designmethodologyof QBCs|[1, 9]. [1] shaws that
ary unitarytransformatiorcanbe broken down into a sequencef
basicquantumgates.The methodis generalput it doesnot neces-
sarily generateefficient circuits. [9] giveshow to constructQBCs
for Booleanfunctionsby usingCNOT gatesbut their resultingcir-
cuits are essentiallythe sameas the elementarytwo-level AND-
OR-NOT circuits.

To discusshow to designsmallQBCs,we shouldnotethatQBCs
for quantumalgorithmscan be divided into two parts: Oneis a
quantumspecific part, for example, the Walsh-Hadamardrans-
formationfor making a quantumsuperpositiorand the Quantum
Fourier transformation[6]. The other part, which is sometimes
called quantumBooleanoracles|[5], is for calculating(corven-
tional) Booleanfunctions.To establishan efficient designmethod-
ology for QBCs,it is muchmoreimportantto targetthe latterpart
(quantumBooleanoracles)since the structuresof the latter part
vary dependingon eachproblem,whereaghe structureof former
partis usuallyfixed. Our ultimategoalis to develop a designthe-
ory for quantumBooleanoracles andit is anice start-upto have a
setof local transformatiorrulesfor CNOT-basedQBCs. It should
be notedthata similar setof transformatiorrulesfor corventional
circuitsis givenin [8].

We alsointroducethe canonicalform, which is anotherfunda-
mentalconceptin logic synthesisfor CNOT-basedQBCs. Then
we canprove the completenessf therule setonly by shaving that
thereis asequencef transformationgrom ary circuitto its canon-
ical form, sinceeachtransformatioris bidirectional. Accordingly
we canassurehatby usingour transformatiorrules,we canmod-
ify a given circuit into anotherwith a desirableproperty(e.g., of
small cost) by executinga NP-typesearchalthoughthe length of
thesearctpathmightnotbealwaysshort. Thecompletenessf the
rule setis quite non-trivial andtheoreticallyinterestingon its own.
As mentionedbefore however, ourfinal goalis to useourrulesfor
morepracticalpurposesActually, we give a preliminaryexample
of adesignproceduravhich simplifiesCNOT-basectircuits.

2. QUANTUM BOOLEAN CIRCUITS

Although we needvirtually no knowledgeof quantumcompu-
tation to understandhe main resultof this paper let us startwith
aminimum introductionof the new technology:In quantumcom-
puting, a quantumbit, or qubit for short, playsanimportantrole.
Therehave beenproposediariousphysicalimplementatiorobjects
for qubits[10], andthey canbe describedas: |x) = a|0) + B|1),
where|x) meanshe quantumstateof the qubit x, anda andp are
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Figure 1: A Quantum BooleanCir cuit

complex numberswhich satisfythat (1) |a] + |B|> = 1 and (2) if
we measue thequanturrstate we getthestateq0) and|1) with the
probability|a|? and|B|?, respectiely. This meanshata qubit can
storea superpositiorof the stateg0) and|1) unlike a corventional
bit. In the generalframeavork of quantumcomputing,we apply a
specificsequencef unitary operationgo qubits,andgeta desired
solutionby measuringhe final quantumstatesof the qubits. Such
a sequencef unitary operationds often describedasa quantum
Booleancircuit (QBC).

A QBCisaquantunsystemwith N qubits,denotedy |x;) |x2)- - -
|xn), asillustratedin Fig. 1 wherewe apply a specificunitary op-
erationcorrespondingo eachgate one by oneto the qubits |x; )
to |xn) from left to right. As an interactionof their qubits, we
canonly useCNOT gateswhosefunctionality will be given later
The left-side |x1}|%2) - - - |%n) areusedfor the input, andtheir val-
uesshouldbe restoredfinally. (This restoringis importantwhen
the circuit is usedfor quantumBooleanoraclesas we mention
later) The (n+ 1)-st qubit |x,41), calleda work bit, is changed
into |Xp+1 @ f(x1,---,%n)), which is usedto obtain the value of
the Booleanfunction f. Furthermorea circuit canuseary finite
numberof auxiliary qubitswhich areresetto |0) initially andalso
restoredo be|0) finally. More formally:

Definition 1. A Control-NOT (CNOT) gateis denotedby |[t,C],
wheret is anintegerandC is afinite setof integers(t ¢ C). |x) is
calledatargetbit and|x) is calleda contmol bit if k € C.

