
Low Power System Scheduling and Synthesis �

Niraj K. Jha
Department of Electrical Engineering

Princeton University
Princeton, NJ 08544

Abstract

Many scheduling techniques have been presented re-
cently which exploit dynamic voltage scaling (DVS) and
dynamic power management (DPM) for both uniproces-
sors and distributed systems, as well as both real-time
and non-real-time systems. While such techniques are
power-aware and aim at extending battery lifetimes for
portable systems, they need to be augmented to make
them battery-aware as well. We will survey such power-
aware and battery-aware scheduling algorithms. Also,
system synthesis algorithms for real-time systems-on-a-
chip (SOCs), distributed and wireless client-server em-
bedded systems, etc., have begun optimizing power con-
sumption in addition to system price. We will survey
such algorithms as well, and point out some open prob-
lems.

1. Introduction
Power consumption is well-recognized as one of the

most important parameters in designing modern elec-
tronic systems. This is based on the need to increase
the battery life of portable systems, reduce chip pack-
aging and cooling costs, as well as reliability and en-
vironmental considerations. Since battery technology
has not kept pace with the increasing power demands
of such systems, it is important to target power during
the design process. It is also known that higher the level
of the design hierarchy where power is tackled, higher
is the power reduction possible.
In this paper, we survey power reduction techniques

that are applicable to the system level of the design
hierarchy. We concentrate our attention on two speci�c
areas: system scheduling and system synthesis. There
are two techniques that can impact system scheduling:
DVS and DPM. In DVS, di�erent computation tasks
are run at di�erent voltages and clock frequencies in
order to �ll up the idle periods in the schedule, while
still providing an adequate level of performance. DPM
aims to shut o� system parts not currently in use. An
excellent survey for DPM can be found in [15]. We only
cover DPM if it impacts system scheduling.
Low power system synthesis, speci�cally, SOC synthe-

sis, and hardware-software co-synthesis of distributed
embedded systems, has also attracted much attention.
The system may be wireless and may have both quality
of service (QoS) and real-time constraints.
We survey low power system scheduling and synthesis

in Sections 2 and 3, respectively. We point out some

�Acknowledgment: This work was supported by DARPA un-

der contract no. DAAB07-00-C-L516.

open problems and conclude in Section 4.

2. Low Power System Scheduling
In this section, we survey various low power system

scheduling techniques. Most target DVS, some DPM.
Under DVS, many works target single processors, for
both real-time and non-real-time applications. How-
ever, some recent work targets distributed systems.
Whenever both DVS and DPM are available for a

processor, it is known that it is always advantageous to
exploit DVS �rst.
The circuit delay depends on supply voltage Vdd as

follows: k � Vdd=(Vdd � Vt)2, where k is a constant and
Vt is the threshold voltage. Thus, delay increases as Vdd
decreases. The switching power consumption (which is
currently the dominant power consumption in CMOS
technology) is given by P = �CLV

2

dd
f , where � is the

switching activity, CL is the load capacitance, and f is
the frequency. ��CL is referred to as switched capac-
itance. Note that f is inversely proportional to circuit
delay. Hence, P / Vdd(Vdd � Vt)2.
The input speci�cation of real-time distributed sys-

tems is frequently given in terms of a set of task graphs.
A task graph is a directed acyclic graph in which a
node is associated with a task and an edge is associ-
ated with the amount of data transferred between tasks.
The period associated with a task graph indicates the
time interval between its successive executions. A hard
deadline, by which time the task must complete exe-
cution, is given for each sink node and some interme-
diate nodes. A multi-rate system consists of multiple
task graphs with di�erent periods. In addition to peri-
odic task graphs, the system may also contain aperiodic
tasks. An aperiodic task is invoked at any time and
may have a hard or soft deadline. In case of soft dead-
lines, only the response time of the task needs to be
minimized. For aperiodic tasks, generally a minimum
inter-instance arrival time is speci�ed.
For single processors, generally the tasks are assumed

to be independent. The speci�cation is assumed to be
in the form of an arrival time, deadline and worst-case
execution time for each task. Sometimes, the switched
capacitance and period are also required.
Scheduling determines the time at which each task

and communication executes.

