
Dynamic Modeling of Inter–Instruction Effects for
Execution Time Estimation

G. Beltrame†, C. Brandolese§, W. Fornaciari§, F. Salice§, D. Sciuto§, V. Trianni§
§ Politecnico di Milano, Piazza L. da Vinci, 32 - 20133 Milano, Italy

{brandole,fornacia,salice,sciuto,trianni}@elet.polimi.it
† CEFRIEL, Via R. Fucini, 2 - 20133 Milano, Italy

beltrami@cefriel.it

ABSTRACT
The market for embedded applications is facing a growing
interest in power consumption issues: this work is intended
to provide a new model to estimate software–level power
consumption of 32-bit microprocessors. This model extends
previous ones by considering dynamic inter–instruction ef-
fects that take place during code execution, providing a
static means to characterize their energy consumption. The
model is formally sound: it is conceived for a generic ar-
chitecture and it has been preliminary validated on the In-
tel486 architecture.

1. INTRODUCTION
While there has been a significant research effort in power

estimation techniques and in low power design tailored for
hardware systems, no EDA tools are available to help hard-
ware/software embedded systems designers [4]. The main
obstacle is an efficient analysis of the CPU power consump-
tion, necessary to take into account also the software com-
ponents during design–space exploration, while avoiding to
rely with architectural or even layout–level simulation of the
microprocessor. To fill such a gap, strategies working at the
instruction–level recently appeared in literature. In fact,
having a power model of assembly instructions is a value
added for designers, since the increasing complexity of em-
bedded systems software is evident and the need of early
prototyping of embedded systems, in particular in terms of
power consumption, is becoming a must. In [12][13][11] a
priori knowledge of the current drawn by an instruction is
obtained by executing an infinite loop of the target instruc-
tion in order to average out fine–grained fluctuations. These
approaches are strongly processor–dependent and normally
the statistical significance of power figures is not taken into
account. A different approach, working on the concept of
early virtual prototyping of the software for different tar-
get CPU cores has been proposed in [1]. This methodology

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSS’01, October 1-3, 2001, Montréal, Québec, Canada.
Copyright 2001 ACM 1-58113-418-5/01/0010 ...$5.00.

abstracts from the architectural level and focuses on the
functionalities involved during instruction execution. The
resulting functional model decouples the execution time of
an instruction from its average power consumption. This
allows a static (data independent) characterization of each
instruction in terms of the energy consumed together with a
statistical validation of the resulting software power model.
These assumptions are the basis for the work presented in
this paper, which concentrates on timing aspects. To con-
sider also the presence of dynamic inter–instruction effects
such as pipeline interlocks or cache misses, which typically
lead to an additional energy consumption not to be ne-
glected in a overall system–level perspective, the previous
approaches should be extended. In fact, even if estimates
are accurate for the static microprocessor model, the in-
troduction of dynamic inter–instruction effects may cause
severe strays from reality for the entire system. The im-
portance of this problem has been recognized in [10], where
an instruction–level power model that considered dynamic
effects is presented. The solution is based on a modification
of the model proposed in [12][13] to obtain a more precise
estimate for the base costs. Basically, the authors separated
instructions with the same opcode but different addressing
modes and added a statistical analysis of cache and pipeline
interlock overheads. Unfortunately, this solution is still not
general, in the sense that it needs measures for every pro-
cessor it has to be applied to. The goal of this paper is to
overcome the above limitations, providing a general model to
describe interlock overheads for different types of processor
cores, to complete the information provided via static anal-
ysis. This model is going to be implemented in a co-design
flow in order to obtain a truly accurate and efficient soft-
ware power estimation tool [9]. This paper is organized as
follows: Section 2 defines the problem of considering inter–
instruction effects in the scope of a static analysis; Section 3
introduces the mathematical and statistical models; Section
4 describes the methodology for model tuning, and Section
5 presents some experimental results. Finally, some conclu-
sions are drawn in Section 6.

