

Dynamic Power Management in a Mobile Multimedia System
with Guaranteed Quality-of-Service*

Qinru Qiu, Qing Wu, and Massoud Pedram
Department of Electrical Engineering-Systems

University of Southern California
Los Angeles, CA 90089

Email: {qinru, qingwu, massoud}@sahand.usc.edu

Abstract – In this paper we address the problem of dynamic power
management in a distributed multimedia system with a required
quality of service (QoS). Using a generalized stochastic Petri net
model where the non-exponential inter-arrival time distribution of
the incoming requests is captured by the “stage method”, we
provide a detailed model of the power-managed multimedia
system under general QoS constraints. Based on this
mathematical model, the power-optimal policy is obtained by
solving a linear programming problem. We compare the new
problem formulation and solution technique to previous dynamic
power management techniques that can only optimize power
under delay constraints. We then demonstrate that these other
techniques yield policies with higher power dissipation by over-
constraining the delay target in an attempt to indirectly satisfy the
QoS constraints. In contrast, our new method correctly
formulates the power management problem under QoS constraints
and obtains the optimal solution.

1 INTRODUCTION
With the rapid progress in semiconductor technology, chip density
and operation frequency have increased, making power
consumption in battery-operated portable devices a major concern.
High power consumption reduces battery service life. The goal of
low-power design [1]-[4] for battery-powered devices is to extend
battery service life while meeting performance requirements.
Dynamic power management (DPM) [5] – which refers to the
selective shut-off or slow-down of system components that are
idle or underutilized – has proven to be a particularly effective
technique for reducing power dissipation in such systems.

A simple and widely used technique is the “time-out” policy [5],
which turns the component on when it is to be used and turns the
component off when it has not been used for some pre-specified
length of time. Srivastava et al. [6] proposed a predictive power
management strategy, which uses a regression equation based on
the previous “on” and “off” times of the component to estimate the
next “turn-on” time. In [7], Hwang and Wu have introduced a
more complex predictive shutdown strategy that has a better
performance. However, these heuristic techniques cannot handle
components with more than two (“on” and “off”) power modes;
they cannot handle complex system behaviors, and they cannot
guarantee optimality.

As was first shown in [8], a power-managed system can be
modeled as a discrete-time Markov decision process (DTMDP)
by combining the stochastic models of each component. Once the
model and its parameters are determined, an optimal power
management policy for achieving the best power-delay trade-off in
the system can be generated. In [9], the authors extend [8] by
modeling the power-managed system using a continuous-time
Markov decision process (CTMDP). Further research results can
be found in [10]-[13].

In situations where complex system behaviors, such as
concurrency, synchronization, mutual exclusion, and conflict, are
present, the modeling techniques in [8]-[10] become inadequate
because they are effective only when constructing stochastic
models of simple systems consisting of non-interacting
components. In [14], a technique based on controllable
generalized stochastic Petri nets (GSPN) with cost is proposed
that is powerful enough to compactly model a power-managed
system with complex behavioral characteristics. It is indeed easier
for the system designer to manually specify the GSPN model than
to provide a CTMDP model. Given the GSPN model, it is then
simple to automatically construct an equivalent (but much larger)
CTMDP model. The policy optimization algorithms in [8]-[10]
can thereby be applied to calculate the minimum-power policy for
the power-managed system with delay constraints.

Many Internet applications such as web browsing, email, and file
transfer are not time-critical. Therefore, the Internet Protocol (IP)
and architecture are designed to provide a “best effort” quality of
service. There is no guarantee of when the data will arrive or how
quickly it will be serviced. However, this approach is not suitable
for a new breed of Internet applications, including audio and video
streaming, which demand high bandwidth and low latency when
used in a two-way communication scenario such as net
conferencing and net telephony, for example. The notion of
guaranteed quality of service (QoS) comes with the emergence of
such distributed multimedia systems. QoS represents the set of
those quantitative and qualitative characteristics of a distributed
multimedia system necessary to achieve the required functionality
of an application [15].

Three parameters are widely used to quantitatively capture the
notion of QoS in distributed multimedia systems [15]. These
parameters are:

1. Delay (D): The time between the moment a data unit is
received (input) and the moment it is sent (output).

2. Jitter (J): The variation of the delays experienced by different
data units in the same input stream. In mathematical
formulation, J can be defined as the variance of the delay or
the standard deviation of the delay.

