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ABSTRACT
This paper contributes a novel approach for reducing static
code size and instruction fetch energy for cache-based core
processors running embedded applications. Our implemen-
tation of the decompression unit guarantees fast and low-
energy, on-the-y instruction decompression at each cache
lookup. The decompressor is placed outside the core bound-
aries; therefore, processor architecture does not need any
modi�cation, making the proposed compression approach
suitable to IP-based designs. Viability of our solution is
assessed through extensive benchmarking performed on a
number of typical embedded programs.

1. INTRODUCTION
Embedded processors are often the main computational

engines for modern system-on-chip (SoC) architectures. Pro-
cessors for embedded applications have traditionally been
extremely simple (8-bit or 16-bit CPUs), because of tight
cost constraints coupled with loose performance demand.
The increasing level of integration and computational speed
requirements, fueled by the new generation of embedded
computing tasks (e.g., DSP, high-bandwidth data transfer,
etc.) have changed the picture. Currently, many embedded
processors are based on high-performance RISC architec-
tures, with on-chip cache and full support for complex mem-
ory systems and peripheral controllers. Such processors, and
their software development environments, are usually pur-
chased by system integrators from third-party companies
that specialize in embedded core design.
One of the key challenges in designing a complex system

around a high-performance embedded RISC processor is to
ensure suÆcient instruction fetch bandwidth to keep the ex-
ecution pipeline busy. The regularity of RISC instruction
sets eases application and compiler development, but hin-
ders code compaction. For this reason, designers and re-
searchers have put signi�cant e�ort in devising techniques
for improving code density and reducing instruction-related
costs, in terms of speed, area and energy.
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Numerous code compression techniques have been pro-
posed for reducing instruction memory size in low-cost em-
bedded applications [1]. The basic idea is to store programs
in compressed form and decompress them on-the-y at ex-
ecution time. Later, researchers have realized that code
compression can be bene�cial for energy as well, because
it reduces the energy consumed in reading instructions from
memory and communicating them to the processor core [2,
3, 4]. Code compression leverages well-known lossless data
compression techniques, but it is characterized by two con-
straints. First, it must be possible to decompress a program
in relatively small blocks, as instructions are fetched, and
starting from several points inside the program (i.e., branch
destinations). Hence, techniques that decompress a stream
starting from a single initial point are not applicable with-
out changes. Second, the decompressor should be small, fast
and energy eÆcient, because its hardware cost must be fully
amortized by the corresponding savings in memory size and
energy, without compromising performance.
For simple processors with no instruction cache, the de-

compressor is either merged with the processor core itself,
or placed between program memory and processor. The
�rst solution has been implemented in several commercial
core processors, in form of a \dense" instruction set, with
short instructions (e.g., ARM Thumb and MIPS16 instruc-
tion sets). The second solution has been investigated in
several papers [2, 5, 6, 3]. Supporting restricted instruction
sets requires changes to the core architecture, while an exter-
nal decompressor does not. Furthermore, with an external
decompressor it is possible to aggressively tailor code com-
pression to a speci�c embedded application. Hence, external
decompression is well-suited for embedded designs employ-
ing third-party cores, which are the focus of this paper.
In more advanced architectures containing an instruction

cache, the decompressor can be placed either between the
I-cache and the main memory (decompress on cache re�ll, or
DCR architecture), or it can be placed between the processor
and the I-cache (decompress on fetch, or DF architecture).
Both alternatives have been investigated in the recent liter-
ature [4, 7]. In [4], it was shown that from an energy and
performance viewpoint, the DF architecture is superior to
the DCR architecture, when decompressor overhead is small.
The main reason for this e�ect is that instructions are stored
in cache in a compressed fashion, e�ectively increasing cache
capacity. However, current silicon implementations of code
compression are based on the DCR architecture, indicating
that reducing decoding overhead is a non-trivial task that
still entails signi�cant challenges.
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The main issue with the DF approach is that decompres-
sion is performed on every instruction fetch. In other words,
the decompressor is on the critical path for the execution of
every instruction, not only for cache re�lls. If its delay is not
small, it may signi�cantly slow down execution. Further-
more, it consumes energy on every instruction fetch, while
in the DCR architecture it can be activated only on cache
re�lls. Careful implementation of the decompression unit is
thus key for making DF applicable in practice.
This paper proposes a novel DF architecture that focuses

