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Abstract 

In this paper, we propose a hierarchical timing-driven 

Steiner tree algorithm for global routing which considers 

the minimization of timing delay during the tree 

construction as the goal. The algorithm uses heuristic 
approach to decompose the problem of minimum delay 

Steiner tree into hierarchy and to construct the sub-trees 

respectively based on dynamic programming technique. 

Taking the net topology into consideration, we build the 
final routing tree by reconnecting the sub-trees at each 

level recursively and then improve the connection with the 

objective of minimizing the delay from source to sink pins 

on the critical path. Meanwhile, some efficient strategies 
have been proposed to speed up the solving process. 

Experimental results are given to demonstrate the 

efficiency of the algorithm.  

1. Introduction 

With progress in VLSI deep-submicron (DSM) 

technology, interconnection delay has become 
increasingly significant in determining circuit speed [1, 2]. 

The wire capacitance and resistance can no longer be 

ignored during timing delay calculation since they are 

comparable to gate capacitance and output-driver 
resistance [3]. At the global routing stage, which 

determines how signal nets will finally be connected, it is 

necessary to estimate the wire delays in order to 

accurately maximize the overall chip performance.  
The Steiner tree algorithm is the essential part of a 

global routing algorithm. It has been an active field of 

research. To deal with the interconnection delay, many 

methods have been proposed, such as wire sizing [4-6], 
buffer inserting [7-9]. In [10], an interconnection delay 

calculation technique for custom chip design is presented. 

However, most existing Steiner tree algorithms of either 

wire-mode global routers or timing-driven global routers 
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take the minimization of total wire length as the objective. 

Only limited progress has been reported on timing-driven 

Steiner tree constructing. [11] proposed a bounded radius 

Steiner tree global routing algorithm with a wiring cost 

factor ε. For a small ε the algorithm may result in a very 

large net wire length, which may increase the timing delay 
for all sink pins of the net. Based on a simplified Elmore 

timing model, an iterative Dreyfus-Wagner based (IDW) 

[12, 13, 15] and a constructive force directed (CFD) 

Steiner tree algorithm [12, 14, 15] were presented. By 
improving the equations in Dreyfus-Wagner (DW) 

algorithm and introducing the timing optimization during 

the routing process, IDW constructs Steiner trees with 

high performance. The major weakness of IDW is that it 
becomes impractical when solving Steiner tree with more 

vertices (more than 7 vertices) due to the greatly increased 

run time. CFD runs much faster than IDW does, but the 

timing performance of the routing tree is decreased. [16] 
presented a timing-driven Steiner tree algorithm based on 

Sakurai timing model. Experimental results in [16] show 

that using Sakurai timing model is more accurate than 

using Elmore timing model in Steiner tree constructing. 
However, the run time of the algorithm [16] is still longer.  

In this paper, we present a hierarchical timing-driven 

Steiner tree algorithm based on Sakurai timing model. The 

algorithm significantly speeds up the process of routing 
tree constructing with high timing performance. The 

remainder of this paper is organized as follows. In Section 

2, the Sakurai-delay-based timing model for accurately 

calculating the delay is discussed, the global routing 
problem is formulated for symbolic analysis, and the 

Dreyfus-Wagner (DW) algorithm is introduced. The 

timing-driven Steiner tree algorithm is given in detail in 

Section 3. Section 4 presents the efficient strategies. 
Section 5 shows our experimental results. Section 6 is an 

overall conclusion. 

2. Preliminaries 

In this section, we will discuss timing models and give 
the problem formulation. Then, the Dreyfus-Wagner 

algorithm will be introduced. 
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2.1. Timing model 

The Sakurai-delay-based timing model [17], used in 

this paper instead of Elmore-delay-based timing model 

[18, 19] and optimized Elmore-delay-based timing model 

[20], is modeled as a voltage source with the on-resistance 

of the transistor , distributed RC lines of resistance 

, capacitance , and loading capacitance . It 

accords with actual value. The delay  is given by the 

following expression:  
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Where α equals 1.02 and β equals 2.21, which yields 90% 
of the signal’s final delay time.  