3. Loss rate (L): The fraction of data units lost during transport.

* This work is supported by DARPA PAC/C program under
contract award number DAAB07-00-C-L516.

In this paper, we propose a framework for the Power and QoS
(PQ) management (PQM) of portable multimedia system clients.
The PQ manager performs both power management and QoS
management. The multimedia (MM) client is modeled as a
controllable GSPN with cost (e.g., power, delay, jitter, and loss
rate). Given the constraints on delay, jitter, and loss rate, the
optimal PQ management policy for minimum power consumption
can be obtained by solving a linear programming (LP) problem.

Compared to previous research work on power management and
multimedia systems, our work has the following innovations:

1. This is the first work to consider power and QoS
management in a distributed MM system.

2. We present a new system model of an MM client. This new
model accurately captures the different behaviors of the MM
and normal applications running on the MM client.

3. The proposed optimization solution considers not only power
dissipation and delay, but also jitter and loss rate. We
managed to formulate this problem as a linear programming
problem by making appropriate transformations on the jitter
and loss rate constraints.

This remainder of the paper is organized as follows. Section 2
presents the system modeling techniques for the PQ-managed MM
client. Section 3 introduces the policy optimization method.
Sections 4 and 5 give the experimental results and conclusions.

2 MODELING THE PQ-MANAGED CLIENT
Figure 1 shows a simplified view of a distributed MM system with
QoS management [17]. The system consists of three components:
an MM server with a database of multimedia objects and a
database of QoS information, a transport system that mainly
consists of a network of communication channels, routers, and
switches, and an MM client, which can be a portable personal
computer, pocket PC, or other mobile multimedia devices.

Figure 1 QoS managed, distributed multimedia system.

Each component of the multimedia system has its own local QoS
manager. The global QoS manager controls the QoS negotiation
and renegotiation procedure among the components. The
procedure can be briefly described as follows. The local QoS
manager reports the available local resources to the QoS manager.

The global manager computes the QoS that each component needs
to deliver based on the available resources and sends the
requirement to the local manager. The local manager uses its
available resources to enforce the local QoS requirement and
keeps on monitoring the local QoS. If there is a local QoS
violation, the local manager sends a request to the global manager,
who will respond to the request by either re-allocating the local
QoS requirement among the different components or negotiating
with the user to adopt a degraded global QoS.

Because low power design is targeted to electronic components
with a limited power source, we focus on PQ management for the
MM client, the assumption being that the MM server has a large
(or infinite) power source. In this context, the “local QoS
manager” of the MM client in Figure 1 will be referred to as the
“local PQ manager.”

Only components related to the PQ management problem are
shown in Figure 1. Although the GSPN formalism can model
complex systems with multiple, interacting service providers, in
this paper, we use a simple system with a single service provider.
This is because the focus of this paper is on power and QoS
management, not on complex system modeling. For an example of
using GSPN to model a complex power-managed system with
multiple interacting service providers, please refer to [14].

Figure 2 gives a simplified block diagram of our PQ-managed
client.

Figure 2 Block diagram of a PQ-managed MM client.

As shown in Figure 2, the MM client consists of a service provider
(SP) that may be a CPU, a DSP, or an array of hard disks. The SP
provides services (e.g., computing, processing, communication,
data retrieval, and storage) for service requests coming from
applications running on the MM client. We divide the applications
into two categories: the MM applications and the “other”
applications. We separate the MM applications because of their
distinguishing features as explained below:

1. The distribution of request inter-arrival times is non-
exponential, which requires special treatment during the
modeling process;

2. The QoS requirement is only applicable to the MM
application;

3. The priority of the service requests from the MM application
is usually higher than those from “other” applications.

Figure 3 shows the top level GSPN model for the MM client. It is
divided into three major parts:

1. MM service requester (SR) and service queue (SQ): The MM
SR is used to model the statistical behavior of the input MM

MM Server

QoS Database

MM Database

Transport System

Resources: Network

MM Client

Resources: CPU,
memory, etc.

Global QoS Manager

MM data MM data

Local QoS Manager Local QoS Manager

Local QoS Manager

Service
Provider

MM Stream

Local Application

MM Buffer

Request Queue

Local PQ Manager

Scheduling
Control

Power Mode
Control

QoS Constraints

stream, and the MM SQ is used to model the behavior of the
MM buffer. The GSPN model is shown in Figure 4.

