

An Efficient Hierarchical Timing-Driven Steiner Tree

Algorithm for Global Routing*

Jingyu Xu, Xianlong Hong, Tong Jing, Yici Cai

Dept. of Computer Science & Technology, Tsinghua University, Beijing, P. R. China, 100084

Email: xujy, hongxl, jingt, caiyc@tiger.cs.tsinghua.edu.cn

Jun Gu

Dept. of Computer Science, Hong Kong University of Science & Technology, Hong Kong, China

Email: gu@cs.ust.hk

Abstract

In this paper, we propose a hierarchical timing-driven

Steiner tree algorithm for global routing which considers

the minimization of timing delay during the tree

construction as the goal. The algorithm uses heuristic
approach to decompose the problem of minimum delay

Steiner tree into hierarchy and to construct the sub-trees

respectively based on dynamic programming technique.

Taking the net topology into consideration, we build the
final routing tree by reconnecting the sub-trees at each

level recursively and then improve the connection with the

objective of minimizing the delay from source to sink pins

on the critical path. Meanwhile, some efficient strategies
have been proposed to speed up the solving process.

Experimental results are given to demonstrate the

efficiency of the algorithm.

1. Introduction

With progress in VLSI deep-submicron (DSM)

technology, interconnection delay has become
increasingly significant in determining circuit speed [1, 2].

The wire capacitance and resistance can no longer be

ignored during timing delay calculation since they are

comparable to gate capacitance and output-driver
resistance [3]. At the global routing stage, which

determines how signal nets will finally be connected, it is

necessary to estimate the wire delays in order to

accurately maximize the overall chip performance.
The Steiner tree algorithm is the essential part of a

global routing algorithm. It has been an active field of

research. To deal with the interconnection delay, many

methods have been proposed, such as wire sizing [4-6],
buffer inserting [7-9]. In [10], an interconnection delay

calculation technique for custom chip design is presented.

However, most existing Steiner tree algorithms of either

wire-mode global routers or timing-driven global routers

*This work was supported in part by the National Grand

Fundamental Research 973 Program of China under Grant No.

G-1998030411

take the minimization of total wire length as the objective.

Only limited progress has been reported on timing-driven

Steiner tree constructing. [11] proposed a bounded radius

Steiner tree global routing algorithm with a wiring cost

factor ε. For a small ε the algorithm may result in a very

large net wire length, which may increase the timing delay
for all sink pins of the net. Based on a simplified Elmore

timing model, an iterative Dreyfus-Wagner based (IDW)

[12, 13, 15] and a constructive force directed (CFD)

Steiner tree algorithm [12, 14, 15] were presented. By
improving the equations in Dreyfus-Wagner (DW)

algorithm and introducing the timing optimization during

the routing process, IDW constructs Steiner trees with

high performance. The major weakness of IDW is that it
becomes impractical when solving Steiner tree with more

vertices (more than 7 vertices) due to the greatly increased

run time. CFD runs much faster than IDW does, but the

timing performance of the routing tree is decreased. [16]
presented a timing-driven Steiner tree algorithm based on

Sakurai timing model. Experimental results in [16] show

that using Sakurai timing model is more accurate than

using Elmore timing model in Steiner tree constructing.
However, the run time of the algorithm [16] is still longer.

In this paper, we present a hierarchical timing-driven

Steiner tree algorithm based on Sakurai timing model. The

algorithm significantly speeds up the process of routing
tree constructing with high timing performance. The

remainder of this paper is organized as follows. In Section

2, the Sakurai-delay-based timing model for accurately

calculating the delay is discussed, the global routing
problem is formulated for symbolic analysis, and the

Dreyfus-Wagner (DW) algorithm is introduced. The

timing-driven Steiner tree algorithm is given in detail in

Section 3. Section 4 presents the efficient strategies.
Section 5 shows our experimental results. Section 6 is an

overall conclusion.