2.1 DVS for uniprocessors
Initial work in this area was done for non-real-time

systems. We survey these works �rst.



2.1.1 Non-real-time applications
In [1], DVS is used to maximize millions-of-

instructions per Joule (MIPJ). This method is evaluated
using trace-based simulation. The trace is divided into
segments of various lengths. The run-times of segments
are lengthened in order to eliminate idle time. In the
previous segment, if the processor was more busy than
idle, the speed is ramped up. If it was mostly idle, it is
slowed down.
In [3], sophisticated heuristics are used to predict how

busy the processor would be in the near future. This
prediction is used to alter processor's speed and supply
voltage. However, the smoothing heuristic given in [1]
seems to perform as well as most of these techniques.
Further evaluation of such DVS algorithms can be found
in [6].

2.1.2 Real-time applications
A large body of DVS work exists for real-time appli-

cations running on single processors. In [2], a minimum-
energy o�-line preemptive scheduling algorithm is given.
Suppose a set of tasks, J , needs to be executed in a given
time interval. The critical interval for J is an interval in
which a group of tasks must be scheduled at maximum,
constant speed in any optimal schedule for J . The al-
gorithm schedules this group of tasks, and constructs
a subproblem for the remaining tasks and solves it re-
cursively. This work also provides on-line scheduling
extensions.
In [5], results are presented for processors in which the

voltage can be continuously varied (e.g., Intel's XScale)
and in which voltages can only be changed in discrete
steps (e.g., Transmeta's Crusoe). In addition to task
execution times and deadlines, the algorithm also re-
quires the switched capacitance per cycle for each task.
To minimize energy on a processor with continuously
variable voltages, it shows that a unique voltage should
be used for each task to expand its total execution time
to its deadline. For processors with discrete voltages, at
most two voltages need to be used to execute any task.
In [7], the problem of jointly scheduling periodic and

aperiodic tasks is considered. The on-line algorithm
guarantees all the deadlines of periodic tasks and tries
to maximize the number of aperiodic tasks that can be
accepted whose deadlines can also be met.
In [8], a low power �xed priority scheduling scheme

exploits the fact that real-time tasks frequently run in
less time than their speci�ed worst-case execution time.
When DVS is not applicable, it uses DPM. It takes into
account the time taken to change the voltage and fre-
quency. An extension of this method is given in [16].
The work in [23] also provides a low power �xed priority
scheduler. It is based on the well-known rate monotonic
scheduling algorithm.
In [13], the scheduling algorithm consists of an o�-line

phase in which voltages are chosen for tasks based on
their worst-case execution times, and an on-line phase in
which voltages are adjusted on-the-
y to reclaim any re-
source released by a task which �nishes execution early.
It is based on the traditional cyclic and earliest deadline
�rst scheduling algorithms.
It is generally assumed that since energy is indepen-

dent of the frequency of operation, unless frequency
reduction is accompanied by voltage reduction, energy
cannot be reduced. However, it has been found for real
systems that operating at less than the maximum fre-

quency can be advantageous. In [20], a theoretical ex-
planation is given for this fact. It uses clock frequency
reduction (not supply voltage) and DPM to reduce en-
ergy for multimedia applications.
The method in [26] assumes that when applications

show bursty behavior, they must specify their future de-
mands to the central scheduler. It proposes an energy
priority scheduling heuristic which orders tasks based
on the tightness of their deadlines and how often they
overlap with other tasks. Low priority tasks are sched-
uled �rst since they can be easily preempted by higher
priority tasks later.
In [25], the scheduling algorithm distributes the slack

in a feasible schedule using an iterative algorithm which
uses the fact that minimum energy is obtained when
�(Vdd�Vt)3 is the same for all the tasks for both periodic
and aperiodic schedules.
All the above methods apply DVS at the task level.