on reducing decoding overhead on energy and performance.
First, our technique guarantees that storage requirements
for the compressed program always decrease. Second, the
compression algorithm has been designed speci�cally for fast
and low-energy decoding during cache lookup. Compressed
instructions are always aligned to cache line boundaries,
branch destinations are word-aligned and instruction decom-
pression is based on a single lookup into a small (and fast)
memory bu�er. Third, we do not limit our analysis to the
architecture level, but present a complete implementation of
the cache-decompressor block, including detailed analysis of
its energy and delay.
We have benchmarked the proposed compression tech-

nique on a number of programs implementing functions typ-
ical of embedded computations. The achieved code size re-
ductions, averaged over all the experiments, are around 28%.
From the energy point of view the improvements vary a lot
depending on cache size, original and compressed code size,
dynamic memory access pro�le, and kind of adopted pro-
gram memory (i.e., on-chip vs. o�-chip). For example, for
a 4Kbyte cache and an on-chip program memory, average
energy savings are around 30%. This value grows to 50%
for a system with a cache of the same size but an o�-chip
program memory. Cache performance are also very sensitive
to cache and code size. For a 4Kbyte cache, the average hit
ratio improves by 19%.

2. DECOMPRESSION ON FETCH

2.1 Previous Work
We begin this section by outlining the characteristics of

two previously published DF approaches, by Larin et al. [7],
and by Lekatsas et al. [4]. Larin's approach targets VLIW
processors and compresses instructions using the Hu�man
algorithm. Basic blocks of compressed instructions are trans-
ferred and stored into the I-cache atomically. Compressed
instructions are not aligned to cache line boundaries. On a
cache access, two consecutive cache lines are decompressed
and stored in a level-zero bu�er. The following instructions
are fetched in sequence from the bu�er, until it is emptied,
or a branch is executed. The paper by Larin does not report
any data on energy, speed or area of the decoder, but its high
hardware cost is apparent. Fetching and decoding two cache
lines at a time imposes parallel Hu�man decoding of mul-
tiple instructions in one clock cycle (even single-instruction
Hu�man decoding requires a quite large hardware block).
Furthermore, branch targets addresses in compressed code
are stored in a dedicated address re-mapping memory that
must be accessed on every taken branch.
Lekatsas approach clusters instructions in four groups (in-

structions with immediates, branches, fast dictionary instruc-
tions and uncompressed instructions) identi�ed for decoding
purpose by a unique pre�x. Instructions with immediate

are compressed using arithmetic coding. For branches, only
destination displacement is variable-length coded. Fast dic-
tionary instructions, with no immediate are compressed to a
one-byte code and decompressed using a 256-entries lookup
memory. Uncompressed instructions are left intact, and ex-
tended with a 3-bit preamble. Even though Lekatsas reports
on decoding energy consumption, no information is provided
in [4] on decoder area, speed and its interaction with cache
(for instance, cache line unpacking, and branch destination
re-mapping in the case of non word-aligned branch destina-
tions, are not described). Furthermore, appending a 3-bit
preamble to uncompressed instructions may cause run-time
decompression ineÆciency, if many uncompressed instruc-
tions are fetched during program execution.