2. Local SR and SQ: These are used to model the behavior of
the request generation and as a buffer for other applications.
The GSPN model is shown in Figure 5.

3. The task scheduler (TS) and service provider (SP): The TS is
used to represent the mechanism for selecting what request is
to be processed next. The SP model captures the
power/performance characteristics of the actual service
provider.

Figure 3 Top-level GSPN model for the MM client.

We assume that the unit inter-arrival time for the MM stream can
be any distribution. Since exponential distribution is required by
the GSPN modeling technique, we use the “stage method” [14] to
approximate the MM stream distribution by using a three-stage SR
model. The MM SR consists of places PMMa, PMMb, PMM1, and
PMM2 and activities µ1, µ2, µ3, α1 (β1 = 1-α1), and α2 (β2 = 1-α2),
connected as shown in Figure 4. Given a distribution of the input
inter-arrival time of the MM stream, we can obtain the values of
µ1, µ2, µ3, α1, and α2 by curve fitting. PMMBuf represents the MM
SQ.

Figure 4 GSPN model for the MM SR and SQ.

Figure 5 GSPN model for the local SR and SQ.

To emphasize the difference between MM applications and
“other” applications (which we will denote as normal applications
from now on), we assume that the request inter-arrival time for the
normal applications is exponentially distributed. The GSPN model
for these applications is shown in Figure 5.

Figure 6 shows the GSPN model of a task scheduler and a simple
SP, which has two different power modes: active (denoted as “a”)
and sleeping (denoted as “s”). When the SP is in active mode, it
can be processing MM applications, which is denoted by mode (a,
MM), or processing normal applications, which is denoted by
mode (a, norm).

Figure 6 GSPN model for the SP and TS.

To illustrate how the GSPN in Figure 6 works, assume that the
initial state of the system is active-idle and waiting for a MM
application and the MM buffer is empty. When a token arrives at
PMMBuf, which means that an MM request has arrived, the token in
place Pidle(a,MM) moves to place Pwork(a,MM), which represents
the state of the SP when it is active and servicing an MM request.
The duration t of this service is decided by the timed activity
Tprocess(a,MM). After time t, the token in Pwork(a,MM) moves to
place Pdecision(a), which represents the state of the SP when it is
active and accepting a command from the PQ manager. After a
very short time, the token in Pdecision(a) moves to Pa2s, Pidle(a,MM),
or Pidle(a,norm) with probability a1, a2, and 1-a1-a2, respectively.
In the controllable GSPN, these probabilities are the controllable
case probabilities of activity Tdecision(a), which are to be optimized.
The rest of the system works in a similar way. The mechanism of
task scheduling is modeled by the immediate activity Tdecision(a).

The PQ manager reads the states of all system components and
sends commands to control the task scheduling and the SP state
transition.

The GSPN model of the MM client is then automatically
transformed into a continuous-time Markov decision process
(CTMDP). The optimal PQ management policy is then solved
based on this CTMDP.

3 POLICY OPTIMIZATION
The input to our policy optimization algorithm is the required
QoS, which can be represented by (D, J, L). In real applications,
D (delay) may be specified in time units; J (jitter) may then be
specified in time units or square of time units; L (loss rate) may be
specified in real numbers. However, we do not use these
constraints directly in our policy optimization process. Instead, we
convert D and J from the time domain to an integer domain related
to the number of requests waiting in the queue. Next we remove
the L constraint by buffer size estimation based on the relation
between L, D, and J. Finally we formulate a linear programming
problem that can be solved for an optimal PQ management policy,
which achieves minimum power consumption under the QoS
constraints.

