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Abstract – In this paper we address the problem of dynamic power 
management in a distributed multimedia system with a required 
quality of service (QoS). Using a generalized stochastic Petri net 
model where the non-exponential inter-arrival time distribution of 
the incoming requests is captured by the “stage method”, we 
provide a detailed model of the power-managed multimedia 
system under general QoS constraints. Based on this 
mathematical model, the power-optimal policy is obtained by 
solving a linear programming problem. We compare the new 
problem formulation and solution technique to previous dynamic 
power management techniques that can only optimize power 
under delay constraints.  We then demonstrate that these other 
techniques yield policies with higher power dissipation by over-
constraining the delay target in an attempt to indirectly satisfy the 
QoS constraints.  In contrast, our new method correctly 
formulates the power management problem under QoS constraints 
and obtains the optimal solution. 

1 INTRODUCTION 
With the rapid progress in semiconductor technology, chip density 
and operation frequency have increased, making power 
consumption in battery-operated portable devices a major concern. 
High power consumption reduces battery service life. The goal of 
low-power design [1]-[4] for battery-powered devices is to extend 
battery service life while meeting performance requirements. 
Dynamic power management (DPM) [5] – which refers to the 
selective shut-off or slow-down of system components that are 
idle or underutilized – has proven to be a particularly effective 
technique for reducing power dissipation in such systems.  

A simple and widely used technique is the “time-out” policy [5], 
which turns the component on when it is to be used and turns the 
component off when it has not been used for some pre-specified 
length of time. Srivastava et al. [6] proposed a predictive power 
management strategy, which uses a regression equation based on 
the previous “on” and “off” times of the component to estimate the 
next “turn-on” time. In [7], Hwang and Wu have introduced a 
more complex predictive shutdown strategy that has a better 
performance. However, these heuristic techniques cannot handle 
components with more than two (“on” and “off”) power modes; 
they cannot handle complex system behaviors, and they cannot 
guarantee optimality.  

 

 

 

 

 

 

As was first shown in [8], a power-managed system can be 
modeled as a discrete-time Markov decision process (DTMDP) 
by combining the stochastic models of each component. Once the 
model and its parameters are determined, an optimal power 
management policy for achieving the best power-delay trade-off in 
the system can be generated. In [9], the authors extend [8] by 
modeling the power-managed system using a continuous-time 
Markov decision process (CTMDP). Further research results can 
be found in [10]-[13]. 

In situations where complex system behaviors, such as 
concurrency, synchronization, mutual exclusion, and conflict, are 
present, the modeling techniques in [8]-[10] become inadequate 
because they are effective only when constructing stochastic 
models of simple systems consisting of non-interacting 
components. In [14], a technique based on controllable 
generalized stochastic Petri nets (GSPN) with cost is proposed 
that is powerful enough to compactly model a power-managed 
system with complex behavioral characteristics. It is indeed easier 
for the system designer to manually specify the GSPN model than 
to provide a CTMDP model. Given the GSPN model, it is then 
simple to automatically construct an equivalent (but much larger) 
CTMDP model. The policy optimization algorithms in [8]-[10] 
can thereby be applied to calculate the minimum-power policy for 
the power-managed system with delay constraints. 

Many Internet applications such as web browsing, email, and file 
transfer are not time-critical. Therefore, the Internet Protocol (IP) 
and architecture are designed to provide a “best effort” quality of 
service. There is no guarantee of when the data will arrive or how 
quickly it will be serviced. However, this approach is not suitable 
for a new breed of Internet applications, including audio and video 
streaming, which demand high bandwidth and low latency when 
used in a two-way communication scenario such as net 
conferencing and net telephony, for example. The notion of 
guaranteed quality of service (QoS) comes with the emergence of 
such distributed multimedia systems. QoS represents the set of 
those quantitative and qualitative characteristics of a distributed 
multimedia system necessary to achieve the required functionality 
of an application [15].  