This kind of gatesis also called n-bit Toffoli gates[11] in re-
versiblecomputing Also theliteraturerefersto [t,C] with only one
controlbit asa Control-NCT gate,andto [t,C] with two controlbit
asContmol-Control-NOT gate andso on, but we simply call both
of them CNOT gatesin this paper In the figure, we use® for a
targetbit and- for a controlbit. For example,the leftmostCNOT
gatein Fig. 1 is givenby [n+1,{1,2,n}]. As its symbolsuggest,
[n+1,{1,2,n}] changeshestateof |X,+1) iNtO |Xp41 B X1 - X2 - Xn),
where@® is the corventionalXOR. (SeeDefinition 3 for details.)

We denotethesetof N-bit basisvectorsby {0,1}N. Thequantum
stateof N qubits|x;)--- |xn) is a superpositior{a linear combina-
tion) of those2N basisvectors. However, we often assumen this
paperthatthe stateis a singlebasisvectorwhendescribingthe be-
havior of the system. Generalizatiorto superposedtatescanbe
donesimply by taking a linear combinationof the resultsfor each
basisvector

Definition 2. A quantumBooleancircuit of sizeM over qubits
[X1),-+-,|xn) is asequencef CNOT gates
[tlacl} T [ti,Ci] T [tM,CM],Whel’elSti < N,Ci - {17 B 7N} Note
that unlike the corventionalBooleancircuits we areonly allowed
to haveasequencef CNOT gates.(We cannotuseso-calledump-
wireswhich propagateheresultof onegateto anothemateplaced
faraway. Thisis animportantdifferencebetweerourcircuit model
andthe corventionalcircuit model.)

Definition 3. The stateof the circuit afterthe i-th CNOT gate
[ti,Ci] isdenotedby S = |x})---- - |xy) anddefinedasfollows:
() So=la)laz) - |an), where|as) az) - - |an) € {0, 1}V is an
input state. '

(2 For1<k<Nandl<i<M, |{)=[x 1) if k#t, and
) =X XK ) whereX§ = 1AX;, A---AX; if G = {ig, - ,ij}.
Here A is the corventional AND and @ is the corventional XOR
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Figure 2: Equivalent Cir cuits

operators.

For example ,we cancalculateS, of Circuit A in Fig. 2 suchthat
IX?) = [x) for i # 6, and|x3) = |x¢ ®x1 - X5 -X¢). NotethatX§ is 1
whenC; is anemptyset,whichmeanghatthe CNOT gateoperates
justasa negation(seegatea in Fig. 1). For betterexposition,we
oftensay“the stateof |x;) afterthei-th gate”in steadof “the state
of X))

Définition 4. A quantumBooleancircuitis saidto beproperand
to computea Booleanfunction f(x1,-- - ,xn) iff (i) So=|a1)|az) - - -
|an+1)]0) - --10), i.e., all the auxiliary bits areinitially cleared (ii)
Thefinal stateSv = [ag)[ag) -« - [an+1® f (X1, -+ ,%n))|0) ---]0), i.e.,
the (n+ 1)-st stateis XORed with the function value andall the
othersarethe sameastheinput.

Remark. Note thatour conditionsaysthatall auxiliary qubits
must be resetfinally. Otherwise,we cannotusethe circuit asa
Booleanoraclefor the following reason: If the auxiliary qubits
arenotresetthestateof |x;) - - - |[xn) maybeentangledwith some
statesof the auxiliary qubits. In sucha case,we canno longer
treatthe statesof |x1)---|X)) asonequantumsystem,and there-
fore quantumoperationsfor the statesof |x1)---|X,) might not
work asdesired.For example,the f-contwolled phaseshift usedin
the Grover’s searchalgorithm[5] is definedas|xq) - - - [Xn) [Xn+1) =
(—=1) P %) 360} - [360) [ X1 ) Where|xn.1) i initializedto %(|O} -

|1)). If thecircuitis not proper we cannolongerusethecircuit as
a primitive of theabove unitary operation.

Fig. 2 shavsthreeQBCswhichareall equivalent,i.e.,they com-
pute the sameBooleanfunction f(xg,--- ,Xg) = (X1 ® X2) - (X3 ®
Xa) - (X5 D xg). Notethatxz is awork bit in thesecircuits. As will be
shawn later, we canalwaysconstructcircuit by only usingCNOT
gateswhosetargetbit is x,11, i.e., thoselike Circuit B. However,
differenttypesof circuitsareof coursepossibldik e Circuits A and
C, whereC is simplerthanA andB.

3. TRANSFORMATION RULES

In thissectionwe introducesix local transformatiorruleswhich
canbeappliedfor asequencef CNOT gates.Eachtransformation
rule looks like F < G, whereF and G are sequencesf CNOT
gateslf a(proper)circuit AiswrittenasA= A1FA,, i.e.,it includes
asubsequenck, thenA changesnto A' = A;GA, by applyingthe
ruleF < G.

