
��������	�
����
�
��	�

�
���	�
��
�	
�����	��
���
�
��
��	
�����������
�	����
���

��������	
	�	�
����������
�	�
��	�	�����������
��	����
�	�
������	�����	����

����
��	��	����	��

����
������
�� !"�#��$
�%$�$��	&�'()*
�+��,��-'.')
������
$�

/0�����$�	
	�	�
����$�����
�	�
��	�	�$	��������
��	��$�
�	�
��	���$�	���12����
$�	�

ABSTRACT
We introduce the Micro-Operation Cache (Uop Cache – UC)
designed to reduce processor’s frontend power and energy
consumption without performance degradation. The UC caches
basic blocks of instructions – pre-decoded into micro-operations
(uops). The UC fetches a single basic-block worth of uops per
cycle. Fetching complete pre-decoded basic-blocks eliminates the
need to repeatedly decode variable length instructions and
simplifies the process of predicting, fetching, rotating and
aligning fetched instructions. The UC design enables even a small
structure to be quite effective.
Results: a moderate-sized UC eliminates about 75% instruction
decodes across a broad range of benchmarks and over 90% in
multimedia applications and high-power tests. For existing Intel
P6 family processors, the eliminated work may save about 10% of
the full-chip power consumption with no performance
degradation.

General Terms: Performance, Design

Keywords: instruction fetch, instruction cache, micro-
operation cache, power reduction.

1. INTRODUCTION
A processor frontend fetches stream of instructions from the
memory hierarchy and supplies valid decoded instructions to the
execution core. The frontend predicts which instructions should
be fetched next, decode them, and move them with low latency
and high bandwidth to the backend (renaming, execution and
retire).
High bandwidth fetching and decoding is a challenge for every
microprocessor. It is extremely challenging for the IA-32
processor family, which features a variable length Instruction Set
Architecture (ISA). An IA-32 instruction length may vary
between 1 to 15 bytes; it may reside in any byte address, and it
may be translated into one or more micro-operations or uops
(e.g., an add-register-to-memory instruction consists of a separate

load, add and store micro-operations). A complex logic is needed
to maintain a decoding rate of several variable length instructions
per cycle. The IA32 frontend lasts several pipe-stages and
consumes about 28% of the overall processor power [Mann98].
Traditional processors use instruction caches (IC) to store
instructions. In the race for higher performance, several attempts
have been made to improve instruction fetch and decode. The
main strategy for increasing the fetch bandwidth is to use
auxiliary structures to store instructions in their program
execution order rather than in their memory address order. Most
known structures are the Trace Cache (TC) [Pele94, Rote96,
Frie97, Upto00], the Basic Block Cache (BBC) [Blak99], and the
eXtended Block Cache (XBC) [Jour00]1. These novel structures
attempt to dynamically create long instruction sequences.
Instructions are first fetched from memory in the traditional way.
Later, instructions are grouped into traces according to their
execution order; heuristic is used to decide trace start and end
points. Finally, the collected traces are assembled and stored in
the auxiliary structure. Later on, when stored instructions are
needed, they are fetched from the auxiliary structure.
These structures are not designed for power efficiency. Indeed, to
reduce latency they cache already decoded uops so they avoid
repeated decoding and save power. But, they also involve
complex logic that consumes a lot of power. This logic
implements mechanisms such as multiple-branch predictors, big
caches, trace ending heuristics and more.
Our goal is to provide an alternative frontend for the Intel P6
processor family that delivers competitive fetch bandwidth as
existing P6 family processors at lower power consumption. The
Micro Operation Cache (Uop Cache, UC) is the base of this
frontend. The UC, as the XBC and the TC, avoids repeated
decoding by caching already decoded micro-operations. The UC
works on basic blocks, not traces, so its logic is simpler and
consumes less power than XBC and TC.
The remainder of the paper is organized as follows. Section 2
describes the UC structure and algorithms and lists the design
space alternatives. Section 3 and 4 explain the experimental
methodology and bring the experimental results: comparing the
UC to the current IC and exploring design space alternatives.
Section 5 analyzes the power consumption and estimates the
power saving. Finally, we conclude in section 6.