However, the work in [24] shows that further energy
reduction can be obtained if intra-task scheduling is
done. It uses static timing analysis of the task to control
the voltage within the task boundary. It partitions the
task into several segments, each assigned with a sep-
arate voltage. In [14] as well, the idea of intra-task
scheduling is exploited by partitioning each task into
�xed-length timeslots. However, unlike [24], it does not
provide guidelines for selecting the best program loca-
tions where voltage scaling code can be inserted.

2.2 DVS for distributed systems
DVS techniques for distributed systems, which consist

of multiple processing elements (PEs) connected with a
communication network, are discussed next.

2.2.1 Power-aware techniques
In [17], a power-conscious algorithm is given for

jointly scheduling multi-rate periodic task graphs with
hard deadlines and aperiodic tasks with hard or soft
deadlines. Periodic tasks are �rst scheduled statically
and room made in the schedule for hard aperiodic tasks.
Soft aperiodic tasks are scheduled dynamically with an
on-line scheduler. It exploits the concepts of slack steal-
ing and resource reclaiming to minimize the response
times of aperiodic tasks. It uses DPM for parts of the
schedule where DVS is not applicable.
In [18], a list scheduling technique chooses the best

two supply voltages for each task in a task graph speci�-
cation. It uses dynamic recalculation of energy-sensitive
task priorities for this purpose.
In [19], a hybrid global/local search optimization

framework is given for DVS. Performance is a constraint
under which an attempt is made to �nd the optimum
voltage level for all the tasks that need to be executed.
The schedule of tasks on di�erent processors is assumed
to be known a priori. The power consumed by the DVS
hardware and the time to switch between voltages are
also taken into account. A genetic algorithm is used for
global search (coupled with a technique called simulated
heating) and hill climbing and Monte Carlo techniques
for local search.
In [21], a power-aware scheduling algorithm is pre-

sented for mission-critical applications. It satis�es
min/max timing constraints and max power constraint.
In addition, it also tries to meet min power constraints
in order to make full use of free power (e.g., solar power)



or to control power jitter.

2.2.2 Battery-aware techniques
In [22], two battery-aware static scheduling tech-

niques are presented. As suggested in [9, 10], reduc-
ing the discharge current level and shaping its distribu-
tion are essential for extending battery lifespan. This is
based on the observation that battery capacity decreases
as the discharge current increases. The �rst scheduling
technique in [22] optimizes the discharge power pro�le
in order to maximize the utilization of battery capac-
ity. The second technique e�ciently re-allocates slack
time to better enable DVS. This helps reduce the aver-
age discharge power consumption as well as 
atten the
discharge power pro�le.

2.3 DPM-based system scheduling
In [4], tasks from task graphs are assumed to be

assigned to processors in a distributed system. The
scheduling algorithm reduces the delay/energy over-
heads for changes between sleep and wakeup states by
inserting bu�ers between processors and rescheduling.
A similar idea is used in [12], where task execution is

ordered to adjust the length of the idle periods in the
schedule, thus enabling better DPM. Since putting a
processor to sleep is worth it only if the sleep time is long
enough to compensate for the delay/energy overheads
of DPM, the idea behind this method is to make idle
periods clustered and long.

3. Low Power System Synthesis
In this section, we survey various system synthesis

techniques for low power SOCs and distributed embed-
ded systems.
The key steps in system synthesis are allocation, as-

signment, scheduling, and performance evaluation. Al-
location determines the number of each type of PE and
communication link in the system architecture. Assign-
ment chooses a PE (link) to execute each task (commu-
nication) upon. As mentioned earlier, scheduling deter-
mines the time of execution of each task and communi-
cation. Performance evaluation involves computing the
price, speed and power of the system architecture.