Transformation Rule Set. In thefollowings,e meangheempty
sequenceandwe referto a CNOT gatewhosetargetbit is thei-th
bit asCNOQOT;.

(1) [t1,C1] - [t1,C41] < €. Namely two adjacentidentical gates
cancel.

(2) [t1,C1] - [t2, Co] & [t2,Co] - [t1,Ca], if t1 ¢ Cp @ndtp ¢ Cy. The
conditionmeansthat the two gatesare “independent. If thereis
someinfluencebetweentwo gates,we cannotsimply changethe
orderof thetwo gates.Evenin suchcaseswe canchangeheorder
by addingsomegatesaswe will seein thefollowings.

(3) [t1,Ca] - [t2,C2] & [t2,C2]- [t1,Ca]- [t1,CLUC2 — {t2}], if t1 &
Cy andty € C; (seeFig. 3).

(4 [t1,C1] - [t2,Co] & [t2,CLUC2 — {t1}]- [t2,Co) [t1,Ca), if t1 €
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Cy andty ¢ C;. Thisrule is the dual of (3), i.e., the relationship
betweerthetwo gatess opposite.

() i, {c1}]- [to, CaU{ca}] & [ta, {C1}]- [to, CoU{ta}], if (t2 >
n+ 1) andthereis noCNOTy, before]t;, {c1}] (seeFig. 4).

(6) [t,C] < ¢, if thereis anintegeri suchthati € C,i > n+1,
andthereis noCNOT; before[t,C].

Lemma 1. Applying any oneof Rules(1) to (6) doesnotchange
the Booleanfunctioncomputedby thecircuit.

Proof. (1) Rule(1)is obvioussinceg® f & f = gfor ary Boolean
functionsf andg.

(2) Rule(2) is alsoeasybecausdt;,Cq] and[ty,Cy] do notaffect
eachotherif t; ¢ C, andty € C;.

(3) SeeFig. 3 again. We have two importantqubits, i.e., %, )
and |x,) (t1 # to by the condition). In Fig. 3 (a), let &y andap
bethe statesof |x,) beforeandafterthe gate[ty,Cq], respectiely.
Let a1, & andaj bethe statesof |x,) beforelt,,Cy], after [t1,Cy]
andafter[ty,C1 UCy — {t2}], respectiely, in Fig. 3 (b). Also, by,
b, andb), arethe statesof |x;,) similarly defined. Furthermordet
Cj =C1 — {t2} (C} andC, maynotbedisjoint). Notethatthe state
whoseindex is in C; UC; doesnot changethroughoutthis portion
of the circuit sincethereis no target bit index in C; UC,. Now
let us calculatethe statesay, by, a4 andb,. First, bothb, andb,
canbe written asb; @ Xc,, whereXc, is a productterm of all x;
suchthat j € Cy. Similarly, let X beaproducttermof all x; such
that j € C}, thenwe have a, = a1 ® X, - ba, a, = aleaxol-b' =
a ® X, (L ®Xc,) = a1 @ Xg; b1 & Xe,  Xop anday = 8, ® Xc, -
XC’l = 3-169)((:'1‘b163xcz‘xc’1€9sz'XC’1 = al®>(c’1'bl- Thus
by = b, anday = &;. The statesof otherqubitsdo not changeas
mentionedbeforeandhencethetransformatiordoesnotchangehe
functionality of thecircuit.

(4) Similarto the prooffor Rule(3).

(5) If thereis no CNOTy, before]ty, {c1}], |%,) remains|0) just
beforethe gate|t;,{c1}]. Therefore,afterapplying|ti,{c1}], the
stateof |x,) andthatof |x;,) mustbe the same which meansthat
we canchanget; to c¢; in the index setof the latter gates control
bits.

(6) If thereis anintegeri which satisfiegheconditionof therule,
[t,C] hasanauxiliary bit |} asits control bit whosecurrentstate
remains|0). Sinceoneof its control bits is alwaysO0, this CNOT
gateis useless. m|

4. COMPLETENESS OF THE RULE SET

In thissectionwefirst introducethe canonicaform for quantum
Booleancircuits. Thenit is shavn that ary circuit can be trans-
formedinto its canonicalform usingthetransformatiorrules. The
completenessf the rule setis its immediateconsequencesince
our transformatiorrulesarebidirectional.