1 [jour00] includes a good overview of instruction fetch structures.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ISLPED'01, August 6-7, 2001, Huntington Beach, California, USA.
Copyright 2001 ACM 1-58113-371-5/01/0008…$5.00.

14

2. UOP CACHE STRUCTURES
2.1 The P6 Microarchitecture – The Frontend
The frontend pipeline of the P6 family consists of several pipe
stages that accomplish the following tasks:
• Determining the next Instruction Pointer (IP) to fetch from.
• IC tag lookup.
• IC data fetch, including aligning and rotating as needed.
• Instruction length decoding.
• Instruction decoding – translating instructions into micro-

operations (uops).
Instructions are split into uops. Simple instructions consist of up
to 4 uops; complex instructions consist of 5 uops or more.
Complex instructions have their uops come from the micro-
sequencer that extracts them out of a special micro-code ROM at
the rate of 3 uops per cycle.
Current implementation of the P6 family can sustain execution
rate of 3 uops per cycle. The enhanced frontend should maintain
at least this fetch rate.

2.2 Uop Cache Overview
We define basic block as a single-entry / single-exit sequence of
instructions. The Uop Cache (UC) stores basic blocks of
instructions pre-decoded into uops. The block is mapped into the
UC according to the address of its first instruction. To simplify
the UC structure, a basic block may be broken into fixed length
UC lines - each contains a fixed number of uops slots. Some slots
contain active uops, while other may remain empty. A basic block
can span over one or more UC lines.

2.3 Uop Cache Data Structure
The UC is a regular n-associative cache with tags and sets. Each
set contains number of lines (as the number of ways) and each line
contains a number of uops. Each line is addressed by the IP of its
first instruction. This forces all uops originated from the same IA-
32 instruction to reside in the same UC line. The additional data
associated with each UC line includes:

• Number of valid uops stored in the UC line.
• The total length of the original IA-32 instructions that

constitutes the basic block stored in this UC line.
This data is stored along with the UC tag array and is accessed
during a cache lookup.

2.4 Basic Blocks
Basic blocks are entered only via the first instruction in the block.
A new block is started following:

1. A control flow instruction: e.g., Branch (conditional or
unconditional), Call, Return.

2. A complex instruction. In this case, a dummy uop, used
by the micro-sequencer, is stored in the UC line.

3. An exception occurred in the course of instruction fetch
(e.g. page fault).

2.5 Execution modes
The frontend operates in one the following two modes:

• Build-Mode: Fetching instructions from the IC,
decoding them into uops, and storing them into the UC.

• Stream-Mode: Fetching uops from the UC.
Mode Switch occurs when moving from build-mode to stream-
mode and vice-versa.

2.5.1 Build-Mode
Instructions fetched from the IC are decoded into uops. In parallel
to their issue, the uops are also stored in the UC fill buffer. Uops
from consecutive instructions are packed together to fill a UC
line. After a UC line is built, it is placed in the UC. A new UC
line is started for each new basic block, or when the current UC
line does not have enough empty slots to store all the uops
generated by the coming instruction.
UC lines are not fully utilized. The build procedure may leave
empty uop slots in the UC line. In addition, the UC may suffer
some level of redundancy - this happens when control flow leads
to an instruction that is already in the UC, but not as the first in its
UC line. Fortunately, these inefficiencies do not hurt the UC
performance.

2.5.2 Stream-Mode
When in stream-mode, after reading a UC line, a new IP is
computed by adding the previous IP with the length of the
instructions stored in that line (see 2.3 above). A new UC lookup
is done using the new computed IP.

2.6 Uop Cache Pipeline
The integration of the UC within the P6 microarchitecture
pipeline is illustrated in Figure 1. The heavy shaded blocks are the
new UC related added blocks, the light shaded and white blocks
are a slightly modified blocks of the existing P6-like
microarchitecture.
The main motivation of this pipeline is to ensure that there is no
bubble on a switch from either stream-mode to build-mode (i.e.
on a UC miss) or build-mode to stream-mode. First, we split the
lookup and fetch into two separated stages for both the IC and the
UC, making both caches serial. The IC and the UC lookups are
done in the first stage, and based on the hit/miss indicator we
decide which way in which cache should be accessed for actual
instructions/uops fetch.
To save power, the actual fetch of uops from the UC is done only
one stage before storing them in the uop buffer, and the new
added latches hold only the location (set and way numbers) of the
relevant UC line.