2. Preliminaries

In this section, we will discuss timing models and give
the problem formulation. Then, the Dreyfus-Wagner

algorithm will be introduced.

mailto:xujy@tiger.cs.tsinghua.edu.cn

2.1. Timing model

The Sakurai-delay-based timing model [17], used in

this paper instead of Elmore-delay-based timing model

[18, 19] and optimized Elmore-delay-based timing model

[20], is modeled as a voltage source with the on-resistance

of the transistor , distributed RC lines of resistance

, capacitance , and loading capacitance . It

accords with actual value. The delay is given by the

following expression:

s
R

e
c

e
r

z
C

DZ
T

 T (1)
zeeezesDZ

CrcrCcR βαβ +++=)(

Where α equals 1.02 and β equals 2.21, which yields 90%
of the signal’s final delay time.

In the case of multi-terminal net, the delay is

formulated as

 T
ssD

CRs β=)(

 T
wvwvwDD

CLrLcrvTw ˆˆˆ)()(2 βα ++=
Where node v is the predecessor node of node w, is

the wire length from v to w, is the total capacitance

of the rest sink pins and wire segments of the net.

vw
L

w
C

2.2. Problem formulation

 With the progress in multi-layer routing technology,

routing area expands to the whole plane instead of many

channels. Let us assume that the chip has been divided

into a rectangular array of cells called

global routing cells (GRCs). Global routing graph (GRG)

is the dual graph of the graph, which is composed of the

gridlines and crossings.

colrow
NN ×

 Thus, a net can be specified as a set of nodes in GRG.
The problem of routing a net in GRG can be described as

a Steiner tree problem of specified nodes in the GRG.

2.3. Dreyfus-Wagner algorithm

As an application of dynamic programming technique,

the Dreyfus-Wagner algorithm [21] searches for all the

possible Steiner trees connecting T (representing the set of
pins of a signal net) to minimize the total wire length. We

use to denote the Steiner tree of ,

where and , while the definition of

 is similar, with one extra constraint that

. Let be the shortest path from v

to w in G. The following two recursions are used:

}){(vKS
v

U

TK ⊆
}){vK U

2)(≥v

}{vK U

KVv −∈

),(wvp

(P
v

degree

}){ '(}){ '(min{}){(vKKSvKSvKP
vvv

UUU −+=

} ' '| Φ≠∧⊂ KKK (2)

{ }{ ,|)(),(minmin}){(KwKSwvpvKS
wv

∈+=U

}}|}){(),(min{ KwwKPwvp
w

∉+ U (3)

3. The hierarchical timing-driven Steiner tree

algorithm

Our timing-driven Steiner tree algorithm will be

proposed in this section utilizing dynamic programming

technique and hierarchical mechanism. And Sakurai delay

model will be analyzed for optimization objectives
regarding different cases.

3.1. Formulation derivation for the Sakurai delay

model

To determine the optimization objective, we analyze

the contribution of each part of Steiner tree to . We

have

)(tT
D

∑∑
∈∈

++=
),(),(

2 ˆˆˆ)()(
tspathxy

yxy
tspathxy
xyDD CLrLcrsTtT βα

∑∑
∈∈

++=
),(),(

2
ˆˆˆ

tspathxy
yxy

tspathxy
xyss CLrLcrCR βαβ

∑
∈

− +=
),(

2
ˆˆ[

wspathxy
xywss LcrCR αβ]ˆ

),(

∑
∈

−+
wspathxy

wyxyCLrβ

wCLrsR

wspathxy
xy
)ˆ([

),(

∑
∈

++ β

∑
∈

+
),(

2
ˆˆ

twpathxy
xyLcrα]ˆ

),(

∑
∈

+
twpathxy

yxyCLrβ (4)

where
wv

C −

+ ˆs rR

is the capacitance between node and .

The first part(in square brackets) has nothing to do with

Steiner tree below w. In the second part, only the

coefficient of depends on Steiner tree above . Let

, then we have

v w

wC

∑
∈ path

w

=
),(wsxy

xysw LR

Theorem 1 For a given critical node t below w, we
minimize (5) when solving minimum delay Steiner tree

below w. Here w is the pseudo-source.