4.1 Canonical Form

Definition 4. A quantumBooleancircuit Sis saidto be of the
canonicalform, if (1) it hasonly CNOT,;.1 gates,namelyCNOT
gateswhosetargetbit is thework bit, (2) it doesnotincludetwo or
moresameCNOT, ;1 gates(3) CNOT,,1 gatesareorderedexico-
graphicallyin termsof the indicesof their control bits, and(4) no
CNOT,;1 gateshave auxiliary qubitsin their controlbits, i.e., the
circuit Susesno auxiliary qubitsatall.

The condition(2) meanghatthe canonicaform mustnotbere-
dundantin termsof Rule (1) in our transformatiorrule set. The
condition (3) meansthat, for example,[n+ 1,{1,2,3}] shouldbe
placedbefore[n,{2,3,4}]. RecallthatFig. 2 shavs threediffer-
ent circuits computingthe sameBooleanfunction, and only Cir-
cuit B is of the canonicalform. Now considerBooleanformulas
of thefollowing form: ag @ ayx; @ axXo @ - - - @ AnXn D A1, 2X1 %2 B
a1 3X1X3 D - Dan—1nXn-1Xn B --- - - @D a12...n-1,nX1X2 " - Xn—1Xn,
whereno negatedliterals areallowed andeacha; is 0 or 1. This
formis calledapositivepolarity Reed-Mulleexpressionfor which
thefollowing lemmais known:

Lemma 2. [4]. Any Booleanfunction canbe expressediy a
positive polarity Reed-Mullerexpressionwhich is unique except
for theorderof terms.

Lemma 3. Any CNOT-basedquantumcircuit S hasits unique
canonicaform.

Proof. By definition, Stransforms|x;) to |x) for 1 <i < nand
[Xnt+1) 1O [Xnt-1 @ f(X1,--+, X)) for someformula f. Computethe
positive polarity Reed-Mullerexpressiorof f, which naturallycor
responddo a sequencef CNOT,;1 gates.Sincetheorderof such
gatesmustbelexicographicwith respecto their controlbitsin the
canonicaform, theresultingcircuit is uniqueby Lemmaz2. a

4.2 Transformation Procedure

Theorem 1. Any quantumcircuit S canbetransformednto its
canonicaform by usingour transformatiorrules.

Proof. Our procedureMain(S), for sucha transformatioris il-
lustratedn Fig. 8. Main(S) first calls Shift S n+ 1) which “shifts”
all the CNOT,, ;1 gatesin Sto the left portion of the circuit (see
below for details). After all the CNOT,,, 1 gatesareplacedin the
left portion of the circuit, we let the remainingpartbe S andthen
apply Shif{S,n). Repeathis procedurauntil Shif{S,1). As one
canseelater, the Shiftproceduralsoincludesthelexicographically
reorderingoperationandthe operatiorof deletingredundantates.
Therefore after Shiff S, 1) is finished,all CNOTy, for 1 < m<n
have alreadyvanishedseeLemma4). Thusall we haveto domore
in line 9-150f Main(9) is to deletethe gateswhosetargetbits are
auxiliary qubits.

We first concentrateursehes on the Shift procedure.Let k =
[t1,C1] andh = [t2,C;] betwo consecutie gateswherety = n41
andt; # n+ 1. Thenour basicideais to switchthe positionsof k
andh, i.e.,khinto hk If t; ¢ C, orty & Cy, thenthis switchcanbe
donein asinglestepby usingoneof Rules(2)-(4). Unfortunately
thatis not possibleif t; € C, andt, € Cq; thefollowing algorithm
mainly targetsthis situationwherewe canno longerdependon a
simplerepetitionof the above switchingoperations Now hereare
detailsof theprocedureshif{Sm) for 1< m< n+1:

Stepl. Supposehatthe entirecircuit Sincludesk CNOT gates
whosecontrolbitsincludethem-th bit. Letthesegatedegs,do, - - - Gk,
andg;j = [tj,Cj U {m}]. Whatwe dofirstis to remove this m-th bit
from the controlbits of gj by usinganunusedauxiliary bit, saythe
aj-th bit. As anillustration,seeFig. 5 for the original circuit Sand
Fig. 7 for the circuit after Step1 of ShiffS 3) is applied. In more
detail:

Stepl.1. We addtwo identicalgateqa;, {m}], right beforeg; by
Rule(1). Letthesegatesbeg, for theleft oneandg;, for theright
one.

Stepl.2. We changethe orderof g, andg; by Rule (2),i.e.,to
theorderof g, gj o, -

Stepl.3. We apply Rule (5) to g, andg; sothatg; = [tj,Cg U
{m}] is changedo [t;,Cj U{a;}].