2. PROBLEM DEFINITION
In this work, the model proposed in [1] is extended, tak-

ing into account inter–instruction effects related to pipelin-
ing. Interlocks are generally related to the execution of a
particular sequence of instructions, thus they correspond to
dynamic events. Taking into account such effects implies

136

either a dynamic analysis, which requires an excessive com-
putational complexity, or an accurate characterization of the
computations made by the processor, which leads to a loss
of generality [1].

When dealing with inter–instruction effects it is not pos-
sible to avoid a dynamic analysis. To recognize a hazard
arising from the execution of a sequence of instructions, it
is necessary to model the pipeline behavior of the target
architecture and the instruction flow in the pipeline, thus
leading to an excessive computational complexity. But if an
a priori statistical characterization of the inter–instruction
behavior of each instruction is known, then the static ap-
proach can still be applied: this correspond to a static rep-
resentation of dynamic effects. The proposed approach is
based on a dynamic analysis aimed at deriving a statistical
model of the delay introduced by inter–instruction effects.
Such model is then used statically during the estimation of
the timing and energy requirements of each instruction. The
dynamic analysis is made once for each target architecture,
obtaining statistical information about the delay introduced
in the execution time of each instruction due to pipeline in-
terlocks. This temporal overhead is then combined with
the purely static model [1], allowing an extension into the
energy consumption domain, as detailed in the conclusion
of Section 3.2. As mentioned above, the paper focuses on
inter–instruction effects arising from a pipelined execution
of the code. In this work pipeline stalls related to caches
and memories are deliberately neglected. When a hazard is
detected, the pipeline might be stalled for a given number
of clock cycles. Three hazard types may arise [3]:

Structural hazards are due to limitations in the data–path,
which cannot support certain instruction sequences.

Data hazards are related to the semi–parallel execution of
the code, which may lead to an incorrect ordering of
read/write operations.

Control hazards are related to the branch execution, since
the pipeline generally needs to be stalled until the tar-
get address is calculated.

The present work analyzes the pipeline behavior of the two
target architectures, namely the microSPARC-IIep [6][7]
an the Intel Embedded486 [5]. Based on this analysis a
general abstract model of the interlock behaviour has been
derived and applied to a different microprocessor, as re-
ported in Section 5. In general, a hazard may be associated
with a couple of instructions occurring at a given distance in
time; the penalty introduced by the resulting pipeline stall
depends on both the specific hazard and the distance be-
tween the instructions. The former instruction in the pair
is the cause of the interlock1 while the latter the stalled
one. For this reason the temporal overhead is convention-
ally associated with the latter. The proposed model esti-
mates a statistical temporal overhead to be associated to
an instruction pair and folds it on single instructions, as it
will be presented in section 3. The estimates are obtained
by means of a dynamic analysis carried out on a significant
benchmark set; to this purpose, the execution trace of the
chosen benchmarks is used. The trace carries the informa-
tion of the instruction flow into the pipeline. The model is
1In some uncommon cases the actual cause of a stall is a
particular sequence of instructions rather than a single in-
struction.

dynamic in the sense that it is tuned on execution traces
rather than on the assembly source code but, once tuned,
it is used statically to obtain the desired instruction charac-
terization. However, an execution trace does not explicitly
contain all the dynamic information on the processor state.
For this reason, it is necessary to extract the implicit infor-
mation from the trace, as it will be explained in section 4.

3. MATHEMATICAL MODEL
For the purpose of producing a static estimation of the

delay introduced by inter–instruction effects, a taxonomy of
instruction sets has been proposed, which describes all pos-
sible hazards in an architecture independent manner. This
taxonomy is essential to reduce model complexity and to al-
low a computationally feasible statistical analysis. Based on
such a taxonomy, a mathematical model for the estimation
of the temporal overhead caused by inter–instruction effects
is then introduced.