∑
∈

+=
),(

2ˆˆ),(
twpathxy
xywswd LcrCRtwT αβ ∑

∈
+

),(

ˆ

twpathxy
yxyCLrβ (5)

For , is only affected by

and . Thus we only need to minimize the total

capacitance of Steiner tree below v. We have the

following theorem.

),(tspathv ∉∀

wy
C −

)(tT
D ws

C −

Theorem 2 For , the objective is

minimizing the total wire length of Steiner tree below v.

),(tspathv ∉∀

Utilizing dynamic programming technique, we derive

the transfer delay function for each critical node. Let

be the vector of critical nodes,

be the minimum delay Steiner tree of

 regarding . is similar to

, with one extra constraint that

. And let T be the time delay

from v to critical node in Steiner tree and

the delay vector of all critical nodes. We have

)(
n21

 , t,,tt L=t
)},{(

svv
RvKS U

}{vK U

)},{(
svv

RvKS U

2)(≥vdegree

) , (ST
vd

t

svR)},{(
svv

RvKP U

) , t(S
ivd

i
t

v
S

Theorem 3 The transfer delay functions for minimum

delay Steiner tree are

)),},{((t
svvd

RvKPT U

KvKsvsvvd
CRRvKST ′−′+= It }{)),},{ '((min{ βU

)),},{ '((t
svvd

RvKKST U−+

}}{ KKvKKsv
CR ′−−′−+ Iβ (6)

)),},{((t
svvd

RvKST U

)),ˆ,((min{min{ t
vwsvwd

LrRKST +=

},|)ˆˆˆ(2
KwLcrCLr

kvwwvw
∈++ Iαβ

)),ˆ},{((min{ t
vwsvwd

LrRwKPT +U

}|)ˆˆˆ(2
KwLcrCLr

kvwwvw
∉++ Iαβ (7)

where

∉

∈
==

Ktwhen

Ktwhen

iiii

j

j

jKnKkKk
,0

,1
),,,(

21
LI

The above theorems give rise to the following
corollary.

Corollary 1 Using the above theorems to construct a

Steiner tree with the given set of pins, a minimum delay

Steiner tree can be formed.
When solving Steiner tree with less than K pins (K is a

threshold for hierarchical decomposition which will be

discussed later), we use the above theorems to compute

the delay of all possible trees connecting the given K pins
from bottom to top recursively, and rebuild the Steiner

tree yielding the minimum solution from top to bottom.

3.2. The hierarchical constructing mechanism

Due to the exponential nature of the complexity, it is

impractical for the dynamic programming algorithm to

process nets with large number of pins under current

computing environment. Therefore, the hierarchical
mechanism is employed to speed up the construction

process. At each level, the block of pins is decomposed to

L sub-blocks according to their locations. Our two-step

approach for decomposition is
Step.1 Assign the Key Nodes of

sub-blocks
L21

 , R,,RR L

Search for two vertices r1, r2 with the maximal distance

and assign them to be the Key Node of R1 and R2

respectively. Then for ∀ r∈ R, compute .

Let vertex r

∑
−= 1),(

i
Rrpd(r)

3 yielding the minimum d(r) be the Key Node

of R3. Repeat this process until we find the Key node of

RL, or until d(r) reaches the threshold.

Step.2 Expand Key Node to

L21
 , r,,rr L

L21
 , R,,RR L

For
i

RRr U∈∀

RR U=

, compute , and insert vertex

r yielding the minimum into . Repeat this

process until .

)p(r,R
i

)
i

p(r,R
i

R

i

The estimated complexity of our hierarchical

decomposition approach is)(
2

RO .

After constructing the minimum delay Steiner tree for

each sub-block respectively, we reconnect these sub-trees
by vertices called Surface Node, which are appointed

taking into account of the shape of the whole tree. Each

sub-tree is regarded as a single “node” at first. Their
locations are represented by their own center of gravity.