2.2 A Low-Overhead DF Architecture
The compression algorithm described in the sequel is tai-

lored for eÆcient hardware implementation. The decom-
pressor is merged with the cache controller, and instructions
are decompressed on the y as they are extracted from the
cache. Instructions are compressed in groups with the size
of one cache line. In describing the algorithm, we will as-
sume a direct-mapped cache with 4-word lines (L = 128
bits) and one-word (W = 32 bits) uncompressed instruc-
tions. However, our approach can be extended to caches
with any associativity and line size. We will use the DLX as
target core processor, because it has a simple 32-bit RISC
architecture with several open-source synthesizable imple-
mentations, and an open-source, widely known software de-
velopment environment. Moreover, the DLX is similar to
several commercial RISC processors, such as the simplest
cores in the ARM and MIPS families.
Compression is targeted to a speci�c program thanks to

execution pro�ling. The code is initially pro�led and the
subset SN of the N most frequently executed instructions
is obtained. Without loss of generality, we assume in the
following N = 256. Similarly to [3] and [4] (fast dictio-
nary instruction), log2N -long compressed codes (8 bits, in
our case) are assigned to the N most frequent instructions.
However, the decision of compressing an instruction i, even
if it belongs to set SN depends on the neighboring instruc-
tions that would �t in the same cache line. More speci�cally,
instruction i is compressed only if it belongs to a group of
instructions that can be stored in a compressed line. The
latter is a group of more than four adjacent instructions
which, after compression, will be stored in four consecutive
words. The size (four words) and the memory alignment of
a compressed line is such that it �ts in a single cache line,
when it is cached. The detailed structure of a compressed
line is shown in Figure 1.

Figure 1: Compressed Line Structure.

Mark word
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MARK
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12 2bit flags  

96 bits = 12 Bytes available for compressed instructions
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The �rst word of the line contains a mark and a set of ag
bits. The mark is an unused instruction opcode (in DLX,
we have 6-bit opcodes), while the ag bits are divided in 12
groups of 2 bits each, one group for each of the bytes of the
remaining three words of the line. One additional ag bit L
is reserved at the end of the ags.
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The ags values are assigned as follows: 00 if the corre-
sponding byte contains a compressed instruction; 01 if the
corresponding byte contains 8 bits of an uncompressed in-
struction (a compressed line may contain an uncompressed
instruction); 11 if the corresponding byte is left empty for
alignment reasons (see below). Flag value 10 is used to sig-
nal the last compressed instruction in the line, in case of lines
containing compressed instructions. Finally, the last ag bit
L marks if the last instruction in the line is compressed (bit
set to 0) or not (bit set to 1).
By construction, a compressed line stores between a min-

imum of 5 instructions, and a maximum of 12 instructions.
Thus, the best compression achievable is a factor of 4.
The compression algorithm analyzes the code sequentially,

starting from the �rst instruction (assuming that it is aligned
to cache line boundary), and tries to pack adjacent instruc-
tions in compressed lines. If the compressed line contains
more than 4 words, all instructions belonging to SN are com-
pressed to their log2N codes, the mark and ags are inserted
in the �rst word of the compressed line and empty bytes are
inserted when required for alignment reasons. Otherwise,
instructions are not compressed even if they belong to SN .
The compression procedure guarantees that compressed

code is never larger than the original code. Furthermore,
the number of bits transferred from memory to cache when
executing compressed code is never larger than for the un-
compressed case.
To facilitate an eÆcient hardware implementation of the

decoder, we guarantee two types of alignment:

� No instruction is allowed to go across a cache line
boundary. This rule ensures that only a single cache
line needs to be accessed at every instruction fetch,
thus avoiding expensive double-line accesses, which re-
quire dual-bank caches [7].

� Instructions at branch destinations are always word-
aligned. This rule allows us to eliminate the address
translation table, since branch addresses in original
code can be replaced with legal, word-aligned branch
destination addresses in the compressed code.

Alignment constraints imply some losses in code density,
because a few bytes in compressed lines may be left empty.
However, this e�ect is taken into account when deciding
whether a group of instructions can be compressed or not.