Three parameters are widely used to quantitatively capture the 
notion of QoS in distributed multimedia systems [15]. These 
parameters are: 

1. Delay (D):  The time between the moment a data unit is 
received (input) and the moment it is sent (output). 

2. Jitter (J): The variation of the delays experienced by different 
data units in the same input stream. In mathematical 
formulation, J can be defined as the variance of the delay or 
the standard deviation of the delay. 

3. Loss rate (L): The fraction of data units lost during transport. 

* This work is supported by DARPA PAC/C program under
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In this paper, we propose a framework for the Power and QoS 
(PQ) management (PQM) of portable multimedia system clients. 
The PQ manager performs both power management and QoS 
management. The multimedia (MM) client is modeled as a 
controllable GSPN with cost (e.g., power, delay, jitter, and loss 
rate). Given the constraints on delay, jitter, and loss rate, the 
optimal PQ management policy for minimum power consumption 
can be obtained by solving a linear programming (LP) problem. 

Compared to previous research work on power management and 
multimedia systems, our work has the following innovations: 

1. This is the first work to consider power and QoS 
management in a distributed MM system. 

2. We present a new system model of an MM client. This new 
model accurately captures the different behaviors of the MM 
and normal applications running on the MM client. 

3. The proposed optimization solution considers not only power 
dissipation and delay, but also jitter and loss rate. We 
managed to formulate this problem as a linear programming 
problem  by making appropriate transformations on the jitter 
and loss rate constraints. 

This remainder of the paper is organized as follows. Section 2 
presents the system modeling techniques for the PQ-managed MM 
client. Section 3 introduces the policy optimization method. 
Sections 4 and 5 give the experimental results and conclusions. 

2 MODELING THE PQ-MANAGED CLIENT  
Figure 1 shows a simplified view of a distributed MM system with 
QoS management [17]. The system consists of three components: 
an MM server with a database of multimedia objects and a 
database of QoS information, a transport system that mainly 
consists of a network of communication channels, routers, and 
switches, and an MM client, which can be a portable personal 
computer, pocket PC, or other mobile multimedia devices.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 QoS managed, distributed multimedia system. 

Each component of the multimedia system has its own local QoS 
manager. The global QoS manager controls the QoS negotiation 
and renegotiation procedure among the components. The 
procedure can be briefly described as follows. The local QoS 
manager reports the available local resources to the QoS manager. 

The global manager computes the QoS that each component needs 
to deliver based on the available resources and sends the 
requirement to the local manager. The local manager uses its 
available resources to enforce the local QoS requirement and 
keeps on monitoring the local QoS. If there is a local QoS 
violation, the local manager sends a request to the global manager, 
who will respond to the request by either re-allocating the local 
QoS requirement among the different components or negotiating 
with the user to adopt a degraded global QoS.  

Because low power design is targeted to electronic components 
with a limited power source, we focus on PQ management for the 
MM client, the assumption being that the MM server has a large 
(or infinite) power source. In this context, the “local QoS 
manager” of the MM client in Figure 1 will be referred to as the 
“local PQ manager.” 

Only components related to the PQ management problem are 
shown in Figure 1. Although the GSPN formalism can model 
complex systems with multiple, interacting service providers, in 
this paper, we use a simple system with a single service provider. 
This is because the focus of this paper is on power and QoS 
management, not on complex system modeling. For an example of 
using GSPN to model a complex power-managed system with 
multiple interacting service providers, please refer to [14]. 

Figure 2 gives a simplified block diagram of our PQ-managed 
client.  

 

 

 

 

 

 

 

 

 

 

Figure 2 Block diagram of a PQ-managed MM client. 