3.1 Low power SOC synthesis
The method in [28] considers an SOC with a �xed al-

location of one processor, ASIC, instruction cache, data
cache and main memory. As a case study, an MPEG-2
encoder is chosen to investigate the impact of di�erent
hardware/software partitions of the input speci�cation
between the processor and ASIC, and di�erent system
con�gurations such as cache size, cache line size, cache
associativity and main memory size, on power dissipa-
tion of the SOC. The extension of this method in [29]
assumes the same SOC architecture, however, with the
hardware �xed. The software is changed through vari-
ous high-level transformations. This impacts cache and
memory parameters. It investigates overall system en-
ergy. Another extension of this approach is given in
[34].
In [32], the allocation of the SOC architecture is not

�xed beforehand, and is hence not limited to a single
processor and ASIC. It describes a tool called MOC-
SYN which synthesizes real-time heterogeneous single-
chip hardware/software architectures using an adaptive
multi-objective genetic algorithm. It starts with a sys-
tem speci�cation consisting of multiple periodic task

graphs as well as a database of core and SOC char-
acteristics. The database consists of the worst-case ex-
ecution times and average/peak power consumption of
each task on each core on which the task can possibly
run. Each core has a width, height, maximumclock fre-
quency, variable indicating whether or not its commu-
nication is bu�ered, and energy consumption per cycle
dedicated to communication. In addition, information
on core price is also available. A single system syn-
thesis run produces multiple SOC designs which trade
o� system price, power and area under real-time con-
straints. It assumes asynchronous communication be-
tween synchronous cores on the SOC and determines
the best clock frequency for each core. It produces a
hierarchical bus structure which balances ease of layout
with the reduction of bus contention. It also performs

oorplanning in the inner loop of system synthesis to
accurately estimate global communication delays and
energy, as well as clock network energy.
In [35], the target SOC architecture consists of one

processor, instruction/data cache, main memory, and
several ASICs and peripherals. It shows the importance
of adequate adaptation between core and interface pa-
rameters to minimize power consumption. Cache pa-
rameters and con�gurations of cache buses have a sig-
ni�cant e�ect in this respect.
In [36], DVS is integrated into SOC synthesis. The

target architecture consists of one processor and instruc-
tion/data cache. The input speci�cation is assumed to
consist of independent periodic tasks. The technique
also addresses selection of the best processor core and
determination of cache size and con�guration to best
enable DVS.

3.2 Low power distributed system synthesis
In a distributed system, PEs are not limited to a sin-

gle chip. However, system synthesis still consists of solv-
ing the allocation, assignment, scheduling and perfor-
mance evaluation problems. We discuss various types
of distributed system synthesis algorithms next.

3.2.1 Iterative improvement algorithm
In [27], the �rst work to integrate DVS into system

synthesis is presented. Independent periodic tasks are
assumed which are mapped to multiple processors con-
nected by a bus. In addition to voltage, the switched
capacitance is also implicitly optimized. Resource allo-
cation is done using a gradient-driven iterative improve-
ment heuristic. Tasks are also iteratively assigned to al-
located processors based on an objective function. Ad-
ditional load balancing is attempted in a post-processing
step.

3.2.2 Constructive algorithms
In [33], a constructive algorithm called COSYN is

described which starts with a set of multi-rate peri-
odic task graphs with real-time constraints and pro-
duces a price and power optimized distributed system
architecture. It uses a combination of preemptive and
non-preemptive scheduling. However, use of preemptive
scheduling should be avoided as much as possible since
it increases power consumption. It performs task clus-
tering before system synthesis to make synthesis more
tractable. This allows it to tackle very large task graphs
(with more than a thousand tasks). It uses the concept
of task graph pipelining to handle task graphs in which
period is less than the deadline.



For medium- to large-scale embedded systems, such
as telecom transport systems, task graphs are usually
hierarchical, i.e., each node in an upper-level task graph
may correspond to a full-
edged task graph at a lower
level. If 
at, non-hierarchical system architectures are
derived from such hierarchical task graphs, many com-
munication and processing bottlenecks may be created.
In [30], a constructive algorithm called COHRA is given
to synthesize hierarchical distributed architectures from
hierarchical or non-hierarchical real-time periodic task
graphs. A hierarchical architecture is obtained by com-
posing lower-level sub-architectures. COHRA also op-
timizes power consumption and fault tolerance.