Example 1. Figure 2 shows code compression at work.
In the original memory map, instructions are marked with
CI if they belong to SM (i.e., candidate for compression),
with UI if they do not. Tag -D- is placed on instructions
which are at a branch target. The arrows on the left of
the memory maps represent cache line alignment (i.e., the
words between two arrows are cached on the same cache
line). The compression algorithm moves from the top of
the original memory map, and tries to pack as many in-
structions as possible in a compressed line. The �rst group
of 9 CI instructions �ts, after compression, into a com-
pressed line. The following instruction is a UI (and a
branch destination), which does not �t in the remaining two
bytes of the compressed line. Hence, the last three bytes
are left empty. The ags for the �rst compressed line are:
00.00.00.00.00.00.00.00.10.11.11.11.1. The algorithm
then tries to �t the following instructions into a compressed

line, but it cannot, because after two consecutive UIs, com-
pression would be convenient only if we had at least three
consecutive CIs, but we have only two. Hence, the UI-D and
the following three instructions are stored uncompressed in
memory. Notice that this choice implies that two CIs are
not compressed. In compressed memory, this case is marked
as (U)CI. A similar decision is taken for the next four in-
structions, which are, again, stored in uncompressed form.
Finally, the last 7 instructions are stored in a compressed
line. Notice that: (i) The compressed line contains an un-
compressed instruction; (ii) The �rst empty byte is due to
the branch alignment constraint (branch destinations must
be word-aligned). Flags for the second compressed line are:
00.00.00.01.01.01.01.11.00.00.10.11.1. For this exam-
ple, compression reduced code size from 24 words to 16.

Figure 2: Code Compression Example.
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During program execution, on every cache miss, a new
cache line is fetched from memory. The line may either
contain four uncompressed instruction, or a �rst word con-
taining mark and ags, followed by three words containing
�ve or more compressed instructions. The cache controller
examines the �rst word of the line. If a mark is detected, it
proceeds to fetch instructions according to the indications
provided by the ag bits. Decompression is performed by
addressing the decompression table (a fast RAM contain-
ing 256 32-bit words) with the 8-bit compressed instruction
code. A detailed description of the hardware decompression
engine is provided in the next section. More information on
the implementation of the compression algorithm and the
related pro�ling and instruction selection ow is provided in
Section 4.

3. DECOMPRESSION HARDWARE
The hardware which performs the on-the-y decompres-

sion is embedded in the cache controller. The cache con-
troller is divided into a number of units: A master con-
troller, called \main controller" in the sequel, which han-
dles the communication with the CPU, a slave controller,
called \miss handler" in what follows, which supervises the
transfers from main memory to the cache when a read miss
occurs, and a program counter update unit (PC-unit).
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The decompression-cache system, sketched in Figure 3, is
completed by the following units: The cache array of 256 �
4 words, plus tags of 20 bits. A MUX placed at the output
of the cache array. A memory holding the compressed in-
structions (IDT). A MUX between the cache and the data
bus, driven by the main controller, which selects either the
output of the cache array (for uncompressed instructions)
or the output of the IDT (for compressed instructions).

Figure 3: Decompression Unit.
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When a memory read access is issued by the CPU, the
address (index) is passed to the cache and, when the datum
is ready, the main controller performs tag checking. On a
tag mismatch (i.e., a miss), the main controller enables the
miss handler, puts its command and address buses toward
the cache in high-impedance and sets itself in idle state.
On a read miss, the miss handler is woken up by the main

controller and the requested block (4 words) is transfered to
the cache. Upon completion, the miss handler signals to the
main controller the end of the transfer, puts its command
and address buses toward the cache in high-impedance and
sets itself in idle state. In case of a cache hit, the main
controller executes the following tasks:

1. It reads the �rst word of the block (or cache line) to
check if such block contains at least a compressed in-
struction. This is done by matching the �rst 6 bits (op-
code) with the pattern indicating a compressed line.

2. According to the result of the matching, it selects the
appropriate instruction by setting the control lines of
cache and data bus MUXes.

If the cache line contains at least one compressed instruc-
tion, the main controller performs some additional work: i)
It stores the ag bits of the mark in a mask register on the
�rst visit to the cache line. ii) It checks the ag bits corre-
sponding to the requested instruction. If it is compressed,
the main controller issues the IDT address to be accessed;
otherwise, it selects the appropriate word by operating the
cache MUX. Finally, it executes task 2 above.
To keep track of the instruction to be fetched, in case of

compression, the main controller updates a 4-bit counter.
Every time a new cache line is requested or the current in-
struction is the target of a branch, the main controller resets
the counter to the appropriate value, and then it increments
it by 1, if the current instruction is compressed, or by 4, if
the current instruction is not compressed.