3.1 Model Definition
The instruction set taxonomy provides some general archi-

tecture independent classes to be associated with architec-
ture specific instructions. These classes are defined accord-
ing to the type of hazard that an instruction may cause.
Each instruction s of a given instruction set I is assigned to
the class that best represents its dynamic behavior. Since
three hazard types are possible, the taxonomy contains a
maximum of eight classes ch, each representing the set of
instructions that may cause the same hazard type. The
taxonomy C can be defined as:

C =
{
ch ⊆ I|h ∈ [0, 7]

}
To define the mathematical model of the temporal overhead,
an assembly execution trace must be considered. Let Γ be
an execution trace, i.e. an ordered sequence of instructions:

Γ = {γ1, γ2, . . . , γN}, γk ∈ I, N, k ∈ N (1)

where N represents the execution trace size. To estimate
the probability of finding a taxonomy class pair in the trace
Γ, two operators have been introduced according to the fol-
lowing definitions.

Definition 1. The distance w(γk1 , γk2) between two in-
structions γk1 and γk2 is defined as the difference |k2 − k1|.
The following notation is used to point out that two instruc-
tion γk1 , γk2 occur at a distance ŵ:

γk1

ŵ

� γk2 , ŵ = w(γk1 , γk2)

The considered distances ŵ should not be greater than the
pipeline depth, i.e. 5-15, since farther instruction are almost
independent in terms of interlock behavior.

Definition 2. The membership function of instruc-
tion γk ∈ Γ to ci ∈ C is defined as:

〈k, i〉 =
{

1 if γk ∈ ci

0 otherwise
(2)

Definitions 1 and 2 can be then combined to introduce the
concept of event as:

ci

ŵ

� cj ⇔ ∃(k1, k2) :

〈k1, i〉 = 1
〈k2, j〉 = 1

γk1

ŵ

� γk2

(3)

137

meaning that there exists in Γ two instructions γk1 ∈ ci and
γk2 ∈ cj that occur at distance ŵ. Let us now introduce
a statistical characterization of the events described above
by examining the presence of particular classes of instruc-
tions in the execution traces. To this purpose, the frequency
definition of probability is used [8].

Definition 3. The probability of finding class ci in the
execution trace is:

P (ci) =
1

N

N∑
k=1

〈k, i〉

where N is suitably large2.

From this definition the relation
∑7

i=0 P (ci) = 1 can be
easily proved. Let us now consider class pairs statistics.

Definition 4. The probability of finding class ci and class
cj at distance ŵ in the execution trace is

P (ci

ŵ

� cj) =
1

N

N∑
k=1

〈k, i〉〈k + ŵ, j〉, N ŵ

where N is, again, suitably large3.

Definitions 3 and 4 are strictly linked; in fact, the following
relation holds:

P (cj) =
7∑

i=0

P (ci

ŵ

� cj), (4)

This relation proves the consistency of the two definitions
and thus, in turn, the soundness of the presented model.

3.2 Interlock Model
Thus far, a characterization of the frequencies of pairs of

classes in the execution trace has been obtained while the
properties of the interlocks that might arise have been ne-
glected. It is worth noting that different pairs of instructions
have different interlock behavior and latency, even if they
are represented by the same couple of classes. In order to
maintain both generality and accuracy it is thus necessary
to consider the interlocks as produced by instructions pairs,
and then to aggregate these figures up at class level. To
do this it is necessary to abandon the exact, analytic view
of the delay overhead introduced by single instruction pairs
and rather consider such delays as random variables. The
function t(γk, γk+ŵ, ŵ) that returns the delay introduced by
the execution of an instruction pair γk, γk+ŵ at a distance
ŵ is introduced. A delay of zero means that no interlock
occurs. In order to take into account each possible inter-
lock given a pair of classes at a distance ŵ, it is necessary
defining the delay introduced by inter–instruction effects as
a random variable.