UC
fetch

Instruction
Decode

Next IP

IC
lookup

IC
fetch

UC
lookup

Uop
buffer Latched index / way#

Length
Decode

 | cycle 1 | 2 | 3 | 4 | 5 | 6 |

Figure 1: Frontend Pipeline with Uop Cache

25

A closer look at the frontend pipeline in Figure 1 shows:

• There is no bubble when switching from a stream-mode
to a build-mode, and vice versa.

• All blocks in the white area can be shutdown when
working in stream-mode.

Shutting down the IC lookup during stream-mode can save more
power, but at the cost of a bubble while switching modes.
For simplicity, the UC and IC share the same branch prediction
unit (BPU). To save power, the UC could have used a separate,
yet simpler, BPU that predicts only one branch per cycle.

2.7 Design space
The prime target of the UC is to reduce the power of the frontend
while providing enough uop bandwidth. We target uop fetch
bandwidth of at least 3 uops per cycle. There are several design
alternatives that can be considered for the UC, each affecting
performance, bandwidth, area and power:
• Cache size, associativity and line size: these parameters

influence hit rate, cache space utilization, switch rate and
output bandwidth. Larger cache size and high associativity
increase hit rate and reduce switch rate. Larger line size
increases uop bandwidth. Each of these parameter influences
the UC power. Higher associativity increases the UC lookup
power; longer lines consume more power on UC fetch.

• Usage of “access counters”. An optional counter is attached to
each IC line. Instructions are stored in the UC only when the
counter of the corresponding UC line reaches a certain
predefined value. Access counters significantly reduce the
number of line-builds and line-replacements in the UC.

• The targeted average output bandwidth of the frontend can
make a big difference in the UC design. Our target is to sustain
a fetch rate of at least 3 uops per cycle.

The following parameters affect performance, bandwidth, and
power as well, but in order to narrow the design space, we choose
a certain value for each and used it for the studies presented here.
• Serial or parallel caches. Whether cache lookup and cache fetch

are done in the same cycle, or split into 2 separate cycles. Serial
caches consume less power but require an extra cycle in the
frontend pipeline – slightly increasing the misprediction
penalty. We assume that both the UC and the IC are serial.

• Zero/Non-zero “Stream to Build” switch penalty. Whether IC
and UC lookups are done in parallel, or, while in stream-mode,
the IC lookup is done only after a UC miss. The latter allows
complete shutdown of the IC while the UC operates in stream-
mode, but incurs a one-cycle bubble on each stream-mode to
build-mode switch. Note that this feature is orthogonal to the
serial/parallel cache feature. We assume zero-switch penalty.

• The mapping between the IP and the UC. This determines the
memory block size mapped to a single set in the UC. Bigger
offset causes more uops to map to the same UC set. It takes
higher UC associativity or longer UC lines to support that. We
assume 16 bytes memory blocks.

3. EXPERIMENTAL METHODOLOGY

3.1 Machine Model
The results were obtained using a trace-driven, stand-alone,
frontend simulator that models the Uop Cache, Instruction Cache,
a decoder, and a micro-sequencer. We assume one line fetched
from the UC and the IC per cycle. IC fetches are 16 bytes long.
We also assume a perfect IC and a perfect branch predictor2.
Complex instructions are fetched from a micro-sequencer at a rate
of 3 uops/cycle. A dummy uop points from the UC to the micro-
sequencer and takes one uop slot. The model assumes a frontend
pipeline similar to the one depicted in Figure 1 above. The model
assumes serial IC and serial UC.

3.2 Benchmarks
The model process instruction traces. Each trace consists of 30
million consecutive x86 instructions translated into uops. Traces
record both user and kernel activities. Results are reported for 49
traces grouped into 8 suites:
− SpecInt: 9 traces from the SPECint2000 benchmark.
− SpecFP: 9 traces from the SPECfp2000 benchmark.
− Win2K: 6 traces from Windows2000 benchmark.
− WinSt99: 7 traces of from Winston99 benchmark.
− Smark98NT: 9 traces from SYSmark32 benchmark.
− WB99_3D: 3 traces of popular 3D games.
− MM99: 3 traces of video processing with MMX.
− HighPower: 3 traces of a power virus application.