Step2. We move eachg, (1 < j <K) to theleft asfar aspos-
sible. Notethatwe canalwaysdo this transformatiorby applying
Rules(2) to (4). We needto adda gatewhosetargetbit is the a;-
th bit (1 < j < k) whenwe apply Rule (4). We alsomove such
addedgatesto the left partof the circuit by Rules(2) to (4). (One
might have the concernthatthis chain-like additiondoesnot stop.
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1 Main(S
2 {
3 S'=S
4 for(i=n+1to1){
5 Shif(S,i)
6 Ci = §_/* theleft partof theresultof ShifS,i) which consist
7 of only CNOT; gates*/
8 S = S /* theremainingpartof theresultof Shif(S,i) */
9
10 while (gatesg thathave auxiliary qubitsin its controlbits exist) {
11 Let g betheleft mostoneof suchgates.
12 Move g to thenext right positionof CNOT;,;.1 by applyingone
13 of Rules(2) and(4) asmary timesaspossible.
14 Deleteg by applyingRule (6).
15
16 Reorderthe gatesvhosetargetbits areauxiliary qubitslexicographically
17 by applyingRule (2) asmary timesaspossible.
18 Deleteredundanpair of gatesby applyingRule (1) asmary timesaspossible
19 }
Figure 8: Main(S)
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Figure 9: The Cir cuit after Step2

This is actuallynot the casebecause CNOT,, is alwaysaddedat
thelefthand-sideof thetransformatiorof Rule (3).) Thenwe geta
circuit whereall CNOT,, (1 < j < k) exceptfor gr; (1 < j <k) are
placedin the left mostpartof the circuit. SeeFig. 9 for a circuit
after Step2 in our example.

Step3. We thenmove eachgr, (1 < j < k) to the oppositedirec-
tion, i.e., to theright asfar aspossible. Again we canalwaysdo
this by applyingRules(2) to (4) andexactly the sameasbeforeas
for the addedgateswhosetargetbits areaj-th (1 < j <k). Thus

1)
) S sp i p T RS
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Figure 7: The Cir cuit after Step1

secutve g, andg sothatthe control bit [xm) of g;; is changedo
the a;-th bit. SeeFig. 10 for acircuit after Step4 in our example.
At this momentno gates,exceptfor the leftmostgateg,, which
have the m-th bit in their controlbits exist if they areplacedin the
left sideof the CNOT, gates.Note thatthe gatesaddedin Step2
mustnot have the m-th bit in their control bits, and thereforewe
canalwaysperformthefollowing Step5.

Step5. We move eachCNOT,, sothatit comesto the next right
position of g, by applying Rules(2) to (4). If we needto add
new CNOT,, gatesn theabove transformationye alsomove these
addedgatessimilarly. Now all CNOT, areplacedconsecutiely, in
thenext right positionof g;,. Theleft portionof our examplelooks
like Fig. 11 (a) afterthis step(recallthatm = 3).

Step6. Thuswe have almostmovedtheCNOT, gatedo theleft.
Theonly remainingobstaclés g, . In thisstep,we deleteredundant
CNOT, gatesasfollows.

Step6.1. We reorderthoseCNOT}y, gateslexicographicallyby
applyingRule (2) asmary timesaspossible. Thenwe have three
groupsof CNOTp,; the first group doesnot include the aj-th bit
(1 < j <Kk) in thecontrolbits, the secondgrouphasonly thea; -th
bit (noaj-th bit (2 < j <k)) in thecontrolbits, andthethird group
of the remaininggateshasthe aj-th bit (1 < j <k) in the control
bits. Let thesegroupsbe GroupsA, B and C, respectiely. The
threegroupsof CNQOT3 afterthis stepareillustratedin Fig. 11 (b).

Step6.2. We deleteall gatesn GroupC by Rule(6).

Step6.3. We apply Rule (1) to deleteredundanipairs of gates
in GroupsA andB. We will claim thatall the gatesin GroupB,
andGroupA aswell if m# n+ 1, disappeaat this momentin the
next Lemma4. Thusall CNOT, gatesthat have the a;-th bit in
their control bits, i.e., thosein GroupsB or C, have beendeleted.
Therefore we canperformthefollowing Step?7.