As shown in Figure 2, the MM client consists of a service provider 
(SP) that may be a CPU, a DSP, or an array of hard disks. The SP 
provides services (e.g., computing, processing, communication, 
data retrieval, and storage) for service requests coming from 
applications running on the MM client. We divide the applications 
into two categories: the MM applications and the “other” 
applications. We separate the MM applications because of their 
distinguishing features as explained below: 

1. The distribution of request inter-arrival times is non-
exponential, which requires special treatment during the 
modeling process;  

2. The QoS requirement is only applicable to the MM 
application; 

3. The priority of the service requests from the MM application 
is usually higher than those from “other” applications. 

Figure 3 shows the top level GSPN model for the MM client. It is 
divided into three major parts: 

1. MM service requester (SR) and service queue (SQ): The MM 
SR is used to model the statistical behavior of the input MM 
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stream, and the MM SQ is used to model the behavior of the 
MM buffer. The GSPN model is shown in Figure 4. 

2. Local SR and SQ: These are used to model the behavior of 
the request generation and as a buffer for other applications. 
The GSPN model is shown in Figure 5. 

3. The task scheduler (TS) and service provider (SP): The TS is 
used to represent the mechanism for selecting what request is 
to be processed next. The SP model captures the 
power/performance characteristics of the actual service 
provider.  

 

 

 

 

 

 

Figure 3 Top-level GSPN model for the MM client. 

We assume that the unit inter-arrival time for the MM stream can 
be any distribution. Since exponential distribution is required by 
the GSPN modeling technique, we use the “stage method” [14] to 
approximate the MM stream distribution by using a three-stage SR 
model. The MM SR consists of places PMMa, PMMb, PMM1, and 
PMM2 and activities µ1, µ2, µ3, α1 (β1 = 1-α1), and α2 (β2 = 1-α2), 
connected as shown in Figure 4. Given a distribution of the input 
inter-arrival time of the MM stream, we can obtain the values of 
µ1, µ2, µ3, α1, and α2 by curve fitting. PMMBuf represents the MM 
SQ. 

 

 

 

 

 

 

 

 

 

 

Figure 4 GSPN model for the MM SR and SQ. 

 

 

 

 

 

 

 

Figure 5 GSPN model for the local SR and SQ. 

To emphasize the difference between MM applications and 
“other” applications (which we will denote as normal applications 
from now on), we assume that the request inter-arrival time for the 
normal applications is exponentially distributed. The GSPN model 
for these applications is shown in Figure 5. 

Figure 6 shows the GSPN model of a task scheduler and a simple 
SP, which has two different power modes: active (denoted as “a”) 
and sleeping (denoted as “s”). When the SP is in active mode, it 
can be processing MM applications, which is denoted by mode (a, 
MM), or processing normal applications, which is denoted by 
mode (a, norm).  

 

 

 

 

 

 

 

 

 

 

 

Figure 6 GSPN model for the SP and TS. 

To illustrate how the GSPN in Figure 6 works, assume that the 
initial state of the system is active-idle and waiting for a MM 
application and the MM buffer is empty. When a token arrives at 
PMMBuf, which means that an MM request has arrived, the token in 
place Pidle(a,MM) moves to place Pwork(a,MM), which represents 
the state of the SP when it is active and servicing an MM request. 
The duration t of this service is decided by the timed activity 
Tprocess(a,MM). After time t, the token in Pwork(a,MM) moves to 
place Pdecision(a), which represents the state of the SP when it is 
active and accepting a command from the PQ manager. After a 
very short time, the token in Pdecision(a) moves to Pa2s, Pidle(a,MM), 
or Pidle(a,norm) with probability a1, a2, and 1-a1-a2, respectively. 
In the controllable GSPN, these probabilities are the controllable 
case probabilities of activity Tdecision(a), which are to be optimized. 
The rest of the system works in a similar way. The mechanism of 
task scheduling is modeled by the immediate activity Tdecision(a). 

The PQ manager reads the states of all system components and 
sends commands to control the task scheduling and the SP state 
transition.  

The GSPN model of the MM client is then automatically 
transformed into a continuous-time Markov decision process 
(CTMDP). The optimal PQ management policy is then solved 
based on this CTMDP. 

