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ABSTRACT
We present a new method for mismatch analysis and automatic
yield optimization of analog integrated circuits with respect to
global, local and operational tolerances. Effectiveness and effi-
ciency of yield estimation and optimization are guaranteed by con-
sideration of feasibility regions and by performance linearization
at worst-case points. The proposed methods were successfully ap-
plied to two example circuits for an industrial fabrication process.

1. INTRODUCTION
In modern fabrication processes with their steadily shrinking fea-

ture size, the influence of process variations on the behavior of ana-
log circuits cannot be neglected any more. As the local variance
e.g. of a transistor’s threshold voltage is inverse proportional to its
area [1], the influence especially of mismatch due to local varia-
tions is getting more dominant in the future. Approaches to para-
metric yield optimization usually assume that the distribution of
the statistical parameters like threshold voltage does not depend on
the designable parameters like transistor widths and lengths. This
assumption doesn’t hold anymore when local process variations be-
come important. Thus, efficient methods for yield estimation and
improvement under both local and global process variations are
needed for a fast and reliable design of analog circuits.

The analysis and optimization of the parametric yield of ana-
log integrated circuits based on a Monte-Carlo analysis [2–5] is
straightforward but needs a huge number of simulations if applied
within an optimization loop. Moreover, the yield gradient needed
for an optimization cannot be calculated, because the statistically
varying parameters (e.g. oxide-thickness) and the designable pa-
rameters (e.g. transistor widths and lengths) are disjoint for the
design of integrated circuits. In [6], the yield gradient is formu-
lated using surface integrals, but a line search must be performed at
every sample in order to determine the bounds of the acceptance re-
gion. In addition, gradient-based methods for direct yield optimiza-
tion face the problem that yield and yield gradient are considerably
different from 0 only in a small part of the whole design space.
Usually, circuit performances and yield are more than weakly non-
linear functions of the design parameters. This may lead to an im-
practicable effort for simulation or high-order modeling [4].
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Methods based on geometrical approximations of the acceptance
region [7, 8] are also problematic, because the designable and sta-
tistical parameters are disjoint for integrated circuits and the accep-
tance region defined in the space of statistical parameters depends
on the designable parameters. Other methods overcome these prob-
lems by multiple criteria optimization (MCO) on a set of robustness
objectives instead of optimizing the yield directly [10–12]. But cir-
cuit performances are often considerably correlated, which is dif-
ficult to account for in MCO. Algorithms relying on precalculated
worst-case parameter sets [9] face the problem that the variances
of the statistical parameters depend on the design parameters when
local process variations and mismatch are to be considered. In this
case, the worst-case parameter set is known to strongly depend on
the design parameters and will hence change during the optimiza-
tion.

In this contribution, a new approach to direct yield optimization
for integrated circuits under consideration of local process varia-
tions is presented. The key concept is the strong focus on design-
relevant regions in all parameter spaces, that are designable param-
eters, statistical parameters, and operating conditions, by means of
structural constraints [13] and worst-case points [10]. This new
combination significantly improves the quality of yield estimation
by spec-wise linearized performance models, and therefore enables
a robust and practicable technique for direct yield optimization.

In Section 2, the parametric operational yield is defined, which
is the maximization goal. Based on worst-case points, Section 3 in-
troduces a new way to analyze and detect mismatch-sensitive tran-
sistor pairs in a circuit. In Section 4 it is shown how the special
statistical properties of local variations can be transformed into a
more convenient statistical model that enables a Monte-Carlo based
yield maximization. Section 5 describes the circuit model and the
optimization algorithm that operates on this model.

In Section 6, the efficiency of the proposed method is demon-
strated on two operational amplifiers. It is shown that both struc-
tural constraints and worst-case points are crucial for successful
yield maximization. The proposed algorithm performs yield opti-
mization by improving the nominal point and by reducing the vari-
ance of circuit performances simultaneously. Mismatch-relevant
transistor pairs are detected and ranked in order of importance.