Definition 5. The class pair delay is the delay intro-
duced by the execution of a class pair (ci, cj) at a distance ŵ
and is modeled by the random variable Di,j,ŵ. This variable

2The trace length N of a medium–sized assembly program
is about 106 − 107 instructions.
3Since N ŵ the upper limit of the summation N − ŵ, i.e.
the total number of pairs, can be conveniently approximated
with N .

is characterized by its density function:

fDi,j,ŵ (d) =

∑N
k=1 δt(γk,γk+ŵ,ŵ)=d〈k, i〉〈k + ŵ, j〉∑N

k=1〈k, i〉〈k + ŵ, j〉
where N is suitably large and δt(γk,γk+ŵ,ŵ)=d is the Kro-
necker symbol, defined as:

δt(γk,γk+ŵ,ŵ)=d =

{
1 if t(γk, γk+ŵ, ŵ) = d
0 otherwise

Given i, j, ŵ, and d, fDi,j,ŵ (d) represents the relative fre-
quency of d-delay interlocks with respect to the class pair
(ci, cj). Interlock latency associated with a single class—
rather than a pair of classes—turns out to be particularly
useful when a fast estimation, performed at source level, [2]
is required.

Definition 6 formally introduces the idea of class delay.

Definition 6. The class delay is the delay associated
with the execution of a class cj paired with any other class
at a distance ŵ, and is modeled by the stochastic variable
Dj,ŵ. This variable is characterized by its density function:

fDj,ŵ (d) =

∑N
k=1 δt(γk,γk+ŵ,ŵ)=d〈k + ŵ, j〉∑N

k=1〈k + ŵ, j〉
Definitions 5 and 6 are bound by the relation:

fDj,ŵ (d) =

∑7
i=0 fDi,j,ŵ (d)P (ci

ŵ

� cj)

∑7
i=0 P (ci

ŵ

� cj)

(5)

stating that the density function of the class delay Dj,ŵ is
equal to the sum of the density functions of the pair de-
lays Di,j,ŵ, weighted by the frequency of the corresponding
pair. The importance of this relation is twofold: on one
hand, it stresses the formal correctness of the model, as al-
ready stated by equation 4; on the other hand, it provides a
means to estimate the class delays starting from class pair
delays. Class delays can be used to obtain an energy con-
sumption measure, by integrating them into the model de-
scribed in [1]. According to the cited model, the energy
consumption of an assembly instruction is expressed as the
average current drawn by the processor during its execution
and can be calculated as:

IN = A × IF (6)

where IN is a vector collecting the total currents of all the
instructions s ∈ I, IF is a vector storing the average currents
per clock cycle associated to a predefined set of processor
abstract functionalities and A is a matrix accounting for
the execution times of each instruction s with respect to
these functionalities. Since the main effect of interlocks is
an increase of the execution time, a natural way to extend
the power model is to add an overhead to the matrix A.
The new model maintains the same algebraic form provided
that A is substituted with A′ = A+OH, where OH stores
the class overheads, suitably distributed over the different
functionalities.

4. MODEL TUNING
This section presents the methodology adopted to tune

the proposed model and to provide the estimates for the
temporal overhead introduced by inter–instruction effects.

138

Since timing and power effects are decoupled, as pointed
out by equation (6), a first tuning phase can be performed
considering timing properties only. A validation in terms of
energy consumption is out of the scope of this paper. The
model proposed in section 3 has been implemented by a tool
to be integrated in a co–design environment for evaluating
the energy consumption of embedded systems. Such a tool
should consider different target architectures and thus its
implementation must be as modular as possible. As men-
tioned above, hazards can be generally considered as partic-
ular events that occur during the code execution. The tool
implementation consists of two portions:

• an architecture dependent inter–instruction model rep-
resented by a list. When a hazard condition arises
(the event), it is detected by matching a correspond-
ing event model in the list. This is the implementation
of the delay function t(γk, γk+ŵ, ŵ) defined in section
3.2. Different architectures are characterized by means
of a specific configuration file;

• an architecture–independent module responsible of pro-
viding a general representation of the assembly, and
deriving the density functions associated with stochas-
tic variables.