3 POLICY OPTIMIZATION  
The input to our policy optimization algorithm is the required 
QoS, which can be represented by (D, J, L). In real applications, 
D (delay) may be specified in time units; J (jitter) may then be 
specified in time units or square of time units; L (loss rate) may be 
specified in real numbers. However, we do not use these 
constraints directly in our policy optimization process. Instead, we 
convert D and J from the time domain to an integer domain related 
to the number of requests waiting in the queue. Next we remove 
the L constraint by buffer size estimation based on the relation 
between L, D, and J. Finally we formulate a linear programming 
problem that can be solved for an optimal PQ management policy, 
which achieves minimum power consumption under the QoS 
constraints. 
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3.1 Transforming the D and J Constraints 

We use the average number of waiting requests in the queue to 
represent the average request delay (D) and the variance of the 
number of waiting requests in the queue to represent the request 
delay variance (J). We use the probability that the queue is full to 
represent the loss rate (L). The justification for these 
representations is the following theorem, which shows the 
relationship between the request delay and the number of waiting 
requests in the queue.  

Theorem: In a PQ-managed system, if the request loss rate is 
small enough, then D = Q ⋅ λ, where D is the average request 
delay, Q is the average number of waiting requests in the queue, 
and λ is the average incoming request speed. Furthermore, during 
any time period of length T, ET(d) = ET(q) ⋅ T / X, where ET(d) and 
ET(q) denote the average request delay and average number of 
waiting requests in the queue during time T, and X is the number 
of incoming requests in this system during time period T. 

3.2 Estimating the Buffer Size  

For the MM client, allocating too much memory for the MM 
buffer is unnecessary and wasteful. However, we have to make 
sure that the MM buffer is big enough so that the SP does not need 
to provide unnecessarily fast service to achieve the given loss rate 
constraint, which would in turn result in undesired power 
consumption. Table 1 shows a simple example. Assume a PQ-
managed MM client and a QoS constraint of (D, J, L) = (1.5, 0.9, 
0.02). In the first case, we set the size of the MM buffer to 4 and 
solve the optimal policy under the constraints of D and J. In the 
second case, we set the size of the MM buffer to 6 and solve the 
optimal policy under the constraints of the same D and J. Then we 
simulate both policies using UltraSAN and obtain the simulated 
value of D, J, L, and power consumption (P).  

Table 1 Power comparison for systems with different buffer 
sizes. 

Buffer size D J L Power 

4 1.23 0.75 0.02 2.08 

6 1.5 0.9 0.02 1.49 

From the above table we can see that the system with a buffer size 
of 4 consumes 40% more power than the system with a buffer size 
of 6; however, in the former case, the D and J values are smaller 
than the given constraints. The reason for this is that, with 
insufficient buffer space, the SP has to spend extra power to 
provide a faster service speed. This experiment also shows that D, 
J, L, and the size of the MM buffer are not mutually independent. 
Given three of them, we can estimate the fourth one. More 
precisely, their relationship can be formulated by equations (1) to 
(4), where pi is the probability that there are i requests waiting in 
the queue (MM buffer) and m and v are the mean value and the 
variance of the waiting requests in the queue. 
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We are interested in finding the minimum buffer size n that is 
needed to avoid unnecessary power consumption due to over 
constraints on D and J. This problem can be solved as follows: 

           Min. n 
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We cannot solve above problem exactly. However, after some 
simplification, we find that if n satisfies inequality relations (4.10) 
to (4.12), there will be a set of pi, which satisfies functions (4.5) to 
(4.9). 

                 (n - 2)2 ⋅ L ≥ J + D2 – 4 ⋅ D + 3,                             (4.10) 

                 (n + 1) ⋅ (n – 2) ⋅ L ≥ m – 2,                                   (4.11) 

               (n − 2) ⋅ (n – 1) ⋅ L ≥ D2 – 3 ⋅ D + 2 + J                   (4.12) 

Therefore, we obtain an upper bound on the minimum required 
buffer size:  

                           Nup = Max(n1, n2, n3)                                    (4.13) 

where n1, n2, and n3 are the solutions of equations (4.10), (4.11) 
and (4.12). If the allocated buffer size is larger than Nup, there will 
not be extra power waste due to over-constraining D and J. Note 
that this buffer size estimation is independent of the incoming-data 
rate and the system service rate, because we assume that the given 
QoS constraint (D, J, L) can always be satisfied by the optimal 
policy.  