2. PARAMETERS, PERFORMANCES,
AND YIELD

For each analog circuit, a set of performances f (i) like slew rate
or phase margin is given (i = 1, . . . , nspec). The performances
of a fault-free analog circuit must satisfy a set of specifications
f (i) ≥ f

(i)
b , e.g. the phase margin Φm ≥ 60◦, for all operat-

ing parameters θ, e.g. temperature or VDD, in the operating range
Θ = {θ | θL ≤ θ ≤ θ

U}.



Process fluctuations are modeled by statistical parameters s, e.g.
oxide thickness Tox or threshold voltage Vth. Normal (Gaussian),
log-normal, and uniform distributions are most commonly used.
Without loss of generality, all of these distributions can be trans-
formed into a normal (Gaussian) distribution [14,15], and therefore
only this distribution is considered in the remaining part of the pa-
per. Design parameters d like widths and lengths of transistors are
modified by the circuit designer during the sizing process.

Hence each performance f (i) is a function of the parameter vec-
tors d, s and θ. In the space of statistical parameters, the accep-
tance region A(i)(d) of a performance f (i) is the set of circuits
that satisfy the single specification f (i) ≥ f

(i)
b in the full operating

range Θ:
A(i)(d) =

{
s
∣∣ ∀

θ∈Θ
f (i)(d, s, θ) ≥ f

(i)
b

}
. (1)

There is usually a unique worst-case operational parameter set
θ

(i)
wc = argmin

θ∈Θ
f (i)(d, s, θ) (2)

for each performance f (i). Then,
A(i)(d) =

{
s
∣∣ f (i)(d, s, θ(i)

wc ) ≥ f
(i)
b

}
. (3)

The overall acceptance region is

A(d) =
⋂

i

A(i)(d) . (4)

The parametric operational yield Y is the percentage of pro-
duced circuits that satisfy the specification in spite of process fluc-
tuations and for all operating conditions θ ∈ Θ:

Y (d) =

∫

A(d)

pdf(s) ds , (5)

where pdf(s) is the probability density function of the statistical
parameters.

If for example 90% of the produced circuits satisfy the specifi-
cation for all θ ∈ Θ, then Y = 90%. If in turn all produced cir-
cuits satisfy the specification in 90% of the operating range, then
Y = 0%. Operating conditions are often more critical for the cir-
cuit performance than the statistical variations. Therefore, θ must
be rigorously considered as part of the specification to avoid an
illusively high yield estimate.

Monte-Carlo analysis of circuits can account for this by evaluat-
ing the performance values at the respective worst-case operational
parameter sets θ

(i)
wc for each performance at N samples:

Ỹ =
1

N

N∑

j=1

δj (6)

δj =

{
1 if f (i)(d, sj , θ

(i)
wc ) ≥ f

(i)
b , i = 1, . . . , nspec

0 else
(7)

A loose upper bound for the simulation effort N∗ can be given
by N∗ ≤ N · min(nspec, 2

dim(Θ)). Since performances may be
calculated by a single simulation (like transit frequency and phase
margin) and may share a common worst-case operational parameter
set, N∗ will usually be smaller.

3. ANALYSIS OF MISMATCH-SENSITIVE
TRANSISTOR PAIRS

It is a key principle of analog circuit design to generate con-
stant differences and ratios of currents or voltages with transistor
pairs. These functional relationships are robust with respect to
deviations of corresponding parameters of transistor pairs in the
same direction, while being very sensitive to deviations of corre-
sponding parameters in the opposite direction (mismatch). Finding
the mismatch-sensitive transistor pairs can help identifying critical
parts of a circuit to be considered thoroughly during redesign or
layout.

