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ABSTRACT
Energy consumption has become an increasingly important con-
sideration in designing many real-time embedded systems. Vari-
able voltage processors, if used properly, can dramatically reduce
such system energy consumption. In this paper, we present a tech-
nique to determine voltage settings for a variable voltage processor
that utilizes a fixed priority assignment to schedule jobs. Our ap-
proach also produces the minimum constant voltage needed to fea-
sibly schedule the entire job set. Our algorithms lead to significant
energy saving compared with previously presented approaches.

1. INTRODUCTION
Energy consumption is one of the critical factors in designing

battery-operated systems, such as portable personal computing and
communication devices. To reduce system energy consumption,
supply voltage reduction is the most powerful technique since power
is a quadratic function of the voltage. Recent advances in power
supply circuits [2, 9] have enabled systems to operate under dynam-
ically varying supply voltages. In such an environment, the speed
of the system can be dynamically controlled. Judicious exploitation
of this feature can dramatically improve the energy consumption of
a real-time system.

In this paper, we are interested in studying the following type
of a real-time system implemented on a variable voltage proces-
sor. The real-time system consists of jobs with predefined release
times, deadlines and required number of CPU cycles. Such jobs
may either be aperiodic or be instances of periodic tasks, and are
scheduled by a preemptive scheduler based on some static priori-
ties, e.g., according to the rate-monotonic policy [7]. Such a fixed-
priority assignment approach is used in most real-time scheduling
algorithms [8]. If the jobs are executed by a variable voltage pro-
cessor, the execution time of each job varies depending on the pro-
cessor speed under different voltage levels. By setting the sup-
ply voltage to different values at different times, we can essentially
build a voltage schedule. The challenge is to determine the voltage
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(or equivalently speed) schedule which lead to the minimal energy
consumption.

A number of papers have been published on similar topics. Off-
line scheduling algorithms for non-preemptive hard real-time tasks
are discussed in [3, 6]. In [5, 6], more general variable voltage
processor models are used assuming that processor voltage cannot
change instantaneously or continuously. The more practical pro-
cessor models make the problem much harder to solve. A heuristic
approach is described in [5], and a linear programming formulation
is introduced in [6]. Yao, Demers and Shenker [14] presented an

(or for a more sophisticated implementation)
time off-line algorithm for finding the optimal voltage schedule,
where is the number of jobs to be scheduled. They assume that
jobs are scheduled according to the earliest-deadline-first (EDF)
scheduling policy [7]. Hong, Potkonjak and Srivastava described
an on-line scheduling algorithm for real-time tasks on variable volt-
age processor, where it is assumed that the release times of jobs are
not known a priori [4]. All of the above approaches employ the
dynamic EDF priority assignment scheme for scheduling the jobs.
Though the EDF policy is used in some real-time systems, fixed-
priority assignments are adopted in most real-time scheduling algo-
rithms of practical interest due to its low overhead and predictabil-
ity [8].

Shin and Choi [12] presented a power conscious fixed priority
scheduling scheme for hard real-time systems on a variable voltage
processor. The approach makes use of a simple run-time checking
mechanism: the processor can either be shut down (if there is no
current active job) or adopt the speed such that the current active
job finishes at its deadline or the release time of the next job. The
advantage of the technique is its simplicity and hence can be read-
ily incorporated into an operating system (OS) kernel. However,
it cannot exploit the fact that the release times and deadlines of
most real-time jobs are known off-line. Hence, it may not be able
to fully utilize the benefit provided by a variable voltage processor.
In [13], Shin, Choi, and Takayasu proposed an off-line algorithm to
determine the lowest maximum processor speed to execute a peri-
odic real-time task set on a variable speed processor. It is assumed
that all the tasks start at the same time, so the first job of each task
would have the longest response time [7]. The algorithm finds the
minimum processor speed that guarantees the schedulability of the
first job for each task. Note that this approach can only be applied
to the periodic tasks having the same starting time. Moreover, it is
not difficult to see that the minimum processor speed can be further
reduced after the completion of the first job. Therefore, it still fails
to maximally explore the flexibility of a variable speed processor.