3.2.3 Genetic algorithms
In [31], a genetic algorithm called MOGAC is used

to synthesize real-time heterogeneous distributed archi-
tectures from multi-rate real-time periodic task graph
speci�cations. It optimizes both price and power. Ge-
netic algorithms excel at such multiobjective optimiza-
tion. The number and type of PEs are not �xed a priori.
Genetic algorithms allow solutions to be cooperatively
share information with each other, exploring the set of
solutions that can only be improved in one way by being
degraded in another (the Pareto-optimal set). MOGAC
uses heuristics to allow multi-rate systems to be sched-
uled in reasonable time even when the periods are very
di�erent and possibly co-prime.
In [37], a genetic algorithm called COWLS targets

embedded systems consisting of servers and low-power
clients which communicate with each other through
a channel of limited bandwidth, e.g., a wireless link.
Clients may be mobile. It simultaneously optimizes the
price of the client-server system, power consumption of
the client, and response times of tasks with only soft
deadlines, while meeting all the hard deadlines. It pro-
duces numerous solutions which trade o� architectural
features such as price, power and response time.
A genetic algorithm is also used in [39] to incorpo-

rate DVS into an energy minimization technique for
distributed embedded systems. It takes the power vari-
ations of tasks into account while performing DVS. An
o�-line voltage scaling heuristic is proposed which is fast
enough to be used in system synthesis, starting from
real-time periodic task graphs.

3.2.4 QoS driven system synthesis
QoS is an important consideration in designing sys-

tems for real-time multimedia and wireless communica-
tion applications. In [38], a DVS technique for parti-
tioning a set of applications among multiple processors
is given which minimizes system energy while satisfying
individual QoS requirements. QoS is a function of the
required resources, such as bandwidth, CPU time, and
bu�er space. The applications are assumed to be inde-
pendent, have the same arrival times and no deadline
constraints.

4. Conclusions and Open Problems
From the above discussions, one may conclude that

the �eld of DVS for uniprocessors for both real-time
and non-real-time applications has attained su�cient
maturity. That cannot be said about low power system
scheduling for distributed systems. Given that when
both are applicable to processors in a distributed sys-
tem, DVS is better than DPM, purely DPM-based sys-
tem scheduling may not be that useful an area to pur-

sue. This is specially true because many processors in
the future are likely to have DVS capability. Of course,
DPM will continue to be useful for other parts of the
system which do not have DVS capability. Also, DVS
cannot always get rid of all the idle slots in the system
schedule. Thus, a combined DVS+DPM approach is
preferable, applying DVS before DPM.
Battery-aware DVS+DPM approaches need further

investigation. It is known that reducing the workload in
a battery-operated system for a period of time leads to
a recovery e�ect, which results in an increase in battery
capacity [11]. This e�ect needs to be exploited in system
scheduling.
Low power system synthesis is also not a mature area.

Currently, most such algorithms assume that the aver-
age power consumption of each task on each type of
PE it can run on has been given. This is done because
using more sophisticated power estimation techniques
for processors, FPGAs and ASICs in the inner loop of
system synthesis is currently not feasible. This points
to the need for fast, yet relatively accurate, power esti-
mation techniques, such as high-level macromodels, to
drive system synthesis. Although some progress has
been made in this direction for ASICs, high-level en-
ergy or power macromodels for processors and FPGAs
are rare [40, 41]. After obtaining such macromodels, the
next step would be to integrate them in the inner loop
of system synthesis.
Finally, when more sophisticated power-aware and

battery-aware distributed system scheduling algorithms
become available, they also need to be integrated in the
inner loop of system synthesis.

References
[1] M. Weiser, B. Welch, A. Demers, and S. Shenker,

\Scheduling for reduced CPU energy," in Proc. Symp.
Operating Systems Design & Implementation, Usenix
Association, Nov. 1994.

[2] F. Yao, A. Demers, and S. Shenker, \A scheduling
model for reduced CPU energy," in Proc. Ann. Symp.
Foundations Computer Science, pp. 374-381, 1995.

[3] K. Govil, E. Chan, and H. Wasserman, \Comparing
algorithms for dynamic speed-setting of a low-power
CPU," in Proc. MOBICOM, pp. 13-25, 1995.

[4] J. J. Brown, D. Z. Chen, G. W. Greenwood, X. Hu,
and R. W. Taylor, \Scheduling for power reduction in
a real-time system," in Proc. Int. Symp. Low Power
Electronics & Design, pp. 84-87, Aug. 1997.