In the case of multi-terminal net, the delay is 

formulated as  
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Where node v is the predecessor node of node w,  is 

the wire length from v to w,  is the total capacitance 

of the rest sink pins and wire segments of the net.  
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2.2. Problem formulation 

  With the progress in multi-layer routing technology, 

routing area expands to the whole plane instead of many 

channels. Let us assume that the chip has been divided 

into a rectangular array of  cells called 

global routing cells (GRCs). Global routing graph (GRG) 

is the dual graph of the graph, which is composed of the 

gridlines and crossings.  
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  Thus, a net can be specified as a set of nodes in GRG. 
The problem of routing a net in GRG can be described as 

a Steiner tree problem of specified nodes in the GRG. 

2.3. Dreyfus-Wagner algorithm 

As an application of dynamic programming technique, 

the Dreyfus-Wagner algorithm [21] searches for all the 

possible Steiner trees connecting T (representing the set of 
pins of a signal net) to minimize the total wire length. We 

use  to denote the Steiner tree of , 

where  and , while the definition of 

 is similar, with one extra constraint that 

. Let  be the shortest path from v 

to w in G. The following two recursions are used: 
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3. The hierarchical timing-driven Steiner tree 

algorithm 

Our timing-driven Steiner tree algorithm will be 

proposed in this section utilizing dynamic programming 

technique and hierarchical mechanism. And Sakurai delay 

model will be analyzed for optimization objectives 
regarding different cases. 

3.1. Formulation derivation for the Sakurai delay 

model 

To determine the optimization objective, we analyze 

the contribution of each part of Steiner tree to . We 

have 
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is the capacitance between node  and . 

The first part(in square brackets) has nothing to do with 

Steiner tree below w. In the second part, only the 

coefficient of  depends on Steiner tree above . Let 

, then we have  
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Theorem 1 For a given critical node t below w, we 
minimize (5) when solving minimum delay Steiner tree 

below w. Here w is the pseudo-source. 
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For ,  is only affected by  

and . Thus we only need to minimize the total 

capacitance of Steiner tree below v. We have the 

following theorem. 
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Theorem 2 For , the objective is 

minimizing the total wire length of Steiner tree below v. 
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Utilizing dynamic programming technique, we derive 

the transfer delay function for each critical node. Let 

be the vector of critical nodes, 

be the minimum delay Steiner tree of 

 regarding .  is similar to 

, with one extra constraint that 

. And let T  be the time delay 

from v to critical node  in Steiner tree  and 

the delay vector of all critical nodes. We have  
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Theorem 3 The transfer delay functions for minimum 

delay Steiner tree are 
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The above theorems give rise to the following 
corollary. 

Corollary 1 Using the above theorems to construct a 

Steiner tree with the given set of pins, a minimum delay 

Steiner tree can be formed. 
When solving Steiner tree with less than K pins (K is a 

threshold for hierarchical decomposition which will be 

discussed later), we use the above theorems to compute 

the delay of all possible trees connecting the given K pins 
from bottom to top recursively, and rebuild the Steiner 

tree yielding the minimum solution from top to bottom.  

3.2. The hierarchical constructing mechanism 

Due to the exponential nature of the complexity, it is 

impractical for the dynamic programming algorithm to 

process nets with large number of pins under current 

computing environment. Therefore, the hierarchical 
mechanism is employed to speed up the construction 

process. At each level, the block of pins is decomposed to 

L sub-blocks according to their locations. Our two-step 

approach for decomposition is 
Step.1 Assign the Key Nodes of 

sub-blocks   
L21

 , R,,RR L

Search for two vertices r1, r2 with the maximal distance 

and assign them to be the Key Node of R1 and R2 

respectively. Then for ∀ r∈ R, compute . 

Let vertex r

∑
−= 1),(

i
Rrpd(r)

3 yielding the minimum d(r) be the Key Node 

of R3. Repeat this process until we find the Key node of 

RL, or until d(r) reaches the threshold. 

Step.2 Expand Key Node  to 
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, compute , and insert vertex 

r yielding the minimum  into . Repeat this 

process until . 
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The estimated complexity of our hierarchical 

decomposition approach is )(
2

RO . 

After constructing the minimum delay Steiner tree for 

each sub-block respectively, we reconnect these sub-trees 
by vertices called Surface Node, which are appointed 

taking into account of the shape of the whole tree. Each 

sub-tree is regarded as a single “node” at first. Their 
locations are represented by their own center of gravity. 