In this paper, we present a technique to determine voltage sched-
ules that result in more energy saving. Similar to that in [14], our



technique is based on the assumption that the timing parameters of
each job is known off-line. Two algorithms are given in the pa-
per. The first one takes time ( is the number of jobs)
to find the minimum constant speed needed to complete each job,
since constant voltage tends to result in a lower power consump-
tion. The second algorithm, with time complexity, builds
on the first one and gives two results. First, the minimum constant
voltage (or speed) needed to complete a set of jobs is obtained. This
is an important parameter for systems with no sophisticated power
management hardware but only simple on/off modes or where peak
power consumption is a concern. Secondly, a voltage schedule is
produced. We prove that this voltage schedule always results in
lower energy consumption compared to using the minimum con-
stant voltage and shutting down the system when it is idle. We
show through experiments that the energy saving achieved by ap-
plying our algorithm is quite significant. Our algorithm can also be
readily combined with on-line scheduling techniques such as the
one in [12] to further improve energy consumption during run-time.

The rest of the paper is organized as follows. Section 2 for-
mulates the problem and gives some motivational examples. Two
novel algorithms are presented in Section 3 and 4. Experimental
results are discussed in Section 5 and Section 6 concludes the pa-
per.

2. PRELIMINARIES
In this section, we first introduce the necessary notation and for-

mulate the problem. Then, we review some known results and pro-
vide several motivational examples.

2.1 Problem formulation
The system we are studying consists of independent jobs,

, arranged in the decreasing order of their
statically assigned priorities. The following timing parameters are
defined for each job :

: the time at which job is ready to be executed, referred
to as release time.

: the time by which must be completed, referred to as
deadline.

: the maximum number of CPU cycles needed to com-
plete job without any interruption, referred to as work-
load.

It is not difficult to see that the above system model can be readily
used to model task instances in periodic real-time systems, where

and differ by some integer multiple of the task period if
and belong to the same task.

A single processor is used to execute the jobs in the system, and
the processor can work at different voltage levels which can be con-
tinuously varied in . When the supply voltage changes,
the processor speed ( ) changes proportionally, and the power con-
sumption ( ) is a convex function of the processor speed. For
simplicity, we will use processor speed and supply voltage inter-
changeably whenever applicable.

Given a set of real-time jobs and a variable voltage processor in-
troduced, different voltage values can be set at different times. We
refer to a set of voltage values during the entire time interval when
the job set being executed as a voltage schedule. Our problem is
then to determine a voltage schedule with which the lowest amount
of energy is consumed and the jobs are all completed at or before
their deadlines.

Several observations are helpful in formulating our problem more
formally. The authors of [14] presented a theorem regarding the
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Figure 1: Two different voltage schedules for the simple real-
time system in (1).

best speed for a given set of jobs that must be completed within an
interval. We restate the theorem in the following.

THEOREM 1. Given a set of jobs starting at and to be com-
pleted by , the voltage schedule that employs a constant voltage
in is necessarily an optimal schedule in the sense that no
other schedule consumes less energy to complete the jobs in time.

Based on the above theorem, we can prove (see [11]) the follow-
ing lemma which describes an important feature for any optimal
voltage schedule.

LEMMA 1. An optimal voltage schedule for a job set is de-
fined on a set of time intervals each of which must start and end at
either the release times or deadlines of the jobs, and the processor
maintains a constant speed in each of the intervals.

According to Lemma 1, our voltage scheduling problem can be
formally defined as follows:

DEFINITION 1. Given a job set , find a set of intervals, ,
and a set of speeds, , where

and are among the job release times and deadlines, and
is a constant speed, such that if the processor operates

accordingly, all the jobs can be completed by their deadlines and
no other voltage schedules can consume less energy.