4. DESIGN SPACE EXPLORATION
This section explores the design space of the UC. UC size (s), line
size (l), associativity (w), and access-counter values (ac) are
explored.

4.1 Measured Parameters
Several parameters that affect power and performance are
measured:

• Instruction hit-rate: The number of instructions fetched from
the UC relative to the total number of fetched instructions. A
complex instruction is counted as one instruction. Instruction
hit-rate correlates to the power saved by the reduction in
decoding IA-32 instructions.

• Line hit-rate: measured as the reduction in the number of IC
line fetches in a UC/IC system relative to the number of IC line
fetches in a system without a UC. Line hit-rate correlates to the
power saving gained by the reduction in IC lookups, fetches,
line aligning and rotating.

• Overall Fetch Ratio: The number of line fetches (from both the
UC and the IC) relative to the number of IC line fetches in an
IC only system. Overall fetch rate correlates to the extra power
required to perform UC lookups and fetches.

The last two items deserve an explanation: an IC line may contain
one or more basic blocks. A single IC fetch in an IC only
configuration is counted once. Fetching the same bytes in a
combined IC/UC configuration may involve several UC fetches

2 Perfect BPU can be assumed since we fetch one block per cycle.

Studies involving fetching multiple blocks (e.g. TC) cannot assume
that.

36

and possibly an IC fetch. The latter occurs in case only part, not
all, of the instructions within an IC line reside in the UC.

• Uop bandwidth: The number of uop fetched from the UC per
cycle. We

• count only uops coming directly from the UC or uops of
complex instructions whose pointer reside in the UC. We do
not count uops coming from the IC. We divide this number by
the number of stream-mode cycles. This method makes sure we
evaluate a real, pure, UC potential.

• Number of Builds: This number correlates to the extra power
required to perform UC line builds and replacements.

• Number of Switches: The number of switches from stream-
mode to build-mode (and vice-versa). The number of switches
correlates to the lost performance in case of non-zero switch
mode penalty.

4.2 UC size, UC line size and UC associativity
A basic block can span over several UC lines, sharing the same
UC set. Several basic blocks can be mapped to the same UC set.
This should be taken into account when dealing with line size and
associativity.
Increasing the UC line size is expected to increase the UC fetch
bandwidth. However, bigger line size may increase the number of
empty uop slots, thus reducing the UC hit rate for a given UC
size. Since a non-complex instruction can have up to 4 uops, the
minimum possible UC line size is 4. However, the minimal
practical UC line size is 5. Having 5 uops per line ensures that a
block that spans over more than one UC line delivers at least 3
uops per cycle, while a 4 uops UC line size may deliver as low as
2.5 uops per cycle (e.g. 3 uops in the first UC line and 2 in the
second).
Higher associativity is expected to increase hit rate by reducing
the conflict misses. Larger UC decreases the number of capacity
misses, thus improving the overall hit rate.
Figure 2 and Figure 3 show the Line hit-rate and the Instruction
hit-rate of different UC configurations. 64 sets are used for all
configurations. The number of ways and the UC line length are
specified for each column (w, l: associativity, line size).

0
5
10
15
20
25
30
35

Jan Feb Mar Apr May Jun

Food
Gas
Motel

0%

20%

40%

60%

80%

100%

SP
EC
int

SP
EC
fp

W
in2
K

Wi
ns
t99

Sm
ark
98
NT

MM
99

W
B9
9_
3D

Hig
h_
Po
we
r

Av
era
ge

5w,6l 6w,5l 8w,4l 7w,5l
6w,6l 8w,5l 8w,6l

Figure 2: UC Line Hit-Rate

As expected, the instruction hit-rate is somewhat higher than the
line hit-rate. By and large, bigger UC size (64×w×l) increases hit
rate, but bigger line size reduces it (e.g., 6w,5l is better than 5w,6l
and 7w,5l is better than 6w,6l). The average instruction hit rate is
in the range of 80-85%.

Hit rate trends in our configuration follow the hit rate trends of
traditional IC (not shown). For example, Win2K and Winst99,
which are notorious for having a rather big working set, exhibit
lower hit rates.