The CPU does not know if the instruction under execution
is compressed or not. Therefore, the Program Counter (PC)
is incremented by 4 for each instruction, assuming sequen-
tial code. However, compressed instructions in the cache
occupy 1 byte instead of 4, and this causes a problem of
misalignment between the PC and the actual address of the
instruction to fetch, or in other words, the program counter
tends to "run forward".
To solve this problem, which a�ects relative jumps, we

can opt for two solutions:

� If the CPU core is modi�able, we can stop the PC
increment when reading inside the same cache word
multiple compressed instructions. This can be accom-
plished with modest hardware additions.

� If the CPU core is sealed-o�, we have to replicate the
PC logic inside the decompressor-cache. Realignment
of CPU PC and cache PC is done when a jump to a
register is executed ("jr register" in the DLX instruc-
tion set).

The second solution is obviously more expensive in terms
of hardware requirements: A 32 bit adder plus two 32 bit
registers (one to hold the PC, one to hold the possible target
of a jump) have to be placed in the decompressor (PC-unit).
Moreover, an additional problem arises in case of subroutine
calls. The DLX instruction "jal address" performs two tasks
upon execution:

1. The PC (return address) is stored in register 31.

2. The CPU jumps to "address".

To get the correct return address from the subroutine, we
store in register 31 the cache PC instead of the CPU PC.
This is done by changing instruction "jal address" (during
compression) with two instructions:

"lw r31, (don't care)"
"j address"

and by sending the value of the cache PC on the data bus
at the right time. In this way, when the subroutine ends
(instruction "jr $31"), the correct address of the compressed
program is restored and the CPU PC is realigned.
The decompressor introduces an overhead on the timinig

as well. In normal cache operation, the time required to
fetch the instruction, in case of hit, is:

tfetch�wo = tcache + tmatch + tbusEN

where tcache is the time necessary to access the cache and
transfer the data through the cache MUX, tmatch is the time
needed for tag-matching, and tbusEN is the time to enable
the tristate bu�er if a hit occurred. In the decompressor,
the time required to fetch a compressed instruction (worst
case) is:

tfetch�dec = tcache + tgen + tIDT + tmux2:1 + tbusIN

where tgen is the time for IDT address generation, tIDT is
the IDT access time, tmux2:1 is the in-to-out delay of the 2:1
MUX, and tbusIN is the transfer time through the tristate
bu�er.
We used a 0:25�m, 2:5V library of standard cells from

ST to implement our decompressor and found the values for
the timing and energy per cycle reported in Tables 1 and 2.
Synthesis was performed using Synopsys Design Compiler,
and energy estimation using Synopsys Power Compiler.
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Table 1: Delays of Blocks on the Critical Path.

Delay W/O Dec. With Dec.
[ns] [ns]

tcache 2.2 2.2
tmatch 0.6
tgen 2.0
tIDT 1.5
tmux2:1 0.2
tbusEN 1.9
tbusIN 0.3
tfetch�wo 4.7
tfetch�dec 6.2

Table 2: Energy per Cycle of Blocks in Figure 3.

Block W/O Dec. With Dec.
[J] [J]

Main Controller 9.1e-12 3.1e-11
Miss Handler 2.1e-11 2.1e-11
PC Unit 4.2e-11
Cache Mux 1.1e-11 1.8e-11
Sparse Logic 0.4e-11 2.6e-11
IDT (256� 32) 7.0e-10
Cache 3.2e-9 3.2e-9