2.2 Motivational examples
Consider a simple real-time system with 3 jobs as follows:

(1)

In (1), the static priority assignment for the jobs are different from
the EDF since has a lower priority than . Under the EDF
policy[14], the best voltage schedule is . With the
given priority assignment, it is easy to check that this voltage sched-
ule would result missing its deadline. Apparently, the voltage
schedule obtained based on the EDF policy may not be applicable
any more for job sets with fixed-priority assignment.

For the same example, the off-line approach in [13] cannot be
readily applied because the jobs do not start at the same time. Us-
ing the on-line voltage scheduling algorithm in [12], we can obtain
the voltage schedule as shown in Figure 1(a), where the processor
speed is soly determined by the release time of the next job. A
better voltage schedule is given in Figure 1(b). It is not difficult to
verify that the voltage schedule in Figure 1(b) consumes less en-
ergy than that in Figure 1(a). If we assume , the energy in
Figure 1(b) is of that in Figure 1(a).

From the above example, it is clear that existing approaches are
not able to determine the optimal voltage schedule for a given job
set when a fixed-priority assignment is used. However, we find the



rationale behind the technique used in [14] is enlightening. The
key to the algorithm in [14] is to find the minimum constant speed
needed to finish certain subsets of all jobs. In the EDF priority
assignment, this can be easily computed by

(2)

where , and is the subset of jobs whose release times
and deadline are both in . When computing ,
there is no need to include any jobs that are released in ,
and have deadlines after , since there always have lower priori-
ties than .

In the fixed-priority assignment case, (2) is no longer valid due
to the fact that a job released in with deadline larger
than may have a higher priority than , and thus may preempt

in (depending on if is finished before or after ' s
release time). In (1), and exhibit such a relationship. This
uncertainty in the preemption relationship greatly increases the dif-
ficulty in finding the voltage schedules under the fixed-priority as-
signment scheme. In the following section, we present new obser-
vations and techniques to tackle such a problem.

3. DETERMINING THE MINIMUM CON-
STANT SPEED FOR EACH JOB

In this section, we present our approach to find the minimum
constant speed needed to complete each job by its deadline. Find-
ing such speeds is beneficial in two aspects. First, it helps us to
determine the minimum overall constant speed for the entire job
set such that if the supply voltage is set for this speed, it will
result in the minimum energy consumption compared to any other
constant speed for . Secondly, we can use it to derive a voltage
schedule that leads to even lower energy consumption. Recall that
the authors in [13] proposed a technique to compute the minimum
constant speed to guarantee the schedulability for a periodic task
system. Since all the tasks start at the same time, the problem re-
duces to finding the minimum constant speed for the first job of
each task. This is a rather special case. We are dealing with a more
general case where jobs can be released at any time.

Let us denote the minimum constant speed needed to complete
job by . We first use another example as shown in (3) to
illustrate several critical properties that must possess.

(3)

Suppose we want to find for in (3). If we use interval
to compute , then . Note that applying

will cause an idle interval and to miss its
deadline. If we set , can be completed
by , but in order for to start at , the processor speed
must be set to at least . Otherwise, will prevent
from finishing on time. Hence, is not the valid minimum
constant speed for . For this example, .
If we let the processor speed during be , and ,
it is easy to verify that the power consumption for this schedule is

of the one using . To summa-
rize, the minimum constant speed is computed based on some
intervals which must have the following properties: (i)there is no
idle time within the interval that corresponds to; (ii)applying
do not force other intervals to take higher speeds; and (iii) the in-
terval must begin and end at the release times or deadlines of some

jobs. These properties play a key role in determining the interval to
compute .

When deriving the minimum speed of , only certain higher
priority jobs whose execution may interfere with 's execution
need to be considered. The following definitions help us to limit
the number of jobs to be considered.

DEFINITION 2. Time is called a -scheduling point if
or .

For the rest of the paper, when we refer to a time , we always mean
a scheduling point.

DEFINITION 3. A -scheduling point is called the earliest
scheduling point of and denoted as if it is the largest

-scheduling point in that satisfies

if

The latest time of by which must be completed is called the
latest scheduling point of and is denoted by .