Figure 1 shows a mismatch-sensitive circuit performance plotted
over two locally varying statistical parameters Vth1 and Vth2. Pairs

���������������������������
���������������������������
���������������������������
���������������������������

���������������������������
���������������������������
���������������������������
���������������������������

�����������������������������
�����������������������������
�����������������������������
�����������������������������

���������������������������
���������������������������
���������������������������
���������������������������

−3

−3

−2 −1 0

0

1 2 3

3

−3

−3

−2−1
0

0

1
23

3

90
100
110
120
130
140
150

�������� ��������������	�	�	�	
�
�
�


C
M

R
R

[d
B

]

∆vth,2[σ] ∆vth,1[σ]

ML

NL

s0
s
(i)
wcs

(i)
wc

′

Figure 1: Effect of threshold voltage variations on CMRR of
the operational amplifier (Fig. 7) before synthesis

of parameter values lying on the neutral line (NL) ∆s1 = ∆s2,
have almost no influence on the performance value. In turn pairs of
parameter values on the mismatch line (ML) ∆s1 = −∆s2 result
in the maximum decrease of the performance. Thus mismatch can
be defined as follows:

DEFINITION 1. Performance f (i) is said to be mismatch-
sensitive if there is at least one pair of statistical parame-
ters sk and sl for which f

(i)
0 − f (i)(±∆sk,±∆sl) ≈ 0 and

f
(i)
0 − f (i)(±∆sk,∓∆sl) = max holds (∆sk = ∆sl). Then

the corresponding transistors are said to be a matching pair.

During the mismatch analysis introduced in this section all de-
sign parameters remain constant. Since the distance factor in the
matching properties of MOS transistors can be neglected [1], all
locally varying parameters are uncorrelated. Hence without loss of
generality the local statistical parameters which are responsible for
mismatch can be assumed to be Gaussian distributed with 0 mean
and the identity matrix as covariance matrix (s ∼ N(0, I)).

From the definition of the worst-case parameter set [10]

s
(i)
wc = argmin

s

{
s
T
s

∣∣∣ f (i)(d, s, θ(i)
wc ) = f

(i)
b

}
, (8)

we know that this parameter set s
(i)
wc represents the circuit realiza-

tion for which the performance f (i) equals the specification f
(i)
b

and which is closest to the nominal design s0. That means s
(i)
wc is

also the most probable circuit realization among all manufactured
circuits to reach the specification bound f

(i)
b . This problem formu-

lation (8) implies that the worst-case parameter sets will be in the
direction of maximum performance degradation. It can be shown
that a large value of a component in the worst-case parameter set
corresponds to a large performance sensitivity with respect to that
component (s(i)

wc = −κ · ∇f (i)(s
(i)
wc )).

Consequently, if two components of a worst-case parameter set
have the same maximum absolute value and opposite signs, we can
conclude that these components belong to a matching transistor pair
(see Figure 1). This property can be exploited to derive a proce-
dure for a mismatch analysis. In the following a mismatch measure
guiding the procedure will be formulated.

3.1 Requirements on the Measure
1. Pairs of worst-case parameter set values lying on the mismatch-

line (ML) should be identified as mismatch-sensitive parameter
pairs.

2. The range of the mismatch measure should be from 0 (no mis-
match) to 1 (maximum mismatch).



3. A comparison between the influences of mismatch on different
circuit performances should be possible.

4. The higher the robustness of a circuit performance, the lower the
mismatch measure should be.

3.2 Mismatch Measure
The following proposition of a mismatch measure m

(i)
k,l between

the two statistical parameters sk and sl for a specification f
(i)
b ful-

fills the requirements listed in Section 3.1:

m
(i)
k,l =η(i) ·

max
(∣∣∣s(i)

wc,k

∣∣∣ ,
∣∣∣s(i)

wc,l

∣∣∣
)

s
(i)
max

· Φ
(
arctan

(
s
(i)
wc,k

s
(i)
wc,l

))
(9)

with η(i) =





1− 1

2(−β
(i)
wc +1)

for β
(i)
wc = ±

√
swc

Tswc < 0
1

2(β
(i)
wc +1)

else

and s(i)
max = max

j

{∣∣∣s(i)
wc,j

∣∣∣
}

, j = 1, . . . , ns ,

where s
(i)
wc,j denotes the j-th component of the worst-case point s(i)

wc .
The selection of pairs of parameter values lying on the mismatch-

line (including an uncertainty represented by the constants ∆1 and
∆2) is done by the function Φ (see Figure 2).