We connect these “nodes” by minimizing the delay from

source node s to critical node t. Then sub-trees are

unfolded and Surface Nodes are used to connect them
instead of the center of gravity. This procedure is

recursively processed on each level till the final routing

tree is built up. An example is shown in Figure 1.

s

T
1

t

GRG

e

Figure 1. Decomposition and reconnect of sub-trees

Note that the construction of each sub-tree should not

be isolated from that of other sub-trees. Otherwise the
shape of the final tree will be out of control. To make each

sub-tree concentrate around the source node, we use the

Force-Node to “pull” all the sub-trees together. In Figure

1, when constructing the sub-tree T1 containing t, we let s
be the Force-Node. S pulls the sub-tree closer, thus we get

a shorter distance from s to edges of T1.

3.3. Algorithm description

The pseudo-code of our algorithm is presented in

Figure 2.

#define maxSimpleSetSize K

//K is a threshold for hierarchical decomposition

void SteinerTreeCompond(set, path, forceNode)

{

if (NumberOfNodes ≤ maxSimpleSetSize)

{

BuildSimpleTimeDelaySteinerTree(set, path);

}

else

{

Assign the Key Nodes of sub-blocks ;
L21

 , R,,RR L

Expand Key Node to ;
L21

 , r,,rr L L21
 , R,,RR L

Create subSet and subPath of each ;
i

R

for (each)
i

R

{

Assign the Force-Node of ;
i

R

SteinerTreeCompond(subSet[i], subPath[i], Force-Node);

Compute the center of gravity of ;
i

R

}

SteinerTreeCombine(path, subPath, Force-Node);
}

}

void BuildSimpleTimeDelaySteinerTree(set, path)

{

Create all the complementary sub-set pairs;

Recursively solve the minimum delay Steiner tree, build stack;

Back stack, search for Steiner points and sub-set pairs yielding the
minimum solution, put into sets;

Reconstruct the Steiner Tree according to sets information;

Free sets and stacks;

}

void SteinerTreeCombine(path, subPath, forceNode)

{
Let the center of gravity represent the sub-tree, form a virtual graph;

Find the minimum delay Steiner tree of the virtual graph;

Unfold each sub-tree and compute the Surface-Nodes to improve the

connection;

Connect sub-trees by Surface-Nodes, meanwhile check cycle and
break it;

}

Figure 2. Pseudo-code of our algorithm

4. Some efficient strategies in the algorithm

To speed up the construction process of the minimum

delay Steiner tree, some efficient strategies will be

proposed in following subsections.

4.1. Fast topology constructing

The topology of Steiner tree regarding or

 depends on K and v. When taking delay into

account, their topologies are also affected by

according to (5). Thus we can solve the Steiner tree of

 or from bottom to top to avoid

rebuilding sub-trees with same shape. We have

)(KP
v

)(KS
v

)(KP
v

sv
R

)(KS
v

Theorem 4 Suppose that R
sv2sv1

R<

)(KP
v

sv2
R

and their

 or have the same topology, then for

, the topology of or

will be the same as that of and .

)(KP
v

sv
R ∈∀

)(KS
v

],
21 sv

R[
sv

R)(KS
v

sv1
R

Proof:]1,0[∈∃ λ that has . (5)

can be transformed into , where parameters

a and b depends on the topology of the Steiner tree. Let

, and , be the parameters of the

minimum delay Steiner tree for

21
)1(

svsvsv
RRR λλ +−=

baR
sv

+=

)(KS
v sv1

R

),(
1

tvT
d

ss
aa
21

=
s

b
1

=
,(),()1(

211
tvTtvT

dd
λλ +−=

T
d

s21

b
s

+

s
a
1

sv2
R

2
T
d

s1
a

)

),(
0

tv
d

=

b

, tv

s2

1
a
s

b

sv

and

respectively, the delay of each case are and

. We have already known , ,

we haveT

(
s

b
2

)R

Suppose a Steiner tree satisfies

. Since T and T

are minimum delay, we have and

. Then:

),(),(
0

tvTbaRtvT
dsvd

<+=

),(
22

tvTbaR
dsv

≥+

),(
1

tv
d

1
b

sv
≥+

),(
2

tv
d

), tv(
1

TaR
d

bRRabaRtvT
svsvsvd

++−=+=])1[(),(
21

λλ

)())(1(
21

baRbaR
svsv

+++−= λλ

),(),()1(
21

tvTtvT
dd

λλ +−≥),(
0

tvT
d

=

The result conflicts with the hypothesis, for ,

theorem 5 is true. For we can get the same

conclusion. The construction procedure of the minimum

delay Steiner tree is accelerated by using the above

proposition. The detailed approach is:

)(KS
v

)(KP
v

A stack structure is defined to store K, v, ,
1s

R

(KP
v

)(K
v

2s
R

)

1s

and corresponding descending method of or

. The structure builds up a hierarchical result stack

according to K and v. Before solving and

 regarding , we check the stack for whether

the current case has already been solved. If so, the

solution can be reached directly. For each new solution,

we have to search the stack for equivalent solutions and

combine them. Each level of the stack is sorted by

)(KS
v

)(KS
v

P

R

s
R

in

order to accelerate the searching and combining procedure.
Finally, the Steiner tree is rebuilt from top to bottom

according to information stored in stack.

4.2. Overlapped edges

)

When

with diffe
delay, for

edges. Fig

assume th

node (sour
which can

3(c). Here

Since ov

overlappe
into (a), in

To avo

Push-Nod

connecting
the right s

“push” the

Also, whe

node, we
the topolo

strategy p

edges.

4.3. Cycl

Unlike

algorithms
Steiner tre

Push-Node

+

(a) (b) (c

(d)
Figure 3. Overlapped Edges

taking timing delay into account, Steiner trees

rent topologies may yield the same minimum
 which the solutions may include overlapped

ure 3 shows an example of this case. Let us

at the minimum delay Steiner tree is the hollow

ce) connecting the two solid nodes respectively,
 be represented by either Figure 3(b) or Figure

 (b) and (c) have the same delay characteristic.

erlapped edges are forbidden in GRG, the

d edges in (b) will be combined and modified
 which the delay characteristic has changed.

id overlapped edges, we take advantage of the

e. Take Figure 3 as an example. When

 the hollow node to the left solid node, we let
olid node be its Push-Node. The Push-Node will

 edges connecting left node as far as possible.

n connecting the hollow node to the right solid

let the left node be its Push-Node. Thus we get
gy in Figure 3(d). In more complex cases, our

roved to be efficient in suppressing overlapped

e-elimination

the minimum wire length Steiner tree

, cycle is a common problem in timing-driven
e construction since the final routing tree is

solved from bottom to top. Further, in the hierarchical

Steiner tree algorithm, sub-trees need to be connected
together based on existing connections, for which cycle

may also occurs. Here we propose an efficient strategy to

deal with both cases.

We use Figure 4 to explain the case. In Figure 4(a), 3
sub-trees need to be reconnected. The Surface Node of

each sub-tree is Node 61, Node 67 and Node 69

respectively. As shown in Figure 4(b), when sub-trees are

connected together by Surface-Nodes, the connection of
67 to 61 are represented by path 67-64, and then 64-61,

which causes the occurrence of cycle in sub-tree2. A

strategy is proposed to eliminate the cycle.
Step 1 Use c_Path to denote the path that will connect

the Surface-Nodes SN1 and SN2 of sub-tree ST1 and ST2

respectively.

Step 2 , 11 vSN → 22 vSN →
Step 3 Search the point p on the c_Path from SN1 to

SN2, if , , if , stop the search. 1STp ∈ 1vp → 2STp ∈
Step 4 Search the point q on the c_Path from SN2 to p,

if , if q = p, stop the search. 2STq ∈ 2vq →
Step 5 Connect v and , stop. 1 2v

The result of our approach is shown in Figure 4(c).