0
5
10
15
20
25
30
35

Jan Feb Mar Apr May Jun

Food
Gas
Motel

0%

20%

40%

60%

80%

100%

SP
EC
int

SP
EC
fp

Wi
n2K

Wi
ns
t9
9

Sm
ark
98
NT

MM
99

WB
99
_3
D

Hig
h_
Po
we
r

Av
era
ge

5w,6l 6w,5l 8w,4l 7w,5l
6w,6l 8w,5l 8w,6l

Figure 3: UC Instruction Hit-Rate

Figure 4 shows the overall fetch ratio. Both the IC fetches and UC
fetches are shown, relative to an IC only configuration. On
average the usage of UC decreases the number of IC fetches by
about 80%, but increases the overall number of fetches (UC and
IC) by 50% to 70%.

0
5
10
15
20
25
30
35

Jan Feb Mar Apr May Jun

Food
Gas
Motel

0.0

0.5

1.0

1.5

2.0

2.5
SP
EC
int

SP
EC
fp

Wi
n 2
K

Wi
n s
t99

Sm
ark
98
NT

MM
99

W
B9
9_3
D

Hig
h_
Po
we
r

Av
era
g e

IC
 f

et
ch

es
, U

C
 fe

tc
he

s
ra

t

8w,4l 6w,5l 7w,5l 8w,5l 5w ,6l 6w ,6l 8w,6l

Figure 4: UC Fetch Ratio

Figure 5 shows the fetch bandwidth for various cache
configurations. As expected, the bandwidth depends mainly on
the UC line size. The results show that in order to sustain a fetch
bandwidth of over 3 uops per cycle, a 6-uop UC line size is
recommended. Overall, the (6w,6l) configuration seems to be the
sweet spot that provides a reasonable hit-rate and an acceptable
bandwidth for its size.

0
5
10
15
20
25
30
35

Jan Feb Mar Apr May Jun

Food
Gas
Motel

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

SP
EC
int

SP
EC
fp

Wi
n 2K

Wi
ns
t99

Sm
ark
98
NT

MM
99

WB
99
_3
D

Hig
h_
Po
we
r

Av
era
ge

8w ,4l 6w ,5l 7w ,5l 8w ,5l
5w ,6l 6w ,6l 8w ,6l

Figure 5: UC Bandwidth (uops/cycle)

Figure 6 shows the switch rate, measured as number of uops per

47

switch. The number of uops per switch correlates well with the
UC instruction hit rate. The switch rate helps us approximate the
loss of using non-zero switch penalty (explaining why we measure
and present it in uops per switch). For example, assuming overall
fetch bandwidth of about 3 uops per cycle, an average switch
every 100 uops means a stalled cycle every 33 cycles, or potential
performance loss of ~ 3%.

0
5
10
15
20
25
30
35

Jan Feb Mar Apr May Jun

Food
Gas
Motel

10

100

1000

10000

SP
EC
int

SP
EC
fp

W
in2
K

W
ins
t 99

Sm
ar
k98
NT

M
M9
9

W
B 9
9_
3D

Hi
gh
_P
ow
er

Av
er
ag
e

uo
p

s
pe

r s
wi

tc

5w,6l 6w,5l 8w ,4l 7w,5l
6w,6l 8w,5l 8w ,6l

Figure 6: UC stream-to-build Switch Rate

4.3 Access counters
Many UC lines are accessed only when they are built and are
replaced without being re-executed even once, wasting power to
build them and throwing potentially usable UC lines. By applying
access counter filter when storing lines into the UC, we can
decrease the number of such “wasted” builds.
Figure 7 shows the reduction in the number of line builds for
various access counter values. Results are recorded as the number
of builds per 1K instructions.