π/4−∆1−∆2 π/4−∆1 π/4+∆1π/4 π/4+∆1+∆2
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Φ

Figure 2: Angle dependent selection function Φ

The function η assures the assignment of a smaller values to
more robust circuit performances (see Figure 3), while weighting
higher performances with smaller robustness. η is 1/2 for β

(i)
wc = 0

and is continuously differentiable.
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Figure 3: Robustness weighting function η

As mentioned previously, pairs of circuit parameters with a
larger deviations have a stronger influence on the circuit perfor-
mance to be analyzed. Through the 2nd term of eq. (9) these pairs
will be weighted higher than the ones with smaller deviations. The
division by s

(i)
max limits this term to maximum 1.

Since the worst-case parameter sets have to be determined any-
way during the yield optimization described in Section 5, the mis-
match analysis can be performed with no extra simulations.

4. YIELD OPTIMIZATION FOR CIRCUITS
WITH LOCAL VARIATIONS

The task of yield optimization is to find a parameter set d for
which

Y =

∫

A(d)

pdf(s,d,C(d)) ds (10)

is maximized. The statistical parameters s are Gaussian distributed
s ∼ N(s0,C(d)) with a covariance matrix C(d). Algorithms
for yield optimization of discrete circuits assume that d = s0 and
A = const, which doesn’t hold for integrated circuits. Many other

approaches to yield maximization assume that C = const. Unfor-
tunately, this assumption doesn’t hold anymore when local varia-
tions and mismatch are to be considered. Since σ2

Vth
∝ 1/WL, the

covariance matrix C depends on the design parameters d [1, 16].
With local variations, Y can be improved not only by enlarging A,
but also by reducing the variance of s. Depending on the initial
design, both factors are necessary to increase the yield. Therefore,
a modern yield optimization technique must account for both.

Optimization of eq. (5) in presence of local variations is diffi-
cult, because the integration region A and the probability measure
pdf(s) ds both depend on d. We can transform

ŝ = G(d)−1 · (s− s0) ; s(ŝ) = G(d) · ŝ + s0 , (11)
where G(d) · G(d)T = C(d). Then with the indicator func-
tion δA denoting if a sample point is in the acceptance region:
δA(s,d) = 1 if s ∈ A(d), else δA(s,d) = 0,

Y (d) =

∫

A(d)

pdf(s,d) ds =

∫

Rn

pdf(s,d) δA(s,d) ds

=

∫

Rn

pdf(s(ŝ),d) δA(s(ŝ),d) (G(d) · dŝ)

=

∫

Rn

det(G(d)) pdf(s(ŝ),d) δÂ(ŝ,d) dŝ

=

∫

Â(d)

p̂df(ŝ) dŝ = Ŷ (d) . (12)

With p̂df(ŝ) = (2π)−
n
2 exp(− 1

2
ŝ
T
ŝ) and therefore ŝ ∼ N(0, I).

The transformed acceptance region is then
Â(d) =

⋂

i

{ŝ | f̂ (i)(d, ŝ, θ(i)
wc ) ≥ f

(i)
b } (13)

with f̂ (i)(d, ŝ, θ) = f (i)(d, s(ŝ), θ) . (14)
Since Y (d) = Ŷ (d) for every d, it is sufficient for yield optimiza-
tion to maximize Ŷ . Maximizing Ŷ over Â is easier than maximiz-
ing Y over A, because the covariance matrix of ŝ is constant and
there is no need to calculate a derivative of the covariance matrix
with regard to the design parameters. The variable variance C(d)

is implicitly contained in f̂ (i).
By (12), we shift the variability of the probability measure into

the integration space and transform the problem of maximizing Y
over a variable probability measure into an equivalent problem with
a constant measure. Therefore we can use a single approach to treat
local and global variations when optimizing parametric operational
yield of integrated circuits.