We connect these “nodes” by minimizing the delay from 

source node s to critical node t. Then sub-trees are 

unfolded and Surface Nodes are used to connect them 
instead of the center of gravity. This procedure is 

recursively processed on each level till the final routing 

tree is built up. An example is shown in Figure 1. 
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Figure 1. Decomposition and reconnect of sub-trees 

Note that the construction of each sub-tree should not 

be isolated from that of other sub-trees. Otherwise the 
shape of the final tree will be out of control. To make each 

sub-tree concentrate around the source node, we use the 

Force-Node to “pull” all the sub-trees together. In Figure 

1, when constructing the sub-tree T1 containing t, we let s 
be the Force-Node. S pulls the sub-tree closer, thus we get 

a shorter distance from s to edges of T1. 

3.3. Algorithm description  

The pseudo-code of our algorithm is presented in 

Figure 2. 
 

#define maxSimpleSetSize K 

//K is a threshold for hierarchical decomposition 

void SteinerTreeCompond(set, path, forceNode) 

{ 

if (NumberOfNodes ≤ maxSimpleSetSize) 

{ 

BuildSimpleTimeDelaySteinerTree(set, path); 

} 

else 

{ 

Assign the Key Nodes of sub-blocks ; 
L21

 , R,,RR L

Expand Key Node  to ; 
L21

 , r,,rr L L21
 , R,,RR L

Create subSet and subPath of each ; 
i

R

for (each ) 
i

R

{ 

Assign the Force-Node of ; 
i

R

SteinerTreeCompond(subSet[i], subPath[i], Force-Node); 

Compute the center of gravity of ; 
i

R

} 

SteinerTreeCombine(path, subPath, Force-Node); 
} 

} 

void BuildSimpleTimeDelaySteinerTree(set, path) 

{ 

 



Create all the complementary sub-set pairs; 

Recursively solve the minimum delay Steiner tree, build stack; 

Back stack, search for Steiner points and sub-set pairs yielding the 
minimum solution, put into sets; 

Reconstruct the Steiner Tree according to sets information; 

Free sets and stacks; 

} 

void SteinerTreeCombine(path, subPath, forceNode) 

{ 
Let the center of gravity represent the sub-tree, form a virtual graph;  

Find the minimum delay Steiner tree of the virtual graph; 

Unfold each sub-tree and compute the Surface-Nodes to improve the 

connection; 

Connect sub-trees by Surface-Nodes, meanwhile check cycle and 
break it; 

} 

 

Figure 2. Pseudo-code of our algorithm 

4. Some efficient strategies in the algorithm 

To speed up the construction process of the minimum 

delay Steiner tree, some efficient strategies will be 

proposed in following subsections. 

4.1. Fast topology constructing 

The topology of Steiner tree regarding  or 

 depends on K and v. When taking delay into 

account, their topologies are also affected by  

according to (5). Thus we can solve the Steiner tree of 

 or  from bottom to top to avoid 

rebuilding sub-trees with same shape. We have  
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can be transformed into , where parameters 

a and b depends on the topology of the Steiner tree. Let 

,  and ,  be the parameters of the 

minimum delay Steiner tree  for 
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The result conflicts with the hypothesis, for , 

theorem 5 is true. For  we can get the same 

conclusion. The construction procedure of the minimum 

delay Steiner tree is accelerated by using the above 

proposition. The detailed approach is: 
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and corresponding descending method of  or 

. The structure builds up a hierarchical result stack 

according to K and v. Before solving  and 

 regarding , we check the stack for whether 

the current case has already been solved. If so, the 

solution can be reached directly. For each new solution, 

we have to search the stack for equivalent solutions and 

combine them. Each level of the stack is sorted by 
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in 

order to accelerate the searching and combining procedure. 
Finally, the Steiner tree is rebuilt from top to bottom 

according to information stored in stack. 