Estimation of the stochastic variables requires the three steps
described below (see figure 1):

• produce an execution trace of a significant number of
selected benchmarks;

• parse the assembly code and build an architecture–
independent representation;

• check the hazards conditions and derive the distribu-
tions of the stochastic variables.

The first step of the tuning process is the generation of the
execution trace which carries the dynamic information of
the instruction flow into the processor pipeline. The main
problem is the selection of a suitable set of benchmarks to
be traced. Once a number of such execution traces has
been created, the estimated densities of the random vari-
ables are assumed to represent a good statistic character-
ization of the temporal overhead associated with each in-
struction class pair at a given distance4. Creating a suitable
execution trace is not trivial at all: the aim is to observe
the real dynamic behavior of the pipelined execution, thus
it is necessary to obtain data corresponding to a realistic
computation. In fact, as pointed out in section 3.1, it is
important not only to detect hazards, but also to know the
actual probability of finding an instruction pair that flows
in the pipeline at a given distance. The adopted approach
consists thus in generating the execution traces of real pro-
grams operating on real data sets, in such a way to cover a
sufficiently wide range of application typologies. The bench-
marks used cover typical applications such as image process-
ing, text manipulation and networking. Figure 2 shows the
probability of finding all class pairs in the selected execution
traces, and the corresponding aggregate values, calculated
using equation (4). These values are assumed to represent
all the available knowledge on the dynamic behaviour of typ-
ical programs. This assumption is justified by the fact that

4Distance is a fixed parameter

Configuration
Parser

Trace
Generator

Source

Architecture

Description

Execution Trace

and Taxonomy
Instruction Set

frequencies.dat
density_7.dat
...
density_0.dat

Estimator

Figure 1: Model tuning execution flow

the obtained data do no exhibit any dependence on the spe-
cific benchmarks used. The size of the execution trace is in
the range of 106-107 code lines, i.e. large enough to provide
a satisfactory accuracy of the estimates. The second step
of the tuning process is aimed at creating a general repre-
sentation of the given architecture, with respect to both its
instruction set and its dynamic behavior. The importance
of this process is twofold: one one hand, it allows to ap-
ply the same methodology and perform an estimation of the
dynamic behavior on different architectures; on the other
hand, it is intended to be compatible with the static energy
estimation model [1], which will be extended by considering
inter–instruction effects. The last step is responsible of de-
tecting hazards operating on an abstract representation of
the execution trace. To this purpose, abstract models of the
possible hazard conditions must be built. As an example,
consider a typical RAW hazard of the Intel Embedded486:
the pipeline stalls for one clock cycle when an instruction
that writes a register is immediately followed by an instruc-
tion that reads the same register; the following Boolean ex-
pression is the abstract model for this specific hazard:

(op1 ≡ ∗)∧(op2 ≡ ∗)∧((rd1 = rs2[1])∨(rd1 = rs2[2])), (7)

where op1 is the op–code of the former instruction in the
pair, op2 the one of the latter instruction, rdi is a register
written by instruction i in the pair and rsi[j] is the jth

source register of instruction i; the ‘∗’ is a wildcard, standing
for any operation. This expression evaluates to true when

Figure 2: Class pair distance probabilities and ag-
gregate class values

139

an interlock occurs. For the sake of clarity, consider the
following instruction pair:

lea 0x4(%ebx,%esi,4),%eax

mov %eax,0x8078eec

The pair will match the model, allowing the recognition of
the interlock. For every instruction pair in the execution
trace a delay value associated with a class pair can be com-
puted; this process results in a number of random variables
describing the statistical overhead introduced by each class
pair. Using equation (5) these data can be folded on sin-
gle classes, obtaining a set of random variables which can
be statically used to estimate the timing requirements of
each instruction. Table 1 shows the average value of the
estimated temporal overheads for all classes, in clock cycles.