Step?7. We finally move g, which remainsin the left mostpo-
sition to theright sideof all CNOT, by applyingRule (3) asmary
timesaspossible.We may againneedto addCNOT,,, which are
movedto theright sideaswell. Finally we geta circuit whereall
CNOTy, areplacedin the left mostpartof the circuit. Thatcom-
pletesShif{S m).

we getthe circuit whereall CNOT,, (1 < j < k) areplacedin the @ added at Step 5 ‘
left mostpartor in theright mostpa'rtof thecircuit. [al - I\? i rsetzinl]sdzpn‘:a:;rr‘;ly
Step4. Without loss of generalitywe can assumethat g, is %00 15 T+ of CNOT, are
.. . . %0 +DDDDIDIDDDD YapYas'a not added here
placedat the left-end position of the circuit after Step2. As one O i i it R e 8 ok e
can seelater, we can overcomeseveral difficulties we encounter o 00 g l a
whenmoving CNOTy, gatesto the left, by giving a specialrole to P00 — Gates in he right
this gateg,. Now, for eachgateg which hasthe m-th bit in its (b) GroupA GroupB_GroupC | are omitted hore.
controlbitsandplacedin thelefthand-sideof theCNOTy, gateswe Klg 11 ]
applythefollowing transformationsFirst we move g to theleft so bl - DODBDDDD P v
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Figure 10: The Circuit after Step4

Figure 12: The Circuit after Shift Is Finished




Lemma 4. All the gatesin GroupB mustdisappeagfter Step
6.30f Shiff S my if thecircuit Sis proper All thegatesn GroupA
mustalsodisappeawhenm# n+ 1.

Proof. Below we considerthe stateof |xm). Recallthatwe have
only g;, in theleft partof GroupA. Therefore peforeGroupA the
statesof |x;) to |X,+1) remainunchangedi.e., beingequalto their
initial statesandonly |5, ) haschangedo beequalto [Xm).

Supposeghatsomegatesin GroupsA or B have remainedafter
Step6.3, andlet thei-th suchgatein GroupA be [m,Ca ], andthe
i-th gatein GroupB be[m,Cg]. Furthermorelet Xc,, beaprod-
uct termof all x;j suchthat j € Ca, and Xc, be a productterm
for Cg,. Thenthe value of the stateof |xm) after Group A can
bewritten asxm® Xc, ®Xc,, @+ = Xm® (Xc,, BXc,, @ +++) =
xm @ fa becauseof associatre laws for the XOR operator An
importantpoint hereis that XCpy1XCpyy o A€ all differentsince
Step6.3 includesthe simplification procedurg(by Rule (1)) after
reorderingthe gatesinto the lexicographicalordet This means
that f4 is a positive polarity Reed-Mullerform. Also notethat fa
doesnot have the literal xm sinceeachCa, doesnotincludem. We
then can calculatethe value of the stateof |xy) after GroupB as
Xm® fa® Xeg, ®Xcg, D--+- Recallthatall the gatesin GroupB
have the a;-th bit astheir control bits, therefore,all XCBi in the
formula containthe literal x5, which is equalto xn becauseof
the leftmostgateg,. Accordingly we canrewrite the formulaas
(Xm® fa ® xmfg), where f; doesnot have the literal xn andis a
positive polarity Reed-Mullerform again.(The XOR hasdistribu-
tive laws, for example xyzd x = x(yz® 1).)

Sincethereareno CNOTy, after GroupB (recallthatGroupC'’s
gateshave alreadydisappeareddndthecircuit is proper we have

7y _ [ 1xm) if1<m<n,
P ® fa®Xmfe) = {|xmea f) ifm=n+1,
wheref hasonly literalsx; throughx,. Now we canconcludethat
fa= fg=0if 1<m<n,andfj = 0if m=n+1for thefollowing
reason: The above formulascanbe expandedwith respecto Xm,
i.e., Xm® fa®xmfy = (fafg+ fa f5)Xm+ faXm, andxm® f =
fXxm+ fXm. Onecanseethatthesetwo functionsareequialentiff
f=fafi+ fa ff andf = fa, whichimplies fg = 0. Onecanalso
seethat (fafs + Ta f5)Xm+ faXm = Xm implies fo = fg = 0. Also
notethatif g= X1 ®Xo @ --- is a positive polarity Reed-Muller
form, theng = 0 iff X3 = Xy = ---0. Therefore no productterms
areincludedin fa or fg, i.e., thereshouldbe no gatesin GroupB,
andneitherin GroupA whenm=# n+1. |

After we successfullygetacircuit whereall CNOT},, 1 areplaced
in theleft mostpartof thecircuit by Shif{ S n+ 1), Main thencalls
Shiff S, n), by which all CNOT, gatesareshiftedto theleft. They
are placednext to CNOT, 1 gatesalreadyshifted. Thenwe can
deleteall CNOT,, by Lemmad4. This continuesuntil Shif{S,1). In
our example after calling Shif( S, 1), we getacircuit in Fig. 12.