0
5
10
15
20
25
30
35

Jan Feb Mar Apr May Jun

Food
Gas
Motel

0

2 5

5 0

7 5

10 0

12 5

15 0

17 5

20 0

SP
EC
in t

SP
EC
fp

W
in 2
K

W
in
st99

Sm
ar
k98
NT

MM
99

W
B 9
9_3
D

Hi
gh
_P
ow
er

Av
er
ag
e

of

 b
u

ild
s

1K
 in

st
ru

ct
io

n

ac_1 ac_2 ac_3 ac_5 ac_10 ac_20 ac_50

Figure 7: UC line Builds vs. Access counter (for 6w,6l)

Figure 8 shows the impact of various access counters on the hit
rate. As expected, bigger access counter values decrease the
number of line builds, but also reduce the hit rate (when taking
high enough access counter values). Different access counter
values have no impact on the overall fetch bandwidth (not
shown). Access counters have minimal impact on applications
with small working sets (e.g., SpecInt, SpecFP). They
significantly decrease the number of builds for application with
large working sets (Win2K, Winst99) at a small decrease in the
hit-rate. For example, with access counter of 10, Win2K enjoys
over 2X reduction in UC line builds for small decrease in the line
hit-rate (58.5% vs. 60%).

0
5
10
15
20
25
30
35

Jan Feb Mar Apr May Jun

Food
Gas
Motel

0%

20%

40%

60%

80%

100%

SP
EC
in t

SP
EC
fp

W
in2
K

W
ins
t99

Sm
ar
k 98
NT

M
M9
9

W
B 9
9_3
D

Hi
gh
_P
ow
er

Av
er
ag
e

ac _1 ac_2 ac_3 ac_5
ac _10 ac_20 ac_50

Figure 8: UC line Hit-rate vs. Access counter (for 6w,6l)
The above numbers may deceive. The benefit of the access
counters should be assessed based on the actual power saved by
eliminating line builds against the extra power required by the
additional IC accesses. This benefit depends on the power needed
to build a line and the power needed to fetch an IC line and
decode its instructions.

5. FRONTEND POWER REDUCTION
A full-blown power estimate requires detailed power breakdown
that is not fully available and is out of the scope of this paper.
Nevertheless, we will show that with reasonable assumptions, a
UC has a significant power saving potential.
According to [Mann98], the Pentium® Pro processor consumes
about 14% of its power in instruction fetch and length decode,
and another 14% in instruction decode.
The UC contributes to the frontend power in various ways:

1. In stream-mode, the power hungry Instruction Length
Decoder and the Instruction Decoder are inactive.

2. IC fetch is replaced by a serial UC fetch.
3. Converting the IC into a serial cache saves power even

when in build-mode.
4. Usage of access counters reduces the average power

needed to build UC lines.
On the other hand, using the UC may add power since:

1. IC lookups are done in parallel to UC lookups.
2. We service about 50% more line fetches because UC lines

are effectively shorter.
3. A bigger mux in front of the uop buffer is needed.

5.1 Frontend Power Model
We examine the power requirements in build-mode and stream-
mode.

1. Stream mode. The following units are active:
(a) UC lookup
(b) Serial IC lookup
(c) UC line fetch
(d) Uop store into the uop buffer.
The rest of the units are inactive.

2. Build-mode. The following units are active:
(a) Serial IC lookup
(b) Serial IC line fetch
(c) Instruction Length Decode
(d) Instruction Decode and uop store into the uop buffer
(e) UC line fill and replace - as needed
(f) UC lookup (following a control flow instruction).

58

The power consumed by the micro-sequencer when fetching
instructions out of the micro-code ROM is independent of the UC
usage and is not counted. Indeed, the presence of many complex
instructions may limit the UC power saving potential.

5.2 Frontend Power Numbers Elaboration
An IC lookup and IC fetch are done for each accessed IC line.
Instruction length decoding and instruction decoding are more
frequent as they are done for each instruction. Out of the power
spent in the frontend, only about 25% is spent on IC lookup and
fetch. The rest is spent on instruction length decoding and
instruction decoding.
The above activities (except IC lookups) are not needed when UC
lines are fetched. There are 50% more fetches in the IC/UC
configuration relative to IC only configuration (see Figure 4), but
the work on each UC line and on each uop coming from it is
much smaller.
Our back of the envelope power estimate is based on the
information we gathered in section 4 and the following
assumptions:

1. Fetching uops from the UC and storing them in the uop
buffer consume together about the same power as an IC
fetch (IC and UC areas are assumed to be similar).