Note that (11) is not a simple constant norm in the statistical
parameter space, but a linear transformation that depends on d, i.e.
it varies during the optimization. To keep the notation readable,
we will use s, f and A for ŝ, f̂ and Â in the remaining part of the
paper.

5. YIELD OPTIMIZATION
METHODOLOGY

In this section, our algorithm for yield improvement is presented.
It is based on a direct yield optimization method. In each iteration
step of the optimization, a linearized performance model in d and s

is determined and used for yield estimation and coordinate-search
based yield optimization. The quality of this linearized model is
crucial for the success of the optimization and will be described
in the following. It consists of two parts. First the performance
linearization with respect to d at the current iteration point. It will
be illustrated, that the constraints determine the “feasibility region”
for the linearization (see Figure 4). Second the performance f (i) is
linearized for each specification individually at the corresponding
worst-case point (see Section 5.2).

The following sections are ordered according to their appearance
in the optimization loop.



5.1 Feasibility Region
Functional constraints, e.g. all transistors must be in saturation,

guarantee the basic functionality and robustness of a circuit [13].
They define the feasibility region F = {d |c(d) ≥ 0} in the space
of the design parameters d. Please note the difference between F
and A. F is defined for design parameters and DC performances of
transistors and transistor pairs and can be interpreted as technology-
dependent sizing rules. A is defined for arbitrary performances of
a certain circuit and determines the circuit yield. Considering F as
described in the Sections 5.5, 5.3 and 5.4 is crucial:

1. The solution of the yield improvement has to be feasible in order
to represent a technically correct circuit.

2. Most performances are only weakly nonlinear in the feasibility
region, as can be seen in Fig. 4. Therefore the reduction of the
design space to the feasibility region F significantly improves
the precision of linearized performance models for estimating
the change in yield over the design parameters.

3. The constraints reduce the exploration space for the optimiza-
tion algorithm and therefore improve the convergence of the al-
gorithm.

A
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Figure 4: Performance behavior of A0 over the feasibility re-
gion vsat ≥ 0.

The results in Section 6 show that these linearizations of the
performances are sufficient for the yield optimization and that no
model of higher order is needed when considering functional con-
straints.

During the optimization only linearized models of the constraints
at a feasible point df, i.e. a point that fulfills all constraints, are
considered:

c(d) = c0 +∇dc(df) · (d − df) . (15)

This linearization is updated in each iteration step of the optimiza-
tion, i.e. after each update of df .

5.2 Specification-Wise Linearization
The convex polytope used to approximate the acceptance re-

gion A is determined by linearizations of the performances f (i)

in their worst-case points s
(i)
wc . Since the worst-case point s

(i)
wc is

defined to be the parameter set with the highest probability den-
sity for which the performance value is equal to the specification
bound [10], a good approximation of the acceptance region can be
expected. The worst-case point is calculated for each specification
separately by solving (8). The problems in finding this worst-case
point in the presence of mismatch, and an algorithm to overcome
these problems is presented in [12].

With the help of these worst-case points, linear models of the
circuit performances are built. The performances are linearized in
a feasible point df and the worst-case points s

(i)
wc :

f
(i)

(d, s) = f
(i)
b +∇sf

(i)(df, s
(i)
wc , θ(i)

wc ) · (s− s
(i)
wc )

+∇df (i)(df, s
(i)
wc , θ(i)

wc ) · (d− df) (16)

i = 1, . . . , nspecs

It has been shown that a yield estimate Y can be obtained on this
spec-wise linearized model at no extra simulation cost that in prac-
tice has an accuracy differing less than 1-2% from the results of a
Monte-Carlo analysis [12].

5.3 Yield Improvement
In the yield improvement algorithm, a yield estimate Y is max-

imized over the design parameters d within a coordinate search
loop. This yield estimate is obtained based on an evaluation of a
predefined number N of Monte-Carlo samples over the lineariza-
tions of the performances, which remain unchanged during this op-
timization loop:

Y =
1

N
·

N∑

j=1

δj (17)

δj =

{
1 f

(i)
(d, sj , θ

(i)
wc ) ≥ f

(i)
b , i = 1, . . . , nspec ,

0 else
(18)

After every change of d these samples are reevaluated and the yield
estimation Y is redetermined.