5. Experimental results

The timing-driven Steiner tree algorithm has been

implemented in C language on Sun Enterprise 450 under

Unix. The experimental results are compared with those
of the algorithms mentioned above [12-16].

Microelectronics Center of North Carolina (MCNC)

benchmark circuits are used as the test data. According to

(1), let 02.1=α and 21.2=β , yields 90% of the

signal’s final delay time [17]. We transform parameters

under 2µm technology to the technology of 0.2µm.

According to QCE rule [22], We select

DZ
T

10=δ , . 8.0αε =
Note that the choosing of K will affect the performance

of the algorithm. Experimental results indicate that the

delay performance will be slightly improved when K

increases. As a counterpoint for both performance and run
time, K is fixed to be 5 pins in implementation.

5.1. Comparison on run time and total delay

Table 1 compares the results of our approach with the
optimal solutions in [12-16]. Row index is the circuit

name and serial number of nets in MCNC benchmark.

Comparisons of delay performance and run time are

shown in column 4 to 6, column 7 to 8 respectively. We
can see from the table that the hierarchical algorithm

achieves the almost optimal solution while greatly speed

up the construction process of minimum time delay

Steiner tree. Comparison of run time is plotted in Figure 5,
where each dot represents the average run time of nets

with same number of pins. With the increase in net size,

the speed-up trend becomes more significant that for most

nets the speedup is in the order of 1000x ~ 100000x with
no degradation of the delay performance.

5.2. Comparison on wire length

Table 2 gives the comparison of the wire length

characteristics of our approach with the minimum wire

length Steiner tree algorithm. For most of the test nets, the

total wire length of our approach is controlled within 5%
above the minimum wire length.

32

61 64 67 69 70 71

46

28

13

31

82

49

83 84

102 103

85 88

sub-tree1

sub-tree2

sub-tree3

32

61 64 67 69 70 71

46

28

13

31

82

49

83 84

102 103

85 88

sub-tree1

sub-tree2

sub-tree3

62 63 65 66 68

(a) (b)

32

61 64 67 69 70 71

46

28

13

31

82

49

83 84

102 103

85 88

sub-tree1

sub-tree2

sub-tree3

62 63 68

(c)

Figure 4. Cycle in Steiner tree

6. Conclusions

We have presented an efficient timing-driven Steiner

tree algorithm for global routing based on Sakurai delay

model. By decomposing the minimum time delay Steiner
tree problem into hierarchy, the high-quality solutions are

provided with a significant speed up. Our approach has

been tested with MCNC benchmark circuits for time delay

and total wire length performances. Comparison on these
characteristics show that an intelligent heuristic will

produce quality equivalent to the direct dynamic

programming algorithms and a total speed up of 1000x ~

100000x due to hierarchical decomposition of the whole
problem. For nets with large number of pins, our approach

also achieves satisfactory results in a very short time.

References

[1] X. L. Hong, X. L. Yan, C. G. Qiao, The Theories and

Algorithms for VLSI Layout Design, Beijing: Science Press.

1998.

[2] T. Jing, X. L. Hong, Y. C. Cai, et al, “The Key Technologies

and Related Research Work of Performance-Driven Global

Routing”, J. of Software, 2001, 12(5), pp. 677-688.

[3] X. L. Hong, T. X. Xue, E. S. Kuh, et al,

“Performance-Driven Steiner Tree Algorithms for Global

Routing”, Proceedings of 30th Design Automation

Conference (DAC), Dallas, Texas, 1993, pp. 177-181.

[4] Jason Jingsheng Cong, Kwok-Shing Leung, “Optimal

Wiresizing under Elmore Delay Model”, IEEE Trans. on

CAD, 1995, 14(3), pp. 321-336.

[5] Jason Cong, Lei He, “Optimal Wiresizing for Interconnects

with Multiple Sources”, ACM Trans. on Design Automation

of Electronic Systems. 1996, 1(1-4), pp. 478-511.