Based on the above definitions, can initially be set to ,
while can be obtained by checking each -scheduling point
in the decreasing order starting from . It is not difficult to
see that any higher priority jobs released prior to or after

have no impact on the speed needed to complete pro-
vided that these jobs are finished by their deadlines. Thus, when
computing , we only need to focus on the jobs released within

.
Since speed is closely related with average workload, we intro-

duce the definition of -intensity to capture the concept of average
workload for job .

DEFINITION 4. Let be two -scheduling points, -intensity
in the interval , denoted by , is defined to be

(4)

where

otherwise
(5)

Having no idle time is another key properties required for , we
give the following definition to precisely capture the idle time re-
lated concepts.

DEFINITION 5. Interval is a -busy interval, if

are scheduling points, and
.

There is no idle time before the release time of any job within
if the constant speed is applied within the

interval.

For job , it is not difficult to see that there may exist a number
of -busy intervals. The largest one among them is particularly
interesting and we give a definition for it below.

DEFINITION 6. A -busy interval is called the -essential
interval if for any -busy interval , we have

(6)

The -intensity corresponding to the -essential interval pos-
sesses the properties of stated earlier, which is summarized in
the following important lemma (see [11]).



LEMMA 2. The -essential interval, , and the corre-
sponding -intensity, , satisfy

(7)

(8)

and

(9)

where is any -busy interval. Furthermore, if is
adopted as the processor speed during , is completed by
its deadline.

According to Lemma 2, is the valid minimum constant
speed . Thus, determining the minimum constant speed for
each job now becomes determining the essential interval and corre-
sponding intensity associated with each job. We present our algo-
rithm, Algorithm 1, to search for -essential interval and compute

.

Algorithm 1 Construct the essential interval for a job

1: Input: Job set , and and for
job

2: Output: -essential interval and
3: ;
4: ;
5: ;
6: while or do
7: ;
8: ;
9: for every -scheduling point in do

10: Find such that is the minimum;
11: end for
12: for every -scheduling point in do
13: Find such that is the maximum;
14: end for
15: end while
16: ;

Algorithm 1 follows the basic principle laid down in Lemma 2
but employs a little different search mechanism. It only searches
a subset of busy intervals whose starting points are the scheduling
points in , and thus takes less time than a straightfor-
ward implementation of Lemma 2. The effectiveness of Algorithm
1 is guaranteed by the following theorem (see [11] for the proof).

THEOREM 2. Algorithm 1 produces, in time, the -
essential interval and the minimum constant speed to complete .

4. DETERMININGTHE GLOBAL VOLTAGE
SCHEDULE

Based on the algorithm for searching the minimum constant speed
for each job, we can find both the minimum constant speed needed
to satisfy all job deadlines and a better voltage schedule to fur-
ther improve the system energy consumption. In the following, we
present the algorithm and several theorems, which tackle the two
problems simultaneously. We first introduce the concept of critical
interval.

DEFINITION 7. The essential interval with the largest
-intensity is called the critical interval of job set J.

It is easy to see that the minimum constant speed needed for to
be feasible must at least equal the -intensity corresponding to
the critical interval of . Applying in can
guarantee finishing by its deadline, what happens to other jobs
in this interval and the jobs elsewhere?

Suppose that the critical interval of corresponds to -essential
interval . We would like to investigate the impact of remov-
ing from the overall execution time interval of . By re-
moving the critical interval of , we mean the following:

1. Remove from the jobs associated with , that is, job
and all other jobs having higher priorities than and

released within .

2. “Shrink” the interval into a single time point, i.e.,
reduce every time instant greater than by the amount of

. If , or for any job is inside
before the reduction, it will be changed to the value

of .

For the remaining jobs, we can again find the critical interval. Re-
peatedly performing the above steps, we obtain a set of critical in-
tervals and the corresponding speeds. We will show that these crit-
ical intervals form a valid, low-energy voltage schedule. We first
summarize the above procedure in Algorithm 2 on the next page.