After the 8th line in Fig. 8, we have CNOT,, 1 gateswhich are
alreadyof the canonicafform attheleft partof the circuit andthen
CNOT; gates(i > n+ 2) afterthem. Now we executethe second
half of Main, wherewe deleteall theCNOT; (i > n+ 2) gatesj.e.,
thosewhosetargetbits areauxiliary ones,andfinally thereremain
only CNOT,, 1 gatesin thecircuit.

TheCNOT; (i > n+ 2) gatesaredivided into two groups. The
first group,denotedby A, hascontrol bits in auxiliary bits andthe
secondgroup, B, doesnot. We first move group A gatesto the
left until the next positionsto CNOT,,;1 gates. This canbe done
by switchinggroup A gateswith groupB gates,which is always
possibleby usingRules(2)-(4). (Switchingtwo gateshothin group
A, like gatesa andb in Fig. 12,is notsoeasy) Thenthe groupA
gatescanbedeletedoneby onefrom theleftmostoneby Rule (6).
Thenwe have only groupB gates.Recallthatwhenwe introduced
a CNOTi(i > n+ 2) gates,we alwaysintroducedanotherCNOT;

which cancelsthe value of |x;}. Thereforethe final valuesof the
auxiliary qubitsare all 0. Thereforewe can deletethe group B
gatesby reorderingand applying Rule (1). (Otherwise,we can
imply a contradictionjust aswe did in the proof of Lemma4.) In
our example,we successfullygetto acircuit in Fig. 6 whichis the
canonicaform for theinitial circuit. m|

4.3 Completenesof the Rule Set

Now our mainresultis almostimmediate:

Theorem 2. Let S; andS, be ary equivalentquantumBoolean
circuits. Thenthereexistsa sequencef transformatiorrules,each
in therule setgivenin Section3, which transformsS; to S;.

Proof. SinceS; andS, areequivalent,their canonicaformsare
thesameby Lemmaa3. Let this canonicaform be S. We cantrans-
form S; into Sby Theoreml. Let this sequencef transformation
rulesber;. We canalsotransformS; into Shy sequence,. Since
all of our transformatiorrules are bidirectional,we cangeta se-
quencer}, of rulesthattransformsSto S, simply by reversingra.
Now thesequence; followedby r}, transformsS; into S. O

5. CONSTRUCTION OF EFFICIENT CIR-
CUITS

In this section,we proposean exampleof circuit designproce-
durebasedon our transformatiorrules. The designflow consists
of thefollowing threesteps:

Stepl. We make an arbitraryinitial CNOT-basedcircuit from
a givenformula(dependingon the problemfor the quantumalgo-
rithm).

Step2. We transformtheinitial circuit to its canonicalform by
our procedureMain(S) in Sectiond.

Step3. A new transformationrule is givenin Section5.2, which
canberealizedby composingour transformatiorrulesandguaran-
teesa reductionif the costof thecircuit. We just applythisrule as
mary timesaspossible.

For Stepl, it shouldbe notedthatif we canuseauxiliary qubits,
we can simulateary type of formula by a CNOT-basedcircuit
whosesizeis almostthe sameasthe givenformula. Here,we shav
how to simulateCNF formulasby CNOT-basectircuitsin the fol-
lowing section.

5.1 Circuits for CNF Formulas

For simplicity, we use an example. Supposethat f = (x1 +
x3)(X1 + X2 + X3). Thenwe preparetwo auxiliary qubits, |Xs) and
|xg) for the first andthe secondclause respectiely (seeFig. 13).
Thenwe introducea gateg; = [5,{1,3}]. (In general,for thei-
th clause we introduceg; = [n+ 1+i,C] whereC; includesj iff
Xj or Xj appearsn the clause. Thuswe useone auxiliary qubit
per clause.)Then,we placeNQOTs, right afterg; whereNOT; is a
simplernotationfor [i,{}]. NOT; worksjust like a negationgate.
Furthermorewe placetwo NOT; gatesbeforeand afterg; since
X1 appearsn the positive form. Similarly two NOT3 gatesarein-
serted.Let G; bethe setof thesegates.Thena similar set, Gy, of
gatesareintroducedfor the seconctlause put no NOT; is inserted
sincex; appearsn the negative form in the secondclause. Then,
we introduceonespecialgatep = [4, {5, 6}] to propagatehe prod-
uctvalueof the clausesinto |x4). After thatwe introduceG, and
G/, which areexactly the sameas G, andG,, respectiely, in the
mirror positionsasshovnin Fig 13.