[6] John Lillis, Chung-Kuan Cheng, Ting-Ting Y. Lin et al,

“New Performance Driven Routing Techniques with

Explicit Area/Delay Tradeoff and Simultaneous Wire

Sizing”, Proceedings of 33rd Design Automation

Conference (DAC), Las Vegas, Nevada, 1996.

[7] Chris C. N. Chu, D. F. Wong, “An Efficient and Optimal

Algorithm for Simultaneous Buffer and Wire Sizing”, IEEE

Trans. on CAD, 1999, 18(9), pp. 1297-1304.

[8] Jiang Hu, Sachin S. Sapatnekar, “Algorithm for

Non-Hanan-Based Optimization for VLSI Interconnect

under Higher-Order AWE Model”, IEEE Trans on CAD,

19(4), 2000, pp. 446-458.

[9] John Lillis, Chung-Kuan Cheng, “Timing Optimization for

Multisource Nets: Characterization and Optimal Repeater

Insertion”, IEEE Trans on CAD, 18(3), 1999, pp. 322-331.

[10] Somchai Prasitjutrakul, William J. Kubitz, “A

Timing-Driven Global Router for Custom Chip Design”,

ICCAD’90, 1990, pp. 48-51.

[11] Jason Cong, A. Kahng, G. Robins et al, “Provably Good

Performance-Driven Global Routing”, IEEE Trans on CAD,

10(2), 1991, pp. 120-129.

[12] X. L. Hong, T. X. Xue, C. K. Cheng et al,

“Performance-Driven Steiner Tree Algorithm for Global

Routing”, Proceedings of 30th Design Automation

Conference (DAC), Dallas, Texas, 1993, pp. 177-181.

[13] X. L. Hong, “A Performance-Driven Steiner Tree Algorithm

for Global Routing”, Chinese J. Computers, 1995, 18(4), pp.

266-272.

[14] X. L. Hong, “A Performance-Driven Steiner Tree Algorithm

Using Constructed Force Directed Approach for Global

Routing”, Chinese Journal of Semiconductors, 1995, 16(3),

pp. 218-223.

[15] X. L. Hong, T. X. Xue, E. S. kuh, C. K. Cheng, J. Huang,

“TIGER: An Efficient Timing-Driven Global Router for

Gate Array and Standard Cell Layout Design”, IEEE Trans.

on CAD, 1997, 16(11), pp. 1323-1330.

[16] H. Y. Bao, X. L. Hong, Y. C. Cai, “Timing-Driven Steiner

Tree Algorithm Based on Sakurai Model. Chinese Journal of

Semiconductors”, 1999, 20(1), pp. 41-46.

[17] T. Sacurai, “Approxiamation of Wiring Delay in MOSFET

LSI”, IEEE Journal of Solid-State Circuits (SSC), 1983,

18(4), pp. 418-426.

[18] W. C. Elmore, “The Transient Response of Lumped Linear

Networks with Particular Regard to Wideband Amplifiers”,

Journal of Applied Physics, 1948, 19(1), pp. 55-59.

[19] Rohini Gupta, Byron Krauter, Bogdan Tutuianu et al, “The

Elmore Delay as a Bound for RC Trees with Generalized

Input Signals”, Proceedings of 32nd Design Automation

Conference (DAC), San Francisco, CA, 1995, pp. 364-369.

[20] Chung-Ping Chen, Yao-Ping Chen, D. F. Wong, “Optimal

Wire-Sizing Formula Under the Elmore Delay Model”,

Proceedings of 33rd Design Automation Conference (DAC),

Las Vegas, Nevada, 1996, Session 26.4.

[21] S. E. Dreyfus, R. A. Wagner, “The Steiner Problem in

Graph”, Networks, 1972, 1, pp. 195-207.

[22] X. W. Gan, The ABC of Digital CMOS VLSI Analysis and

Design. Beijing, Beijing Univ. Press. 1999.