4. EXPERIMENTAL RESULTS
In this section, we report data on the use of the proposed

compression scheme. Software programs we considered for
the experiments are some of the C benchmarks distributed
in the Ptolemy [8] package; they implement functions that
are widely exploited in embedded systems for DSP. Data
collection has been done using the SuperDLX [9] compilation
and simulation environment.
We have used, as program memory, a 512Kbyte SRAM

from ST, organized in eight banks of 32K � 16 and built in
0:25�m technology at 2.5V. The energy access cost, in read
mode, is 17:2 nJ per memory block of four, 32-bit words.
The line capacitance we used for determining the address
and data bus energy is 0:6pF.
Table 3 summarizes all the results for the case of a 4Kbyte

cache. In particular, for each benchmark program and for
both original and compressed execution, it reports static
code size (column Size), cache hit ratio (column HR) and
total energy consumption (column Energy). The total num-
ber of executed instructions is provided on the left of the
table (column Exec. Instr.), while the percentage of varia-
tion introduced by the compression on code size, hit ratio
and energy is summarized in column �.
Average code size reduction is around 28%, with a peak

value around 61% for program chaos. Cache performance
improve, on average, by 19%, with a maximum increase in
the hit ratio of 34% for benchmark integrator. Finally,
energy decreases, on average, by 30%, with peak reductions
for programs chaos and interp around 48% and 53%, re-
spectively.
Energy �gures are further detailed in Table 4, where a

breakdown of all the contributors to the total values (i.e.,
cache including the decompressor, address and data buses,
background memory) is shown. Clearly, the energy con-
sumed in the cache system increases substantially w.r.t. the
case of uncompressed code, since it includes the energy for
instruction decompression which is required for each fetched
instruction (coming from both cache and memory). Obvi-
ously, decrease in bus and memory energy well compensates
the overhead of the decompressor.

The results of Tables 3 and 4 refer to a system with a
4Kbyte cache. In Tables 5 and 6 we explore how cache
performance and energy consumption change as the cache
size changes (we consider the case of 8Kbyte and 2Kbyte
caches). We observe some contradictory e�ects that yield
results which are not always intuitive. For example, a larger
cache increases the hit ratio, thus limiting the number of
times the background memory is accessed also for the case
of uncompressed programs. This causes a substantial de-
crease in bus and memory energy for both uncompressed
and compressed execution. In addition, cache access cost
is higher and the decompression overhead is no longer com-
pensated due to the lower absolute contribution of bus and
main memory to total energy. As a consequence, the use-
fulness of compressing the code decreases; average energy
savings are, in fact, around 8%, and there are programs for
which energy even increases. For a smaller cache, the hit
ratio tends to decrease. This causes a strong increase in bus
and memory energy, especially for the uncompressed code.
In addition, cache access cost decreases. As a result, energy
reductions are more sizable. We can then conclude that the
relationship between energy, compression ratio and cache hit
ratio is very complex; as such, intensive and exhaustive code
pro�ling and dynamic simulation are the basic ingredients
for achieving a satisfactory trade-o�.
We close with some results for the case where accesses to

memory go o� chip. The memory is a 4Mbit FLASH at
2.5V from ST; the energy cost for accessing a 4-word loca-
tion is 21:4 nJ. The bus load we have assumed is 8pF per
line. Tables 7 and 8 show data similar to those in Tables 3
and 4. Although compression ratios and hit ratios remained
unchanged, larger energy savings are observed (i.e., the av-
erage is around 50%) due to the much more penalizing e�ect
introduced by o�-chip bus and memory accesses.

5. CONCLUSIONS
We have proposed a new approach for reducing static code

size and instruction fetch energy for embedded processors
with cache. The method pairs eÆciency in the compres-
sion with a low-overhead implementation of the decompres-
sor. Experiments on several benchmarks have shown average
code compression results around 28% and average energy
savings of about 30%.
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Table 3: Compression Results: 4Kbyte Cache and On-Chip SRAM.