SR SQ

SR SQ

SP TS

MM Application

Other Application

µ1 β1

α1

µ2 β2

α2

µ3
Stage_1

Stage_2

Stage_3

PMMBuf

GMM: {Mark(PMM1)+Mark(PMM2) = 0 & Mark(PMMBuf) < MM buffer size

PMM1

PMM2

PMMa

PMMb

PSQ

Tnorm

Gnorm: { Mark(PSQ) < SQ capacity

Pdecision(s)

Pchanging

Ps2a

Pidle(s)

Ts2a

Tdecision(s)

Tredecision Tvanish
PMMBuf

Pwork(a,MM)

Pidle(a,MM)

Pdecision(a)

Pa2s

Ta2s

Tprocess(a,MM) Tstart

Tdecision(a)

PSQ

Pidle(a,norm)

Pwork(a,norm)

Tprocess(a,norm)

3.1 Transforming the D and J Constraints

We use the average number of waiting requests in the queue to
represent the average request delay (D) and the variance of the
number of waiting requests in the queue to represent the request
delay variance (J). We use the probability that the queue is full to
represent the loss rate (L). The justification for these
representations is the following theorem, which shows the
relationship between the request delay and the number of waiting
requests in the queue.

Theorem: In a PQ-managed system, if the request loss rate is
small enough, then D = Q ⋅ λ, where D is the average request
delay, Q is the average number of waiting requests in the queue,
and λ is the average incoming request speed. Furthermore, during
any time period of length T, ET(d) = ET(q) ⋅ T / X, where ET(d) and
ET(q) denote the average request delay and average number of
waiting requests in the queue during time T, and X is the number
of incoming requests in this system during time period T.

3.2 Estimating the Buffer Size

For the MM client, allocating too much memory for the MM
buffer is unnecessary and wasteful. However, we have to make
sure that the MM buffer is big enough so that the SP does not need
to provide unnecessarily fast service to achieve the given loss rate
constraint, which would in turn result in undesired power
consumption. Table 1 shows a simple example. Assume a PQ-
managed MM client and a QoS constraint of (D, J, L) = (1.5, 0.9,
0.02). In the first case, we set the size of the MM buffer to 4 and
solve the optimal policy under the constraints of D and J. In the
second case, we set the size of the MM buffer to 6 and solve the
optimal policy under the constraints of the same D and J. Then we
simulate both policies using UltraSAN and obtain the simulated
value of D, J, L, and power consumption (P).

Table 1 Power comparison for systems with different buffer
sizes.

Buffer size D J L Power

4 1.23 0.75 0.02 2.08

6 1.5 0.9 0.02 1.49

From the above table we can see that the system with a buffer size
of 4 consumes 40% more power than the system with a buffer size
of 6; however, in the former case, the D and J values are smaller
than the given constraints. The reason for this is that, with
insufficient buffer space, the SP has to spend extra power to
provide a faster service speed. This experiment also shows that D,
J, L, and the size of the MM buffer are not mutually independent.
Given three of them, we can estimate the fourth one. More
precisely, their relationship can be formulated by equations (1) to
(4), where pi is the probability that there are i requests waiting in
the queue (MM buffer) and m and v are the mean value and the
variance of the waiting requests in the queue.

 mpi
n

i
i =⋅∑

=1

 (1)

 vpmi
n

i
n =⋅−∑

=0

2)((2)

 1
0

=∑
=

n

i
ip (3)

 0 ≤ pi ≤ 1, i=1, …, n. (4)

We are interested in finding the minimum buffer size n that is
needed to avoid unnecessary power consumption due to over
constraints on D and J. This problem can be solved as follows:

 Min. n

 Subject to: Dpi
n

i
i =⋅∑

=1

, (4.5)

 Jpmi
n

i
n =⋅−∑

=0

2)(, (4.6)

 1
0

=∑
=

n

i
ip , (4.7)

 pn ≤ L , (4.8)
 0 ≤ pi ≤ 1, i=1, …, n (4.9)
We cannot solve above problem exactly. However, after some
simplification, we find that if n satisfies inequality relations (4.10)
to (4.12), there will be a set of pi, which satisfies functions (4.5) to
(4.9).

 (n - 2)2 ⋅ L ≥ J + D2 – 4 ⋅ D + 3, (4.10)

 (n + 1) ⋅ (n – 2) ⋅ L ≥ m – 2, (4.11)

 (n − 2) ⋅ (n – 1) ⋅ L ≥ D2 – 3 ⋅ D + 2 + J (4.12)

Therefore, we obtain an upper bound on the minimum required
buffer size:

 Nup = Max(n1, n2, n3) (4.13)

where n1, n2, and n3 are the solutions of equations (4.10), (4.11)
and (4.12). If the allocated buffer size is larger than Nup, there will
not be extra power waste due to over-constraining D and J. Note
that this buffer size estimation is independent of the incoming-data
rate and the system service rate, because we assume that the given
QoS constraint (D, J, L) can always be satisfied by the optimal
policy.