Table 1. Comparison on total delay and run time

Net:No.
Number
of Pins

Optimal
Delay
(ns)

Hierarchical
Delay(ns)

% Delay
Increase

Optimal
Solution CPU

Time(ms)

Hierarchical
CPU

Time(ms)

C5:202 6 0.0255 0.0255 0.00% 70 2.65

C5:408 6 0.0108 0.0108 0.00% 20 2.37

C5:637 6 0.0318 0.0330 3.77% 150 6.49

C5:700 6 0.0388 0.0399 2.84% 70 7.64

C5:706 6 0.0315 0.0318 0.95% 70 7.81

C7:201 6 0.0278 0.0278 0.00% 30 2.84

C7:301 6 0.0279 0.0284 1.79% 60 6.22

C7:611 6 0.0228 0.0239 4.82% 40 2.91

C5:33 7 0.0427 0.0433 1.41% 160 5.56

C5:181 7 0.0228 0.0228 0.00% 170 2.95

C5:226 7 0.0266 0.0273 2.63% 310 2.96

C5:537 7 0.0791 0.0822 3.92% 410 4.17

C7:613 7 0.0283 0.0288 1.77% 350 5.23

C7:221 7 0.0219 0.0220 0.46% 270 6.14

C5:194 8 0.0328 0.0328 0.00% 770 5.74

C5:216 8 0.0253 0.0253 0.00% 2490 5.97

C7:343 8 0.0354 0.0388 9.60% 1570 13.25

C7:344 8 0.0328 0.0328 0.00% 3230 15.91

C5:257 9 0.0189 0.0189 0.00% 1890 3.46

C5:362 9 0.0235 0.0235 0.00% 8130 8.88

C5:541 9 0.1277 0.1338 4.78% 12980 7.10

C5:543 9 0.1130 0.1130 0.00% 21800 9.79

C5:812 9 0.0311 0.0311 0.00% 20790 13.27

C7:337 9 0.0390 0.0394 1.03% 8520 7.30

C5:265 10 0.0221 0.0227 2.71% 10620 8.26

C5:661 10 0.0449 0.0462 2.90% 52340 20.29

C5:840 10 0.0284 0.0284 0.00% 16730 10.90

C5:847 10 0.0288 0.0288 0.00% 30410 5.79

C5:861 10 0.0387 0.0400 3.36% 94090 10.17

C5:387 11 0.0231 0.0240 3.90% 31980 4.39

C5:818 11 0.0374 0.0374 0.00% 447610 8.82

C7:311 11 0.0493 0.0516 4.67% 450600 15.55

C5:86 12 0.0331 0.0343 3.63% 354400 15.14

C5:340 12 0.0871 0.0891 2.30% 1945400 12.14

C7:326 12 0.0348 0.0374 7.47% 336300 9.83

Table 2. Comparison on wire length

Net:No.
Number of

Pins

Wire Length of
Hierarchical
Algorithm

Wire Length of
Optimal Solution

% Wire Length
Increase

C5:265 10 2176 2130 2.16%

C5:340 12 5482 5322 3.01%

C5:387 11 2578 2578 0.00%

C5:537 7 5116 4910 4.20%

C5:541 9 6834 6614 3.33%

C5:637 6 2874 2850 0.84%

C5:661 10 4846 4566 6.13%

C5:700 6 2596 2520 3.02%

C5:847 10 3356 3356 0.00%

C5:861 10 4714 4490 4.99%

C7:337 9 3738 3632 2.92%

C7:301 6 3660 3488 4.93%

C7:311 11 6250 5654 10.54%

C7:344 8 3966 3966 0.00%

C7:611 6 2614 2562 2.03%

1

10

100

1000

10000

100000

1000000

6 7 8 9 10 11 12

Number of Pins

C
P

U
 T

im
e(

m
s)

Optimal Solution

CPU Time(ms)

Hierarchical
Solution CPU

Time(ms)

Figure 5. Comparison of Run Time

	Main
	ASP02
	Front Matter
	Table of Contents
	Session Index
	Author Index