In order to maximize the yield within the coordinate search loop,
the following optimization problem over the design parameters d

is solved in every iteration step and for every coordinate k:
d
∗ + ek · argmax

α

{
Y (d∗ + αek)

∣∣ c(d) ≥ 0
}
−→ d

∗ (19)

This coordinate search is performed until the yield estimate Y ob-
tained over the linearized models of the circuit performances can-
not be further improved.

A robust coordinate search is given preference to a gradient
based algorithm, because
• the yield and the gradient of the yield can be 0 over a large part of

the design space (see Figure 5). Thus gradient based algorithms
have to start quite close to the optimum.

• even if the f (i)(d, s) are determined through linearized perfor-

mance models f
(i)

(d, s), the yield is strongly nonlinear and
non-monotonic over d (see Figure 5). This aggravates finding
the maximum of the yield estimate by means of a gradient based
algorithm.

• Y (d) is non-continuous, as it is determined through a Monte-
Carlo analysis. This makes the determination of a yield gradient
[6] difficult.
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Figure 5: Yield estimate Y over a design parameter d from its
lower bound dlb to its upper bound dub

To keep the computational effort low, not the whole linear model
(16) is evaluated every time the yield estimate has to be recalcu-
lated over the set of Monte-Carlo samples. For a change in d only

∆f
(i)

= ∇df (i)(df, s
(i)
wc , θ

(i)
wc ) · (d − df) has to be redetermined.

Hence the remaining part of equation (16) is stored for every sam-
ple sj , j = 1, . . . , N as it remains constant. Moreover, since the
components of the design parameter vector d are changed sepa-
rately one after the other during the coordinate search, only one



component of this inner product has to be calculated. Consequently

the constant term f
(i)

sj
solely has to be compared with f

(i)
b +∆f

(i)
:

δj =

{
1 f

(i)
(df, sj) ≥ ∆f

(i) − f
(i)
b , i = 1, . . . , nspec ,

0 else
(20)

In the presence of mismatch, performances f (i) may have qua-
dratic behavior with semidefinite Hessian matrix (see Figure 1).
Then a yield estimation based on only one linearization is a poor
estimate and may mislead the optimization algorithm. This prob-
lem is accounted for by introducing an additional specification and
thus one more linear model for every such performance in s

(i)
wc

′ with

s
(i)
wc

′ = −s
(i)
wc (21)

∇sf
(i)(df, s

(i)
wc

′, θ(i)
wc ) = −∇sf

(i)(df, s
(i)
wc , θ(i)

wc ) (22)

Only one additional simulation is needed for every specification to
identify the quadratic behavior of the performance.

5.4 Line Search
Since the maximization of the yield estimate Y has been per-

formed using linearizations of the circuit performances and the con-
straints, a line search based on real circuit simulations along the line
between the feasible starting point df and the optimum d

∗ has to be
performed afterwards to assure the new iteration point d

(new)
f lying

in the feasibility region. Therefore, the following optimization for-
mulation is solved with a small number of circuit simulations (e.g.
10):

γmax = argmax
γ

{γ| c(df + γr) ≥ 0 ∧ 0 ≤ γ ≤ 1} (23)

with r = d
∗ −df. This leads to a new point d(new)

f = df + γmax · r
which serves as new feasible starting point for the next iteration.