Table 1: Class temporal overhead introduced by
inter–instruction effects

Class Average delay Class Average delay

c0 0.433673 c4 0.515101
c1 0.185519 c5 0.108412
c2 0.484779 c6 0.499436
c3 0.000000 c7 0.042164

Once the random variables have been derived, two differ-
ent estimation approaches can be devised. A first coarse
analysis can be done by averaging the values of the class
pair random variables and fold them to single classes. A
finer analysis, on the other hand, might exploit all the in-
formation contained in the random variables by collecting
and combining density functions rather than average values,
leading to a statistical characterization of code portions or
even entire functions.

5. EXPERIMENTAL RESULTS
The tuning of the model has been made by choosing ŵ = 1

because at this distance more hazards may arise. As figure
2, points out, class c3 never appears and has thus an overall
zero frequency in the code: in fact, such a class represents
all the instructions that may cause both data and control
hazards. This condition is never satisfied in the Intel486.
As table 1 shows, the average overhead introduced by each
instruction class is generally significant. The model should
be validated at two different levels: energy and time. In
fact, the translation from the temporal overhead introduced
by inter–instruction effects to the actual energy consump-
tion associated with them introduces an additional level of
abstraction that need to be confirmed by experimental data.
Three solutions have been proposed:

• use an Instruction Set Simulator (ISS) which can pro-
duce exact timings for both activities of instruction
execution and interlock management. This method
refers only to timing measures and is only viable if a
cycle–accurate instruction set simulator is available;

• simulate the code execution on a given architecture by
means of its RTL–HDL model. Though such a solution
offers a better accuracy, it is hardly applicable due
to the scarce availability of RTL models of processor
architectures and to the extremely high computational
requirements;

• compute the timing on a test code directly during its
execution, overriding delays due to the operating sys-
tem and to interrupts. Though slightly less accurate,
this approach is easily feasible.

The last approach has been adopted and the result obtained
are presented in the remaining part of this section. The val-
idation methodology has been applied as follows (see figure
3). A test program is first compiled, then executed and dis-
assembled. The static data in the disassembled code is then
combined with the dynamic information derived from the
execution trace and then fed to an annotation tool which
estimates—in an interlock–free manner—the timing of the
code. The annotation is based on an a priori knowledge of
the CPIs of every instruction, which typically depends on its
operation code and its addressing modes. The same execu-
tion trace is analyzed by a dynamic effects estimator, which
produces the total temporal overhead associated with the
pipeline interlocks. Interlock–free timing data and temporal
overheads are then added to obtain an overall estimate of the
test program timing. The estimation of the interlock tempo-

annotate estimate

gentrace

Test code

total
execution

time

total
temporal
overhead+

Estimated timing

Figure 3: Code execution timing estimation

ral overhead is performed based on the knowledge of the ran-
dom variable associated with each instruction class: every
instruction is contained in a taxonomy class, and thus inher-
its the class average temporal overhead which contributes to
the total value. In this way, the contribution of the different
classes is weighted by the actual frequencies of instructions
in the traced code. The result is a more precise estimate of
the timing that is then compared with the actual execution
time. Five integer benchmark programs—not belonging to
the tuning set—have been used to validate the model:

1. genprim generates a 3-digits prime number;

2. rle computes the run–length encoding of a string;

3. crc16 computes the 16–bit CRC on strings;

4. qsort implements Quicksort for integers;

5. md5 computes the digest of a given string.

Table 2 shows the relative errors obtained. The interlock–
free static analysis obtained with the annotation tool has
an average error around −24.1%, the reason being that it
underestimates the clock cycles needed by the execution of
each instruction. Considering the inter–instruction effects as
well results in a considerable improvement: the error reduces
to an average of −1.5%, indicating a much better overall
estimation of the dynamic behavior of the processor.