Without Compression With Compression �
Bench Exec. Instr. Size HR Energy Size HR Energy Size HR Energy

[#] [Kbyte] [%] [J] [Kbyte] [%] [J] [%] [%] [%]

adaptFilter 5.32e5 4530 90.79 2.93e-5 3784 98.68 2.38e-5 -16.47 8.69 -18.77

butterfly 2.50e5 8048 79.20 2.09e-5 4292 91.60 1.56e-5 -46.67 15.66 -25.25

chaos 4.91e5 9266 77.80 4.27e-5 3660 98.57 2.21e-5 -60.50 26.70 -48.20

dft 8.81e6 11212 81.05 6.97e-4 9742 90.69 5.64e-4 -13.11 11.90 -19.01

iirDemo 2.31e5 10168 70.56 2.44e-5 8112 90.48 1.49e-5 -20.22 28.22 -38.85

integrator 4.02e5 6224 87.06 2.60e-5 4108 96.27 2.04e-5 -33.99 10.57 -21.44

interp 9.35e5 8312 71.87 9.48e-5 6544 97.43 4.45e-5 -21.27 35.56 -53.02

scramble 4.23e6 13296 77.78 3.68e-4 11828 87.71 3.02e-4 -11.04 12.77 -17.94

Average 79.51 93.93 -27.90 18.76 -30.31

Table 4: Energy Break-Down: System with 4Kbyte Cache and On-Chip SRAM.

Energy Without Compression [J] Energy With Compression [J] � [%]
Bench Cache Bus SRAM Cache Bus SRAM Cache Bus SRAM

adaptFilter 1.59e-5 3.78e-6 9.60e-6 2.17e-5 5.69e-7 1.51e-6 36.45 -84.94 -84.29

butterfly 6.52e-6 4.06e-6 1.03e-5 9.47e-6 1.68e-6 4.46e-6 45.19 -58.46 -58.46

chaos 1.26e-5 8.50e-6 2.16e-5 2.00e-5 5.76e-7 1.53e-6 59.05 -93.23 -92.94

dft 2.35e-4 1.30e-4 3.31e-4 3.30e-4 6.40e-5 1.70e-4 40.48 -50.84 -48.75

iirDemo 5.37e-6 5.37e-6 1.36e-5 8.64e-6 1.72e-6 4.55e-6 60.96 -68.02 -66.66

integrator 1.15e-5 4.07e-6 1.03e-5 1.60e-5 1.20e-6 3.18e-6 38.80 -70.49 -69.25

interp 2.21e-5 2.05e-5 5.21e-5 3.77e-5 1.88e-6 4.98e-6 70.18 -90.84 -90.45

scramble 1.08e-4 7.33e-5 1.86e-4 1.53e-4 4.07e-5 1.08e-4 41.56 -44.47 -42.11

Average 49.08 -70.16 -69.11

Table 5: Compression Results: 8Kbyte Cache and On-Chip SRAM.

Without Compression With Compression �
Bench Exec. Instr. Size HR Energy Size HR Energy Size HR Energy

[#] [Kbyte] [%] [J] [Kbyte] [%] [J] [%] [%] [%]

adaptFilter 5.32e5 4530 98.87 1.97e-5 3784 99.06 2.40e-5 -16.47 0.19 21.32

butterfly 2.50e5 8048 96.40 1.09e-5 4292 97.60 1.23e-5 -46.67 1.24 13.28

chaos 4.91e5 9266 86.76 3.27e-5 3660 99.39 2.18e-5 -60.50 14.55 -33.34

dft 8.81e6 11212 87.63 5.67e-4 9742 96.25 4.57e-4 -13.11 9.84 -19.46

iirDemo 2.31e5 10168 84.41 1.67e-5 8112 96.97 1.16e-5 -20.22 14.87 -30.57

integrator 4.02e5 6224 97.26 1.66e-5 4108 98.51 1.88e-5 -33.99 1.28 12.76

interp 9.35e5 8312 90.37 5.40e-5 6544 99.25 4.17e-5 -21.27 9.82 -22.70

scramble 4.23e6 13296 86.99 2.81e-4 11828 92.67 2.57e-4 -11.04 6.52 -8.34

Average 91.09 97.46 -27.90 7.29 -8.38

Table 6: Compression Results: 2Kbyte Cache and On-Chip SRAM.