We have performed experiments to verify our buffer estimation 
method, and we set J = 1.5, L = 5%. By using different D values 
between 1 and 3.5, we estimate the minimum buffer size, Nup, 
using (4.13). Figure 7 shows the comparison between the 
estimated value and the real value that is obtained by simulation. 
The results show the accuracy of our method. 

 

 

 

 

 

 

 

 

 

 

 

Figure 7 Comparison of real value and estimated upper 
bound. 

3.3 Policy Optimization by Linear Programming 

The PQ management problem is to find the optimal policy (set of 
state-action pairs) such that the average system power dissipation 
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is minimized subject to the performance constraints for the 
traditional application and the QoS constraints for the MM 
application.  

First we give the definition of some variables. The reader may 
refer to [14] regarding how to calculate some of the variables from 
a given CTMDP model. 

ia
ijp : Probability that the next system state is j if the system is 

currently in state i and action ai is taken 
ia

iτ : Expected duration of the time that the system will be in state 

i if action ai is chosen in this state 
ia

ix : Probability that the next state of the system will be i and 

action ai will be taken if a random observation of the system 
is taken 

powi: System power consumption in state i 

q_MMBufi: Number of unprocessed data in the MM buffer 

eneij: Energy needed for the system to switch from state i to state j 

Ai: Set of available actions in state i 

Our LP problem is formulated as follows: 
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Equation (4.15) gives the constraint on jitter, which is represented 
by the jitter of q_MMBufi. Note that the left hand side of (4.15) 
does not give the exact jitter of q_MMBufi, which is: 
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Equation (4.16) contains nonlinear terms. For computational 
efficiency, we opted to use an approximation of jitter so that the 
resulting mathematical program remains linear.  

Proposition: For any set of }{ ia
ix  that satisfies (4.15) the value 

of (4.16) is less than J. 
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(4.16) gives the smallest value.                                                     v 
From the above proposition we know that for any policy that 
satisfies constraint (4.15), the real jitter of q_MMBufi using this 
policy is less than constraint J. Hence we can use (4.15) instead of 
(4.16).  

Figure 8 shows an illustration of q_MMBufi distribution when the 
system is using the PQ-optimized policy and the PD-optimized 
policy (which in previous work, optimizes power only under delay 

constraint). In this example, we set the MM buffer size to 8. The 
average length of the MM buffer is the same for both policies. The 
power consumption of the system using the PD-optimized policy 
is 25% less than that of the system using the PQ-optimized policy.  
However, the q_MMBufi jitter and loss rate of the system using the 
PD-optimized policy are 3X and 1000X larger than those of the 
system using the PQ-optimized policy. In the experimental results, 
we can achieve the same q_MMBufi jitter for the system using PD-
optimized policy by over-constraining the average delay and 
therefore consuming more power. 

 

 

 

 

 

 

 

 

 

Figure 8 Comparison of q_MMBufi distribution. 

Notice that in LP1, only the QoS constraint for the MM 
application was included. We can easily add the performance 
constraint (i.e. delay) for the normal applications.  

4 EXPERIMENTAL RESULTS 
Our target system is a simplified model of a client system in a 
distributed MM system. System details are as follows. The SR has 
only a request generation state. The average inter-arrival time of a 
traditional request is 50ms. The SQ capacity is 3. The average 
inter-arrival time of the MM data is 20ms.  