[5] T. Ishihara and H. Yasuura, \Voltage scheduling prob-
lem for dynamically variable voltage processors," in
Proc. Int. Symp. Low Power Electronics & Design, pp.
197-202, Aug. 1998.

[6] T. Pering, T. Burd, and R. Brodersen, \The simulation
and evaluation of dynamic voltage scaling algorithms,"
in Proc. Int. Symp. Low Power Electronics & Design,
pp. 76-81, Aug. 1998.

[7] I. Hong, M. Potkonjak, and M. B. Srivastava, \On-line
scheduling of hard real-time tasks on variable voltage
processor," in Proc. Int. Conf Computer-Aided Design,
pp. 653-656, Nov. 1998.

[8] Y. Shin and K. Choi, \Power conscious �xed priority
scheduling for hard real-time systems," in Proc. Design
Automation Conf., pp. 134-139, June 1999.

[9] M. Pedram and Q. Wu, \Design considerations for
battery-powered electronics," in Proc. Design Automa-
tion Conf., June 1999.



[10] T. Martin and D. Siewiorek, \The impact of battery ca-
pacity and memory bandwidth on CPU speed-setting:
A case study," in Proc. Int. Symp. Low Power Elec-
tronics & Design, pp. 200-205, Aug. 1999.

[11] D. Linden, Handbook of Batteries and Fuel Cells,
McGraw-Hill, NY, 1984.

[12] Y.-H. Lu, L. Benini, and G. De Micheli, \Low-power
task scheduling for multiple devices," in Proc. Int. Wk-
shp. HW/SW Co-design, pp. 39-43, Mar. 2000.

[13] C. M. Krishna and Y.-H. Lee, \Voltage-clock-scaling
adaptive scheduling techniques for low power in hard
real-time systems," in Proc. Real-Time Technology &
Applications Symp., May 2000.

[14] S. Lee and T. Sakurai, \Run-time voltage hopping for
low-power real-time systems," in Proc. Design Automa-
tion Conf., pp. 806-809, June 2000.

[15] L. Benini, A. Bogliolo, and G. De Micheli, \A survey
of design techniques for system-level dynamic power
management," IEEE Trans. VLSI Systems, vol. 8, no.
3, pp. 299-316, June 2000.

[16] Y. Shin, K. Choi, and T. Sakurai, \Power optimization
of real-time embedded systems on variable speed pro-
cessors," in Proc. Int. Conf. Computer-Aided Design,
pp. 365-368, Nov. 2000.

[17] J. Luo and N. K. Jha, \Power-conscious joint schedul-
ing of periodic task graphs and aperiodic tasks in dis-
tributed real-time embedded systems," in Proc. Int.
Conf. Computer-Aided Design, Nov. 2000.

[18] F. Gruian and K. Kuchcinski, \LEneS: Task scheduling
for low-energy systems using variable supply voltage
processors," in Proc. Asia South Paci�c Design Au-
tomation Conf., pp. 449-455, Jan. 2001.

[19] N. K. Bambha, S. S. Bhattacharya, J. Teich, and E.
Zitzler, \Hybrid global/local search strategies for dy-
namic voltage scaling in embedded multiprocessors,"
in Proc. Int. Wkshp. HW/SW Co-design, pp. 243-248,
Mar. 2001.

[20] A. Acquaviva, L. Benini, and B. Ricco, \An adaptive
algorithm for low power streaming multimedia process-
ing," in Proc. Design Automat. & Test in Europe Conf.,
Mar. 2001.

[21] J. Liu, P. H. Chou, N. Bagherzadeh, and F. Kurdahi,
\Power-aware scheduling under timing constraints for
mission-critical embedded systems," in Proc. Design
Automation Conf., pp. 840-845, June 2001.

[22] J. Luo and N. K. Jha, \Battery-aware static scheduling
for distributed real-time embedded systems," in Proc.
Design Automation Conf., pp. 444-449, June 2001.