Without Compression With Compression �
Bench Exec. Instr. Size HR Energy Size HR Energy Size HR Energy

[#] [Kbyte] [%] [J] [Kbyte] [%] [J] [%] [%] [%]

adaptFilter 5.32e5 4530 60.34 6.85e-5 3784 91.73 3.24e-5 -16.47 52.02 -52.68

butterfly 2.50e5 8048 45.20 4.14e-5 4292 64.40 3.20e-5 -46.67 42.48 -22.79

chaos 4.91e5 9266 48.47 7.74e-5 3660 82.07 4.15e-5 -60.50 69.33 -46.38

dft 8.81e6 11212 51.42 1.33e-3 9742 65.95 3.44e-4 -13.11 28.26 -74.02

iirDemo 2.31e5 10168 51.95 3.45e-5 8112 69.26 2.67e-5 -20.22 33.33 -22.43

integrator 4.02e5 6224 73.63 3.88e-5 4108 87.31 2.90e-5 -33.99 18.58 -25.29

interp 9.35e5 8312 58.18 1.25e-4 6544 92.83 5.44e-5 -21.27 59.56 -56.55

scramble 4.23e6 13296 67.85 4.67e-4 11828 80.14 3.78e-4 -11.04 18.12 -19.09

Average 57.13 79.21 -27.90 40.21 -39.90

Table 7: Compression Results: 4Kbyte Cache and O�-Chip FLASH.

Without Compression With Compression �
Bench Exec. Instr. Size HR Energy Size HR Energy Size HR Energy

[#] [Kbyte] [%] [J] [Kbyte] [%] [J] [%] [%] [%]

adaptFilter 5.32e5 4530 90.79 7.79e-5 3784 98.68 3.11e-5 -16.47 8.69 -18.77

butterfly 2.50e5 8048 79.20 7.31e-5 4292 91.60 3.73e-5 -46.67 15.66 -25.25

chaos 4.91e5 9266 77.80 1.52e-4 3660 98.57 2.95e-5 -60.50 26.70 -80.60

dft 8.81e6 11212 81.05 2.37e-3 9742 90.69 1.39e-3 -13.11 11.90 -41.50

iirDemo 2.31e5 10168 70.56 9.35e-5 8112 90.48 3.70e-5 -20.22 28.22 -60.41

integrator 4.02e5 6224 87.06 7.84e-5 4108 96.27 3.59e-5 -33.99 10.57 -54.26

interp 9.35e5 8312 71.87 3.59e-4 6544 97.43 6.88e-5 -21.27 35.56 -80.85

scramble 4.23e6 13296 77.78 1.31e-3 11828 87.71 8.27e-4 -11.04 12.77 -37.03

Average 79.51 93.93 -27.90 18.76 -49.83

Table 8: Energy Break-Down: System with 4Kbyte Cache and O�-Chip FLASH.

Energy Without Compression [J] Energy With Compression [J] � [%]
Bench Cache Bus FLASH Cache Bus FLASH Cache Bus FLASH

adaptFilter 1.59e-5 5.03e-5 1.17e-5 2.17e-5 7.58e-6 1.82e-6 36.45 -84.93 -84.41

butterfly 6.52e-6 5.41e-5 1.25e-5 9.47e-6 2.25e-5 5.39e-6 45.19 -58.46 -57.01

chaos 1.26e-5 1.13e-4 2.63e-5 2.00e-5 7.68e-6 1.84e-6 59.05 -93.23 -92.99

dft 2.35e-4 1.74e-3 4.03e-4 3.30e-4 8.54e-4 2.05e-4 40.48 -50.84 -49.12

iirDemo 5.37e-6 7.16e-5 1.66e-5 8.64e-6 2.29e-5 5.49e-6 60.96 -68.02 -66.91

integrator 1.15e-5 5.43e-5 1.26e-5 1.60e-5 1.60e-5 3.85e-6 38.80 -70.49 -69.47

interp 2.21e-5 2.74e-4 6.35e-5 3.77e-5 2.51e-5 6.02e-6 70.18 -90.83 -90.52

scramble 1.08e-4 9.78e-4 2.27e-4 1.53e-4 5.43e-4 1.30e-4 41.56 -44.47 -42.53

Average 49.08 -70.16 -69.11

327


	Main Page
	ISLPED'01
	Front Matter
	Table of Contents
	Author Index