The SP has two p_modes: high-power mode and low-power mode. 
It takes 0.2J energy to switch from high-power mode to low-power 
mode and 0.5J energy to switch from low-power mode to high-
power mode. To simplify the model, we assume that the time 
needed for switching is small enough to be neglected. In both 
power modes, the SP can process both the MM applications and 
the normal applications, but with different power consumptions 
and speeds. There is also another scenario in which the SP is not 
processing any applications. In this case, the service speed of the 
SP is 0, and only a very small amount of power is consumed. 
Therefore, in our target system, there are three a_modes: MM, 
normal, and idle. Table 2 and Table 3 give the SP power 
consumption and average service time for each combination of 
p_mode and a_mode. Here we assume that the high-power mode 
is designed specifically for MM application. For example, in this 
mode a floating-point co-processor is used so that the service 
speed of the MM application increases significantly.  

Table 2 SP power (w) for each (p_mode, a_mode) pair. 

 MM Normal Idle 

High power 4 3 2 

Low power 2 1.5 1 

Table 3 SP service speed (ms) for each (p_mode, a_mode) pair. 

 MM Normal Idle 

High power 5 2 0 

Low power 10 2.5 0 
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Table 4 Comparison between PQ-optimized and PD-optimized 
policies. 

PD-optimized PQ-optimized QoS  

Constraints Power D J Power D J 

∆P 
(%) 

(1, 1, 0.1%) 2.15 0.55 0.96 1.95 0.86 0.98 9.3 

(1, 1.5, 0.1%) 1.75 0.80 1.46 1.63 1.00 1.49 6.9 

(3, 1, 0.1%) 2.15 0.55 0.96 1.92 2.86 0.98 10.7 

(3, 1.5, 0.1%) 1.75 0.80 1.46 1.57 2.93 1.50 10.3 

(5, 1, 0.1%) 2.15 0.55 0.96 1.72 4.80 0.97 20.0 

(5, 1.5, 0.1%) 1.75 0.80 1.46 1.47 3.69 1.46 16.0 

 

In our experiment, because the normal application is not time 
critical, we set the performance constraint of normal application 
simply as loss rate ≤ 5%. We use different QoS constraints (D, J, 
L) for the linear programming problem. We solve LP1 to find the 
PQ-optimized policy. We use the procedure in [14] to find the PD-
optimized policy under the given D constraint. If the resulting 
jitter and loss rate cannot meet the QoS constraints, we decrease D 
and recalculate the PD-optimized policy until they meet the 
constraints. The results are shown in  

Table 4. 

From the above results, we reach the following conclusions: 

1. Our method can calculate the PQ-optimized policy for the 
MM client for given QoS constraints by solving the LP 
problem only once while the previous DPM method has to 
obtain the PD-optimized policy for given QoS constraints by 
solving the LP problem multiple times. 

2. Our method can obtain the PQ-optimized policy that matches 
the given QoS constraints while the previous method can 
only meet the QoS constraints by over-constraining the delay 
requirement, which results in larger power consumption. 

5 CONCLUSIONS 
We have presented a new modeling and optimization technique for 
power and QoS management in distributed multimedia systems. 
QoS in this context refers to the combination of the average 
service time (delay), the service time variation (jitter), and the 
network loss rate. We model the power-managed multimedia 
system with guaranteed QoS as a GSPN, and the PQ-optimal 
policy is obtained by solving a linear programming problem. 
Because jitter and loss rate are correlated parameters, we could not 
include both of them into the LP formulation directly. Instead we 
removed the loss rate constraint from the LP formulation by 
estimating the maximum size of the queue that stores the MM 
data. Furthermore, the jitter constraint is a non-linear function of 
the variables we wanted to optimize. Therefore it could not be 
directly used in the LP formulation. We were able to substitute the 
original jitter constraint with another linear constraint, which we 
mathematically proved to be correct. 

Previous methods only consider the delay constraint while 
obtaining the PD-optimized policy. They can only meet the jitter 
and loss rate constraints by over-constraining the delay. Compared 
to these methods, we show that our PQM method can achieve an 
average of 12% more power savings. 
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