Now it is easyto seethatthevalueof |xs) afterG; is 0B Xy X3 =
(x1 +X3), which is equalto thefirst clause,andsimilarly for |xg)
andG;. Thusthevalueof |x4) afterthe specialgatep simulateghe
valueof thegivenCNFformulaf. G} andG,, areusedfor restoring
the statesof the auxiliary qubits. Thusour circuits simulateCNF
formulaswithout muchincreasinghesize,whichimmediatelyim-
pliesthatthesatisfiabilityproblemfor our circuitsis NP-complete.
Also, our transformatiorrulescansimulatethe Resolutionsystem
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to prove the unsatisfiabilityof CNF formulaswith only a polyno-
mial overhead omittedin this paper).

5.2 Circuit Reductionfromthe CanonicalForm

First we shov a useful complex transformatiorrule which can
berealizedby applyinga sequencef our transformatiorrules:

[LAUCﬂ ) []7AUCU{I}] = [iacl] : []7AUCU{I}] : [i7cl]a

if CCGC.

Figurel4illustratesthistransformationThistransformatiorcan
bedecomposedsfollows: Firstwe puttwo [i,C;] gatesy Rule(1)
right after[j, AUCU{i}]. Next we move[j,AUC4] and[j,AUCU
{i}] tothepositionbetweerthetwo addedi,C;] gatesby Rules(2)
and(3), whereanew [j,AUC;] gateis added.Finally, we remove
two [j,AUC,] gatesby Rule (1) andgetthe righthand-sideof the
transformationWe cangeneralizéhetransformatiorfor morethan
two gatesasfollows:

[j,AUCL] - [}, AUCa] - [j,AUG] - [},AUCU {i}] = [i,C1]-
[iaCZ] e [|7Ck} : [LAUCU {I}} ’ [i,Cﬂ : [iaCZ} e [Iack]’
ifCCC(1<I<K).

It is of coursehardto guessa reasonablelefinition of the cost
of CNOT gatesat this moment. However, asshawn later, thereis
someevidencethattheimplementatiorof a CNOT gatewith more
inputsshouldbe moreexpensve thanwith lessinputs. If it is true,
thentheimplementatiorcostof the circuit of the righthand-sidef
theabove transformatioris smallerthanthatof thelefthand-side.

It is easyto seethatwe cantransformCircuit B to Circuit C in
thepreviousFig. 2 by applyingthistransformatiormary times.Be-
low we presenta morecomplicatecandinterestingexamplewhere
we needsomeheuristics. Supposewe start from the circuit in
Fig. 15(a). Firstwe applythetransformationio threepairsof gates,
i.e.,aandd, b ande, andc and f to getthe circuit in Fig. 15 (b).
Next we cansimply deletetwo pairsof redundangatesj.e.,h and
i, andj andk by Rule(1). Thenwe canoptimizethecircuit further
by applyingthe above transformatiorto the gatesh andc.

We have anotherway to optimizethe circuit even morein this
case:Firstwe swaptheorderof | andg, andaddtwo gatesm and
nasshowvnin Fig. 15(c). Thenwe canapplythetransformatiorto
threepairsof gates,i.e.,aandm, b andg, andc andn to getthe
circuit in Fig. 15 (d). Next we furtherapply the transformatiorto
threepairsof gatesj.e.,o andp, b andc, andqg andl to getthefinal

with two controlbits canbedecomposetb 14 basicquantungates
with fewerinputs,(ii) aCNOT gatewith threeandfour controlbits

canbe decomposedo four andten CNOT gateswith two control

bits, respectiely, and (iii) a CNOT gatewith m(> 5) control bits

canbedecomposetb 8(m— 3) CNOT gateswith two controlbits.

By a simple calculationwe can seethat the costof the circuit in

Fig. 15(a) is 602,whereaghecostfor Fig. 15 (€) is 188. Thus,we

canusuallymalke a circuit smallerif we apply our comple trans-
formationto appropriateportionsof the circuit. To find the best
portionto which we shouldapplythetransformatioris acombina-
torial problemsimilar to finding a bestdivisor in the corventional
multilevel logic synthesiq7].

6. CONCLUDING REMARKS

As mentionedearlier our ultimate goal is to develop a design
theoryfor quantumBooleancircuits. For this purpose:(1) We will
needmoreconcreté'guide” or heuristicson how to changeagiven
circuit into a bettercircuit. (2) During the courseof this research,
we mayfind "a counterexample”,i.e., a pair of circuitsfor which
our rule setneedsexponentiallymary steps.Therule setwill then
needto be modifiedto copewith suchcounterexamples.(3) A de-
signtheoryfor sequentiabuantumcircuitswill alsobeinteresting.
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