We have performed experiments to verify our buffer estimation
method, and we set J = 1.5, L = 5%. By using different D values
between 1 and 3.5, we estimate the minimum buffer size, Nup,
using (4.13). Figure 7 shows the comparison between the
estimated value and the real value that is obtained by simulation.
The results show the accuracy of our method.

Figure 7 Comparison of real value and estimated upper
bound.

3.3 Policy Optimization by Linear Programming

The PQ management problem is to find the optimal policy (set of
state-action pairs) such that the average system power dissipation

0

2

4

6

8

10

12

0.5 1.5 2.5 3.5

real value
estimated value

D

N

is minimized subject to the performance constraints for the
traditional application and the QoS constraints for the MM
application.

First we give the definition of some variables. The reader may
refer to [14] regarding how to calculate some of the variables from
a given CTMDP model.

ia
ijp : Probability that the next system state is j if the system is

currently in state i and action ai is taken
ia

iτ : Expected duration of the time that the system will be in state

i if action ai is chosen in this state
ia

ix : Probability that the next state of the system will be i and

action ai will be taken if a random observation of the system
is taken

powi: System power consumption in state i

q_MMBufi: Number of unprocessed data in the MM buffer

eneij: Energy needed for the system to switch from state i to state j

Ai: Set of available actions in state i

Our LP problem is formulated as follows:

LP1:

∑ ∑∑ ⋅+⋅
i j

a
ij

a
ija

a
ii

a
ix

ii

i

ii
ia

i
penepowx)(Min

}{
τ (4.14)

 subject to ∑ ∑ ∑ =⋅−
i i

iii

a j a

a
ji

a
j

a
i pxx 0 i∈ S

 ∑ ∑ =
i a

a
i

a
i

i

iix 1τ

 0≥ia
ix all i, ai

 ∑ ∑ <⋅⋅
i a

a
ii

a
i

i

ii DMMBufqx τ_

 JDMMBufqx
i a

a
ii

a
ii

ii <⋅−⋅∑ ∑ τ2)_((4.15)

Equation (4.15) gives the constraint on jitter, which is represented
by the jitter of q_MMBufi. Note that the left hand side of (4.15)
does not give the exact jitter of q_MMBufi, which is:

∑ ∑ −⋅
i a i

a
ii

i MMBufqx _(

 ii

i

i a
i

a
ii a i

a
i MMBufqx ττ ⋅⋅⋅∑ ∑ 2)_ (4.16)

Equation (4.16) contains nonlinear terms. For computational
efficiency, we opted to use an approximation of jitter so that the
resulting mathematical program remains linear.

Proposition: For any set of }{ ia
ix that satisfies (4.15) the value

of (4.16) is less than J.

Proof: To minimize ∑ ∑ ⋅−⋅
i a

a
ii

a
ii

ii mMMBufqx τ)_(, we

know that: m = i

i

i a
ii a i

a
i MMBufqx τ⋅⋅∑ ∑ _ . Therefore,∀ m,

(4.16) gives the smallest value. v
From the above proposition we know that for any policy that
satisfies constraint (4.15), the real jitter of q_MMBufi using this
policy is less than constraint J. Hence we can use (4.15) instead of
(4.16).

Figure 8 shows an illustration of q_MMBufi distribution when the
system is using the PQ-optimized policy and the PD-optimized
policy (which in previous work, optimizes power only under delay

constraint). In this example, we set the MM buffer size to 8. The
average length of the MM buffer is the same for both policies. The
power consumption of the system using the PD-optimized policy
is 25% less than that of the system using the PQ-optimized policy.
However, the q_MMBufi jitter and loss rate of the system using the
PD-optimized policy are 3X and 1000X larger than those of the
system using the PQ-optimized policy. In the experimental results,
we can achieve the same q_MMBufi jitter for the system using PD-
optimized policy by over-constraining the average delay and
therefore consuming more power.

Figure 8 Comparison of q_MMBufi distribution.

Notice that in LP1, only the QoS constraint for the MM
application was included. We can easily add the performance
constraint (i.e. delay) for the normal applications.