5.5 Finding a Feasible Starting Point
In an initial step, our algorithm searches for a feasible starting

point df, i.e. a point that fulfills all functional constraints. In the
case that the starting point d0 is not feasible, the closest feasible
point df in the space of the design parameters is determined.

d
(new)
f −→ df

using Circuit Simulations
5.2 Spec-Wise Linearization of A
5.1 Linearization of F

5.4 Line Search ; d
(new)
fusing Circuit Simulations

evaluated in Linear Model
5.3 Yield Improvement ; d

∗

5.5 Find Feasible Point ; df

while ∆Y > ∆Ymin

Figure 6: Structure of the yield optimization algorithm

Figure 6 summarizes the whole algorithm. It consists of an ini-
tial step to find a feasible starting point df in the space of the design
parameters d, followed by three steps executed in a loop until no
further improvement of the yield can be achieved: the linearization
of the constraints (feasibility region) and the spec-wise lineariza-
tion of the performances, a subsequent maximization of a yield es-
timate within a coordinate search loop over the design parameters
d based on those performance linearizations and a final line search
assuring by circuit simulations that the algorithm stays in the fea-
sibility region. This new point df serves as new iteration point for
the next linearization of the circuit performances and constraints.

6. RESULTS
The proposed methods were applied to two example circuits

for an industrial fabrication process. The folded-cascode opamp
in Figure 7 was modeled with local variations. In the initial de-
sign, the total yield was 0%, mainly due to transit frequency ft and
CMRR (Table 1). The rows f (i) − f

(i)
b contain the difference be-

tween f (i)(d, s0, θ
(i)
wc ) and the specification. The rows “bad sam-

ples” show, how many samples in the linearized model did not sat-
isfy the respective specification. The rows Ỹ show the results of a
simulation-based Monte-Carlo analysis, including operational pa-
rameters according to Section 2, with a sample size of 300. This
was performed at the end of the optimization to verify the results,
and between the optimization steps to demonstrate the actual im-
provement.
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Figure 7: Folded-cascode operational amplifier

After the first iteration, a yield of 99.9% could be achieved. The
second iteration still improved the robustness of the circuit. This
was possible due to the high number (10,000) of Monte-Carlo sam-
ples evaluated in the linear model. After the second iteration, all
10,000 samples were inside the acceptance region A, as one can
see in the rows “bad samples”.

Performance A0 ft CMRR SRp Power
[dB] [MHz] [dB] [V/µs] [mW]

Specification f
(i)
b > 40 > 40 > 80 > 35 < 3.5

In
iti

al f(i) − f
(i)
b

10.7 – 2.3 – 1.9 0.18 0.54
bad samples [‰] 0.0 1000.0 980.4 272.5 0.0

Ỹ 0%

1s
tI

te
r. f(i) − f

(i)
b

15.3 3.69 4.70 0.96 0.50
bad samples [‰] 0.0 0.0 0.9 0.2 0.0

Ỹ 99.9%

2n
d

It
er

. f(i)
− f

(i)
b 17.7 4.15 12.8 1.63 0.51

bad samples [‰] 0.0 0.0 0.0 0.0 0.0

Ỹ 100%

Table 1: Trace of yield optimization under consideration of
functional constraints

Table 2 shows that the algorithm actually improves the yield in
two ways: The distance of the mean values from the specification
is increased (first column), and the variance of the performances is
decreased (second column). Both factors are employed to improve
ft, CMRR.

Performance ∆µf/(µf − fb) ∆σf/σf

A0 + 15.5% + 20.4%
ft + 12.8% – 11.5%

CMRR + 169% – 53.4%
SRp + 73.4% + 3.15%

Power – 0.59% – 1.69%

Table 2: Improvement between first and second iteration

To show the importance of using functional constraints, the same
algorithm was applied once again to the same initial design, but
without functional constraints. Table 3 shows, that the yield re-
mains 0% after the first iteration. As one can see in the rows “bad



Performance A0 ft CMRR SRp Power
[dB] [MHz] [dB] [V/µs] [mW]

Specification f
(i)
b

> 40 > 40 > 80 > 35 < 3.5

In
iti

al f(i)
− f

(i)
b 10.7 – 2.3 – 1.9 0.18 0.54

bad samples [‰] 0.0 1000.0 980.4 272.5 0.0

Ỹ 0%

1s
tI

te
r. f(i)

− f
(i)
b – 3.0 – 5.0 – 1.9 – 1.0 0.6

bad samples [‰] 0.0 0.0 0.0 0.0 0.0

Ỹ 0%

Table 3: Trace of yield optimization without consideration of
functional constraints

samples”, the yield improvement algorithm still worked correctly
and reduced the number of bad samples in the linearized mod-
els. However, this did not improve the true yield Ỹ , as the lin-
earized models were too inaccurate due to the missing functional
constraints.