[23] G. Quan and X. Hu, \Energy e�cient �xed-priority
scheduling for real-time systems on variable voltage
processors," in Proc. Design Automation Conf., pp.
828-833, June 2001.

[24] D. Shin, J. Kim, and S. Lee, \Low-energy intra-task
voltage scheduling using static timing analysis," in
Proc. Design Automation Conf., pp. 438-443, June
2001.

[25] A. Manzak and C. Chakrabarti, \Variable voltage task
scheduling algorithms for minimizing energy," in Proc.
Int. Symp. Low Power Electronics & Design, Aug.
2001.

[26] J. Pouwelse, K. Langendoen, and H. Sips, \Energy
priority scheduling for variable voltage processors," in
Proc. Int. Symp. Low Power Electronics & Design,
Aug. 2001.

[27] D. Kirovski and M. Potkonjak, \System-level synthesis
of low power hard real-time systems," in Proc. Design
Automation Conf., pp. 697-702, June 1997.

[28] J. Henkel and Y. Li, \Energy-conscious HW/SW-
partitioning of embedded systems: A case study of an
MPEG-2 encoder," in Proc. Int. Wkshp. HW/SW Co-
design, pp. 23-27, Mar. 1998.

[29] Y. Li and J. Henkel, \A framework for estimating and
minimizing energy dissipation of embedded HW/SW
systems," in Proc. Design Automation Conf., pp. 188-
193, June 1998.

[30] B. Dave and N. K. Jha, \COHRA: Hardware-software
co-synthesis of hierarchical heterogeneous distributed
embedded systems," IEEE Trans. Computer-Aided De-
sign, vol. 17, Oct. 1998.

[31] R. P. Dick and N. K. Jha, \MOGAC: A multiob-
jective genetic algorithm for the hardware-software
co-synthesis of distributed embedded systems," IEEE
Trans. Computer-Aided Design, vol. 17, Oct. 1998.

[32] R. P. Dick and N. K. Jha, \MOCSYN: Multiobjective
core-based single-chip system synthesis," in Proc. De-
sign Automat. & Test in Europe Conf., Feb. 1999.

[33] B. Dave, G. Lakshminarayana, and N. K. Jha,
\COSYN: Hardware-software co-synthesis of embed-
ded systems," IEEE Trans. VLSI Systems, vol. 7, Mar.
1999.

[34] J. Henkel, \A low power hardware/software partition-
ing approach for core-based embedded systems," in
Proc. Design Automation Conf., pp. 122-127, June
1999.

[35] T. D. Givargis, J. Henkel, and F. Vahid, \Interface and
cache power exploration for core-based embedded sys-
tem design," in Proc. Int. Conf. Computer-Aided De-
sign, pp. 270-273, Nov. 1999.

[36] I. Hong, D. Kirovski, G. Qu, M. Potkonjak, and M.
B. Srivastava, \Power optimization of variable volt-
age core-based systems," IEEE Trans. Computer-Aided
Design, vol. 18, no. 12, pp. 1702-1714, Dec. 1999.

[37] R. P. Dick and N. K. Jha, \COWLS: Hardware-software
co-synthesis of distributed wireless low-power embed-
ded client-server systems," in Proc. Int. Conf. VLSI
Design, Jan. 2000.

[38] G. Qu and M. Potkonjak, \Energy minimization with
quality of service," in Proc. Int. Symp. Low Power Elec-
tronics & Design, pp. 43-49, Aug. 2000.

[39] M. Schmitz and B. M. Al-Hashimi, \Considering power
variations of DVS processing elements for energy min-
imization in distributed systems," in Proc. Int. Symp.
System Synthesis, 2001.

[40] T. K. Tan, A. Raghunathan, G. Lakshminarayana,
and N. K. Jha, \High-level software energy macro-
modeling," in Proc. Design Automation Conf., pp. 605-
610, June 2001.

[41] L. Shang and N. K. Jha, \High-level power modeling
of CPLDs and FPGAs," in Proc. Int. Conf. Computer
Design, Sept. 2001.


	Main
	ICCAD01
	Front Matter
	Table of Contents
	Author Index