4 EXPERIMENTAL RESULTS
Our target system is a simplified model of a client system in a
distributed MM system. System details are as follows. The SR has
only a request generation state. The average inter-arrival time of a
traditional request is 50ms. The SQ capacity is 3. The average
inter-arrival time of the MM data is 20ms.

The SP has two p_modes: high-power mode and low-power mode.
It takes 0.2J energy to switch from high-power mode to low-power
mode and 0.5J energy to switch from low-power mode to high-
power mode. To simplify the model, we assume that the time
needed for switching is small enough to be neglected. In both
power modes, the SP can process both the MM applications and
the normal applications, but with different power consumptions
and speeds. There is also another scenario in which the SP is not
processing any applications. In this case, the service speed of the
SP is 0, and only a very small amount of power is consumed.
Therefore, in our target system, there are three a_modes: MM,
normal, and idle. Table 2 and Table 3 give the SP power
consumption and average service time for each combination of
p_mode and a_mode. Here we assume that the high-power mode
is designed specifically for MM application. For example, in this
mode a floating-point co-processor is used so that the service
speed of the MM application increases significantly.

Table 2 SP power (w) for each (p_mode, a_mode) pair.

 MM Normal Idle

High power 4 3 2

Low power 2 1.5 1

Table 3 SP service speed (ms) for each (p_mode, a_mode) pair.

 MM Normal Idle

High power 5 2 0

Low power 10 2.5 0

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0 1 2 3 4 5 6 7 8

0

0.1

0.2

0.3

0.4

0.5

0 1 2 3 4 5 6 7 8
q_MMBufi distribution using

PQ-optimized policy
q_MMBufi distribution using PD-

optimized policy

Table 4 Comparison between PQ-optimized and PD-optimized
policies.

PD-optimized PQ-optimized QoS

Constraints Power D J Power D J

∆P
(%)

(1, 1, 0.1%) 2.15 0.55 0.96 1.95 0.86 0.98 9.3

(1, 1.5, 0.1%) 1.75 0.80 1.46 1.63 1.00 1.49 6.9

(3, 1, 0.1%) 2.15 0.55 0.96 1.92 2.86 0.98 10.7

(3, 1.5, 0.1%) 1.75 0.80 1.46 1.57 2.93 1.50 10.3

(5, 1, 0.1%) 2.15 0.55 0.96 1.72 4.80 0.97 20.0

(5, 1.5, 0.1%) 1.75 0.80 1.46 1.47 3.69 1.46 16.0

In our experiment, because the normal application is not time
critical, we set the performance constraint of normal application
simply as loss rate ≤ 5%. We use different QoS constraints (D, J,
L) for the linear programming problem. We solve LP1 to find the
PQ-optimized policy. We use the procedure in [14] to find the PD-
optimized policy under the given D constraint. If the resulting
jitter and loss rate cannot meet the QoS constraints, we decrease D
and recalculate the PD-optimized policy until they meet the
constraints. The results are shown in

Table 4.

From the above results, we reach the following conclusions:

1. Our method can calculate the PQ-optimized policy for the
MM client for given QoS constraints by solving the LP
problem only once while the previous DPM method has to
obtain the PD-optimized policy for given QoS constraints by
solving the LP problem multiple times.

2. Our method can obtain the PQ-optimized policy that matches
the given QoS constraints while the previous method can
only meet the QoS constraints by over-constraining the delay
requirement, which results in larger power consumption.

5 CONCLUSIONS
We have presented a new modeling and optimization technique for
power and QoS management in distributed multimedia systems.
QoS in this context refers to the combination of the average
service time (delay), the service time variation (jitter), and the
network loss rate. We model the power-managed multimedia
system with guaranteed QoS as a GSPN, and the PQ-optimal
policy is obtained by solving a linear programming problem.
Because jitter and loss rate are correlated parameters, we could not
include both of them into the LP formulation directly. Instead we
removed the loss rate constraint from the LP formulation by
estimating the maximum size of the queue that stores the MM
data. Furthermore, the jitter constraint is a non-linear function of
the variables we wanted to optimize. Therefore it could not be
directly used in the LP formulation. We were able to substitute the
original jitter constraint with another linear constraint, which we
mathematically proved to be correct.