4.2. Overlapped edges 
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Figure 3. Overlapped Edges 

taking timing delay into account, Steiner trees 

rent topologies may yield the same minimum 
 which the solutions may include overlapped 

ure 3 shows an example of this case. Let us 

at the minimum delay Steiner tree is the hollow 

ce) connecting the two solid nodes respectively, 
 be represented by either Figure 3(b) or Figure 

 (b) and (c) have the same delay characteristic. 

erlapped edges are forbidden in GRG, the 

d edges in (b) will be combined and modified 
 which the delay characteristic has changed. 

id overlapped edges, we take advantage of the 

e. Take Figure 3 as an example. When 

 the hollow node to the left solid node, we let 
olid node be its Push-Node. The Push-Node will 

 edges connecting left node as far as possible. 

n connecting the hollow node to the right solid 

let the left node be its Push-Node. Thus we get 
gy in Figure 3(d). In more complex cases, our 

roved to be efficient in suppressing overlapped 

e-elimination 

the minimum wire length Steiner tree 

, cycle is a common problem in timing-driven 
e construction since the final routing tree is 



solved from bottom to top. Further, in the hierarchical 

Steiner tree algorithm, sub-trees need to be connected 
together based on existing connections, for which cycle 

may also occurs. Here we propose an efficient strategy to 

deal with both cases. 

We use Figure 4 to explain the case. In Figure 4(a), 3 
sub-trees need to be reconnected. The Surface Node of 

each sub-tree is Node 61, Node 67 and Node 69 

respectively. As shown in Figure 4(b), when sub-trees are 

connected together by Surface-Nodes, the connection of 
67 to 61 are represented by path 67-64, and then 64-61, 

which causes the occurrence of cycle in sub-tree2. A 

strategy is proposed to eliminate the cycle. 
Step 1 Use c_Path to denote the path that will connect 

the Surface-Nodes SN1 and SN2 of sub-tree ST1 and ST2 

respectively. 

Step 2 ,  11 vSN → 22 vSN →
Step 3 Search the point p on the c_Path from SN1 to 

SN2, if , , if , stop the search. 1STp ∈ 1vp → 2STp ∈
Step 4 Search the point q on the c_Path from SN2 to p, 

if  , if q = p, stop the search. 2STq ∈ 2vq →
Step 5 Connect v  and , stop. 1 2v

The result of our approach is shown in Figure 4(c). 

5. Experimental results 

The timing-driven Steiner tree algorithm has been 

implemented in C language on Sun Enterprise 450 under 

Unix. The experimental results are compared with those 
of the algorithms mentioned above [12-16]. 

Microelectronics Center of North Carolina (MCNC) 

benchmark circuits are used as the test data. According to 

(1), let 02.1=α and 21.2=β , yields 90% of the 

signal’s final delay time [17]. We transform parameters 

under 2µm technology to the technology of 0.2µm. 

According to QCE rule [22], We select 

DZ
T

10=δ , . 8.0αε =
Note that the choosing of K will affect the performance 

of the algorithm. Experimental results indicate that the 

delay performance will be slightly improved when K 

increases. As a counterpoint for both performance and run 
time, K is fixed to be 5 pins in implementation. 

5.1. Comparison on run time and total delay  

Table 1 compares the results of our approach with the 
optimal solutions in [12-16]. Row index is the circuit 

name and serial number of nets in MCNC benchmark. 

Comparisons of delay performance and run time are 

shown in column 4 to 6, column 7 to 8 respectively. We 
can see from the table that the hierarchical algorithm 

achieves the almost optimal solution while greatly speed 

up the construction process of minimum time delay 

Steiner tree. Comparison of run time is plotted in Figure 5, 
where each dot represents the average run time of nets 

with same number of pins. With the increase in net size, 

the speed-up trend becomes more significant that for most 

nets the speedup is in the order of 1000x ~ 100000x with 
no degradation of the delay performance. 

5.2. Comparison on wire length 

Table 2 gives the comparison of the wire length 

characteristics of our approach with the minimum wire 

length Steiner tree algorithm. For most of the test nets, the 

total wire length of our approach is controlled within 5% 
above the minimum wire length. 
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Figure 4. Cycle in Steiner tree 