2. UC lookup and serial IC lookup consume much less power
than UC fetch, hence their power can be neglected.

Assuming about 80% line hit-rate, and taking into account (2)
above we conclude that build-mode power consumption decreases
to about 20% of the original frontend power.
Based on (1) above, and given about 50% overall added fetches,
we conclude that the UC consumes 50% more power than the
original IC fetch power. That is 25%*1.5=37.5% of the original
frontend power.
Overall, the IC/UC based frontend consumes less than 60%
(37.5%+20%) of the original frontend power. Using serial IC and
UC caches provides additional saving, which offsets the fact that
we have ignored the cost of UC line builds and other small
activities. The real picture is even better – the power demanding
applications exhibit high UC hit rates (close to 90%) that results
in bigger power saving when most important.
Since the frontend consumes 28% of the overall processor power
consumption,, saving 40% of it constitutes about 10% of the full
chip power (40%*28% = 11%).

6. CONCLUSIONS AND FUTURE WORK
In this paper we presented the Uop Cache (UC), an alternative
instruction supply mechanism aimed at power reduction. We
showed that the UC provides a competitive fetch bandwidth as an
existing microarchitecture based on a conventional instruction
cache (IC), while consuming significantly less power. As opposed
to more aggressive novel instruction supply mechanisms, such as
trace cache, even a small UC with moderate instruction hit-rate is
still attractive in terms of performance and power. We have shown
that the UC may save over 40% of the frontend power, which
equals to over 10% of the full chip power.
The concept of the UC can be extended in several directions:

• Refine the Power Estimation of the Frontend including the
IC and UC possible implementations.

• Tuning the sizes of IC and the UC for optimal power and
performance. It may be beneficial to use part of the
transistor budget to increase the IC size. This reduces the
number of L1 misses and decreases the total energy
consumption.

• Allow multiple-exit basic blocks. Multiple-exit blocks may
contain the fall-through instructions following a
conditional branch. They reduce the number of very short
blocks, which decrease the overall fetch bandwidth.

• Enhance the UC efficiency. For example, UC continuation
lines (lines that do not start basic blocks) may be stored in
a separate structure rather than consuming UC lines. This
way, long basic blocks do not consume several ways in the
same set, thus reducing the rate of UC conflict misses.

• Annotate the uops in the UC lines to simplify other
repeated operations (e.g., provide intra-block renaming
information along with the uops).

• Increase overall fetch bandwidth. For example, fetching
together all UC lines that belong to the same basic block.

Actual directions will be mainly influenced by the final goal:
more bandwidth for the same power or same bandwidth for less
power?

7. ACKNOWLEDGMENTS
We would like to thank Bob Valentine for his helpful ideas for
integrating the UC into the frontend. We want to thank Daniel
Baumgarten for his help in implementing the UC simulator.

8. REFERENCES
[Blac99] B. Black, B. Rychlik, and J. Shen, “The Block-based

Trace Cache,” in Proceedings of the 26th International
Symposium on Computer Architecture, May 1999.

[Frie97] D. Friendly, S. Patel, and Y. Patt, “Alternative Fetch
and Issue Policies for the Trace Cache Fetch
Mechanism,” in Proceedings of the 30th International
Symposium on Microarchitecture, December 1997.

[Jour00] S. Jourdan, L. Rappoport, Y. Almog, M. Erez, A.
Yoaz, R. Ronen, “eXtended Block Cache”, in
Proceedings of the International symposium on High
Performance Computer Architecture, January 2000.

[Mann98] S. Manne, D. Grunwald, A. Klauser, “Pipeline gating:
Speculation control for energy reduction”, in
Proceedings of the 25th International Symposium on
Computer Architecture, June 1998.

[Pele94] A. Peleg and U. Weiser, “Dynamic Flow Instruction
Cache Memory Organized around Trace Segments
Independent of Virtual Address Line,” U.S. Patent
Number 5,381,533, Intel Corporation, 1994.

[Rote96] E. Rotenberg, S. Bennett, and J. E. Smith, “Trace
cache: a low latency approach to high bandwidth
instruction fetching,” in Proceedings of the 29th
International Symposium on Microarchitecture,
November 1996.

[Upto00] Mike Upton, “The Intel Pentium® 4 Processor”,
http://www.intel.com/pentium4, October 2000.

69

	Main Page
	ISLPED'01
	Front Matter
	Table of Contents
	Author Index