140

Table 2: Relative errors of the interlock–free and
interlock–aware models

Relative error
Test case interlock–free interlock–aware

genprim -32.1% -9.4%
rle -17.9% +2.7%
crc16 -22.1% +0.3%
qsort -22.1% -3.7%
md5 -26.5% +2.5%

Overall -24.1% -1.5%
Overall (absolute) 24.1% 3.7%

It is important to remark that the applied analysis still
ignores dynamic effects resulting from cache misses. For
this reason all the benchmarks have been tailored in order
to avoid or limit the number of cache misses. An accu-
rate analysis of the results obtained has confirmed that the
higher negative error obtained for genprim is mostly due to
the presence of some uncommon complex addressing modes,
currently ignored by the annotation tool.

6. CONCLUSIONS
In this paper a methodology for analyzing dynamic effects

in pipelined architectures has been proposed. It is based on
a rigorous mathematical model exhibiting satisfactory sta-
tistical properties. The results obtained suggest that the
model is promising, while still in the early stages of valida-
tion. In particular the methodology has been applied to real
cases and the estimated execution times have been proved
to be much more accurate than those obtained neglecting
timing dynamic components related to inter–instruction ef-
fects. Estimation errors are in the range of a few percent and
are biased towards underestimation, as the model predicts.
Such improved accuracy will enable a more precise energy es-
timation of embedded software programs. The timing model
has been effortlessly integrated in a more general power es-
timation framework and preliminary results on the accuracy
of the extended power model are under investigation. Future
work will consider the integration of cache miss analysis or,
more generally, of memory–related inter–instruction effects.
The application of a better validation methodology and of
a finer model tuning is currently in progress.

7. REFERENCES
[1] C. Brandolese, W. Fornaciari, F. Salice, and

D. Sciuto. An instruction–level functionality–based
energy estimation model for 32-bits microprocessors.
In Proceedings of 37th IEEE Design Automation
Conference, pages 346–351, Los Angeles, CA, June
2000.

[2] C. Brandolese, W. Fornaciari, F. Salice, and
D. Sciuto. Source–level execution time estimation of c
programs. In Proceedings of International Workshop
Hardware Software Codesign, Copenhagen, Denmark,
April 25-27 2001.

[3] J. Hennessy and D. A. Patterson. Computer
Architecture - A Quantitative Approach. Morgan
Kaufmann Publishers, San Mateo, II edition, 1996.

[4] E. Macii, M. Pedram, and F. Somenzi. High-level
power modeling, estimation, and optimization. IEEE
Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 17(11):1061–1079, November
1998.

[5] Intel Architecture Software Developer’s Manual vol. 1.
Technical report, Intel Corporation, 1997.

[6] The SPARC Architecture Manual, version 8. Technical
report, Sun Microsystems, 1990.

[7] microSPARC-IIep user’s manual. Technical report,
Sun Microsystems, 1997.

[8] A. Mood, F. Graybill, and D. Boes. Introduction to
the theory of statistics. McGraw–Hill, New York, NY,
1988.

[9] PEOPLE. (Power Estimation for Fast Exploration of
Embedded Systems). Technical Report D3.3.1,
ESPRIT-ESD project n.26769, 1998.

[10] S. Ramalingam and K. Schindler. Instruction level
power model and its application to general purpose
processors. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, pages
753–756, 1998.

[11] J. Russell and M. Jacome. Software power estimation
and optimization for high performance, 32-bit
embedded processors. In Proceedings of ICCD’98,
International Conference on Computer Design, pages
328–333, Austin, TX, October 1998.

[12] V. Tiwari, S. Malik, and A. Wolfe. Power analysis of
embedded software: a first step towards software
power minimization. IEEE Transactions on VLSI
Systems, 2(4):437–445, December 1994.

[13] V. Tiwari, S. Malik, and A. Wolfe. Power Analysis of
the Intel 486DX2. Computer Engineering Technical
Report No. CE-M94-5, Princeton University, June
1994.

141

	Main
	ISSS01
	Front Matter
	Table of Contents
	Session Index
	Author Index