6. Conclusions 

We have presented an efficient timing-driven Steiner 

tree algorithm for global routing based on Sakurai delay 

model. By decomposing the minimum time delay Steiner 
tree problem into hierarchy, the high-quality solutions are 

provided with a significant speed up. Our approach has 

been tested with MCNC benchmark circuits for time delay 

and total wire length performances. Comparison on these 
characteristics show that an intelligent heuristic will 

produce quality equivalent to the direct dynamic 

programming algorithms and a total speed up of 1000x ~ 

100000x due to hierarchical decomposition of the whole 
problem. For nets with large number of pins, our approach 

also achieves satisfactory results in a very short time. 
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Table 1. Comparison on total delay and run time 

Net:No. 
Number 
of Pins 

Optimal 
Delay 
(ns) 

Hierarchical 
Delay(ns) 

% Delay 
Increase 

Optimal 
Solution CPU 

Time(ms) 

Hierarchical 
CPU 

Time(ms) 

C5:202 6 0.0255 0.0255 0.00% 70 2.65 

C5:408 6 0.0108 0.0108 0.00% 20 2.37 

C5:637 6 0.0318 0.0330 3.77% 150 6.49 

C5:700 6 0.0388 0.0399 2.84% 70 7.64 

C5:706 6 0.0315 0.0318 0.95% 70 7.81 

C7:201 6 0.0278 0.0278 0.00% 30 2.84 

C7:301 6 0.0279 0.0284 1.79% 60 6.22 

C7:611 6 0.0228 0.0239 4.82% 40 2.91 

C5:33 7 0.0427 0.0433 1.41% 160 5.56 

C5:181 7 0.0228 0.0228 0.00% 170 2.95 

C5:226 7 0.0266 0.0273 2.63% 310 2.96 

C5:537 7 0.0791 0.0822 3.92% 410 4.17 

C7:613 7 0.0283 0.0288 1.77% 350 5.23 

C7:221 7 0.0219 0.0220 0.46% 270 6.14 

C5:194 8 0.0328 0.0328 0.00% 770 5.74 

C5:216 8 0.0253 0.0253 0.00% 2490 5.97 

C7:343 8 0.0354 0.0388 9.60% 1570 13.25 

C7:344 8 0.0328 0.0328 0.00% 3230 15.91 

C5:257 9 0.0189 0.0189 0.00% 1890 3.46 

C5:362 9 0.0235 0.0235 0.00% 8130 8.88 

C5:541 9 0.1277 0.1338 4.78% 12980 7.10 

C5:543 9 0.1130 0.1130 0.00% 21800 9.79 

C5:812 9 0.0311 0.0311 0.00% 20790 13.27 

C7:337 9 0.0390 0.0394 1.03% 8520 7.30 

C5:265 10 0.0221 0.0227 2.71% 10620 8.26 

C5:661 10 0.0449 0.0462 2.90% 52340 20.29 

C5:840 10 0.0284 0.0284 0.00% 16730 10.90 

C5:847 10 0.0288 0.0288 0.00% 30410 5.79 

C5:861 10 0.0387 0.0400 3.36% 94090 10.17 

C5:387 11 0.0231 0.0240 3.90% 31980 4.39 

C5:818 11 0.0374 0.0374 0.00% 447610 8.82 

C7:311 11 0.0493 0.0516 4.67% 450600 15.55 

C5:86 12 0.0331 0.0343 3.63% 354400 15.14 

C5:340 12 0.0871 0.0891 2.30% 1945400 12.14 

C7:326 12 0.0348 0.0374 7.47% 336300 9.83 

 

Table 2. Comparison on wire length 

Net:No. 
Number of 

Pins 

Wire Length of 
Hierarchical 
Algorithm 

Wire Length of 
Optimal Solution 

% Wire Length 
Increase 

C5:265 10 2176 2130 2.16% 

C5:340 12 5482 5322 3.01% 

C5:387 11 2578 2578 0.00% 

C5:537 7 5116 4910 4.20% 

C5:541 9 6834 6614 3.33% 

C5:637 6 2874 2850 0.84% 

C5:661 10 4846 4566 6.13% 

C5:700 6 2596 2520 3.02% 

C5:847 10 3356 3356 0.00% 

C5:861 10 4714 4490 4.99% 

C7:337 9 3738 3632 2.92% 

C7:301 6 3660 3488 4.93% 

C7:311 11 6250 5654 10.54% 

C7:344 8 3966 3966 0.00% 

C7:611 6 2614 2562 2.03% 
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Figure 5. Comparison of Run Time 
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