To show the importance of using worst-case points, the same al-
gorithm was applied once again to the same initial design including
functional constraints, but the linearizations were calculated at the
nominal point s = s0 instead of the respective worst-case points
s = s

(i)
wc . Table 4 shows, that the yield remains 0% after the first

iteration. Again, the number of bad samples in the linearized mod-
els declined, but the true yield did not grow, because the used lin-
earized models were too inaccurate at the specification, especially
for CMRR (cf. Fig. 1).

Performance A0 ft CMRR SRp Power
[dB] [MHz] [dB] [V/µs] [mW]

Specification f
(i)
b

> 40 > 40 > 80 > 35 < 3.5

In
iti

al f(i)
− f

(i)
b 10.7 – 2.3 – 1.9 0.18 0.54

bad samples [‰] 0.0 1000.0 546.3 0.0 0.0

Ỹ 0%

1s
tI

te
r. f(i)

− f
(i)
b 19.4 5.8 – 2.3 3.6 0.6

bad samples [‰] 0.0 437.8 482.1 7.7 0.0

Ỹ 0%

Table 4: Trace of yield optimization with linearization at the
nominal points s = s0

Table 5 shows the three largest values of the mismatch measure
defined in Section 3.2 for the folded-cascode opamp. CMRR turned
out to be the only performance sensitive to mismatch. The three
transistor pairs detected by this analysis are marked with P1, P2
and P3 in Figure 7.

Pair P1 P2 P3
mCMRR

k,l 0.84 0.11 0.06

Table 5: Mismatch measure for CMRR at initial point

The second example circuit was the Miller opamp of Figure 8.
Only global process variations were considered for this design. The
results of the yield improvement are shown in Table 6.

Cloadibias

inN inP Cc

Figure 8: Miller operational amplifier

The total number of simulations and the time needed for the
whole yield optimization of both examples are compiled in Table 7.

These results were obtained on a network (100 Mbit/sec) of 5
computers (500MHz Pentium III) in parallel, using the Infineon in-
house simulator TITAN [17].

Performance A0 ft Φm SRp Power
[dB] [MHz] [◦] [V/µs] [mW]

Specification f
(i)
b

> 80 > 1.3 > 60 > 3 < 1.3

In
iti

al f(i)
− f

(i)
b 7.4 1.6 0.8 – 0.1 0.5

bad samples [‰] 3.6 0.0 166.8 636.2 0.0

Ỹ 33.7%

1s
tI

te
r. f(i)

− f
(i)
b 7.8 2.0 2.7 0.7 0.3

bad samples [‰] 2.6 0.0 0.0 0.3 0.0

Ỹ 99.3%

2n
d

It
er

. f(i)
− f

(i)
b

7.7 1.9 3.3 0.7 0.3
bad samples [‰] 1.6 0.0 0.0 0.1 0.0

Ỹ 99.3%

Table 6: Results for Miller operational amplifier

Circuit # Simulations Wall Clock Time
Folded-Cascode 689 30 min
Miller 627 8 min

Table 7: Computational effort for optimization

7. CONCLUSION
A method for mismatch analysis and automatic yield optimiza-

tion of analog integrated circuits with respect to global, local and
operational tolerances has been presented. This iterative yield op-
timization method is based upon
• spec-wise linearizations of the performances at the worst-case

points in the space of the statistical parameters,
• linearizations of the feasibility region defining a “trust region”

of the performance linearization with respect to the design pa-
rameters,

• a robust coordinate search.
Experimental results show that the combination of these linear ap-
proximations enable a robust and efficient yield optimization.
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