Previous methods only consider the delay constraint while
obtaining the PD-optimized policy. They can only meet the jitter
and loss rate constraints by over-constraining the delay. Compared
to these methods, we show that our PQM method can achieve an
average of 12% more power savings.

REFERENCES
[1] A. Chandrakasan and R. Brodersen, Low Power Digital CMOS Design,

Norwell: Kluwer Academic Publishers, July 1995.

[2] M. Horowitz, T. Indermaur, and R. Gonzalez, “Low-Power Digital
Design,” IEEE Symp. on Low Power Electronics, pp.8-11, 1994.

[3] A. Chandrakasan, V. Gutnik, and T. Xanthopoulos, “Data Driven Signal
Processing: An Approach for Energy Efficient Computing,” Intl. Symp.
on Low Power Electronics and Design, pp. 347-352, Aug. 1996.

[4] J. Rabaey and M. Pedram, Low Power Design Methodologies, Norwell:
Kluwer Academic Publishers, 1996.

[5] L. Benini and G. De Micheli, Dynamic Power Management: Design
Techniques and CAD Tools, Norwell: Kluwer Academic Publishers,
1997.

[6] M. Srivastava, A. Chandrakasan, and R. Brodersen, “Predictive System
Shutdown and Other Architectural Techniques for Energy Efficient
Programmable Computation," IEEE Transactions on VLSI Systems,
Vol. 4, No. 1 (1996), pp. 42-55.

[7] C.-H. Hwang and A. Wu, “A Predictive System Shutdown Method for
Energy Saving of Event-Driven Computation,” Intl. Conf. on Computer
Aided Design, pp. 28-32, Nov. 1997.

[8] G. A. Paleologo, L. Benini, et al., “Policy Optimization for Dynamic
Power Management”, Design Automation Conf., pp.182-187, June
1998.

[9] Q. Qiu and M. Pedram, “Dynamic Power Management Based on
Continuous-Time Markov Decision Processes,” Design Automation
Conf., pp. 555-561, June 1999.

[10] Q. Qiu, Q. Wu, and M. Pedram, “Stochastic Modeling of a Power-
Managed System: Construction and Optimization,” Intl. Symp. on Low
Power Electronics and Design, 1999.

[11] L. Benini, A. Bogliolo, S. Cavallucci, and B. Ricco, “Monitoring
System Activity For OS-Directed Dynamic Power Management,” Intl.
Symp. of Low Power Electronics and Design, pp. 185-190, Aug. 1998.

[12] E. Chung, L. Benini, and G. De Micheli, “Dynamic Power Management
for Non-Stationary Service Requests,” Design Automation and Test in
Europe Conf., pp. 77-81, 1999.

[13] L. Benini, R. Hodgson, and P. Siegel, “System-level Estimation and
Optimization,” Intl. Symp. of Low Power Electronics and Design, pp.
173-178, Aug. 1998.

[14] Q. Qiu, Q. Wu, and M. Pedram, “Dynamic Power Management of
Complex Systems Using Generalized Stochastic Petri Nets,” Design
Automation Conf., pp. 352-356, June 2000.

[15] The QoS Forum, “Frequently Asked Questions about IP Quality of
Service”, URL: http://www.qosforum.com/docs/faq/, 2000.

[16] A. Vogel, B. Kerhervé, G. V. Bochmann, and J. Gecsei, “Distributed
Multimedia and QoS: A Survey,” IEEE Multimedia Journal, pp. 10-19,
Summer 1995.

[17] A. Hafid and G. V. Bochmann, “Quality of Service Adaptation in
Distributed Multimedia Application,” Multimedia System Journal,
(ACM), Vol 6, No. 5, pp. 299-315, 1998.

[18] R. G. Herrtwich, “The Role of Performance, Scheduling, and Resource
Reservation in Multimedia Systems,” Operating Systems of the 90s and
Beyond, Ed. A. Karshmer and J. Nehmer, Berlin: Sprintger-Verlag,
1991.

[19] M. A. Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Franceschinis,
Modeling With Generalized Stochastic Petri Nets, New York: John
Wiley & Sons, 1995.

[20] UltraSAN User’s Manual, Version 3.0, Center for Reliable and high-
Performance Computing, Coordinated Science Laboratory, University
of Illinois.

	Main
	DAC01
	Front Matter
	Table of Contents
	Session Index
	Author Index