By applying Algorithm 2, we obtain a set of intervals and
their corresponding constant speeds . The following two theo-
rems describe the important characteristics of and (see [11] for
the proofs).

THEOREM 3. Given a job set , let and for
be the critical intervals and corresponding speeds

output from Algorithm 2. Every job in is guaranteed to be com-
pleted by its deadline if is used in the corresponding in-
terval .

THEOREM 4. Given a job set , speeds ob-
tained by Algorithm 2 satisfy the following:

.

From Theorem 3, we conclude that the set of critical intervals and
their associated speeds obtained by Algorithm 2 form a valid volt-
age schedule. Also, based on Theorem 3 and 4, we have the the
following corollaries(see [11]).

COROLLARY 1. The first speed in the speed set produced by
Algorithm 2 is the minimum constant speed that can be applied
throughout the execution of all jobs such that no jobs violate their
deadlines.

COROLLARY 2. The voltage schedule obtained by Algorithm 2
always saves more energy than the one that applies the minimum
constant speed when the processor is busy while shuts down the
processor when it is idle.

Our approach to constructing a low-energy voltage schedule is
a greedy approach since we strive to find the minimum constant
speed during any critical interval. It guarantees to result the min-
imum peak power consumption. However, our algorithm may not
always produce the minimum-energy voltage schedule. In the fol-
lowing experimental section, we will show that the energy saving
achieved by applying our algorithm is quite significant.



Table 1: Experimental results comparing the three voltage scaling approaches for tasks with fixed priorities.
Worst. Exec Norm. Exec

Utilization
0.1-0.2 100 45.02 41.46 100 44.31 41.12
0.2-0.3 100 50.44 47.63 100 48.07 46.35
0.3-0.4 100 68.30 66.31 100 52.46 50.83
0.4-0.5 100 59.89 55.86 100 59.41 54.90
0.5-0.6 100 73.90 69.77 100 78.55 69.62
0.6-0.7 100 89.43 84.96 100 88.97 83.36

Table 2: Experimental results for two real-world real-time systems
Worst. Exec Norm. Exec

Systems Utilization
CNC 0.4887 48173.9 31164.7 29867.2 32036.5 21380.1 19515.6
INS 0.7353 307670 272132.0 270890 193684 168993 168153

5. EXPERIMENTAL RESULTS
In this section, we compare the performance of our research with

the work proposed in [12] and [13]. For brevity, we use VSLP,
LPFS, and LPPS to represent Algorithm 2, the algorithm in [12],
and the one in [13], respectively. We assume that . The
approaches in [12] and [13] are intended to apply to periodic tasks.
Therefore, we also construct our job sets from periodic tasks to
ensure a fair comparison.

Since different voltage scheduling approaches may benefit from
the task timing parameters differently, a fair comparison needs to
study a large spectrum of utilization factor values. In our experi-
ments, we first randomly generate a set of periodic task sets, each
of which contains five tasks. The period of each task is randomly
selected from a uniform distribution between 10 to 50, the deadline
of each task is assumed to equal its period, and the worst case ex-
ecution time (WCET) is less than its period and is also randomly
generated. Since the utilization bound for 5 tasks is approximately
0.74(see [7]), we partition the utilization factor values from 0.1 to
0.7 into intervals of length 0.1. To reduce statistical errors, the
number of task sets with utilization values within each interval is no
less than 20, and the average results are collected in Table 1. Fur-
thermore, we apply our approach to two real-world applications:
CNC (Computerized Numerical Control) machine controller [10]
and INS (Inertial Navigation System) [1], and the results are shown
in Table 2. We also incorporate in our approach the on-line volt-
age scheduling algorithm in [12], i.e., extending the execution of
the current job till its deadline or the arrival of the next job when
there is no job in the ready queue. Similar to that in [12], the execu-
tion time for a task is assumed to be normally distributed within its
best and worst case execution time, and we assume that best case
execution time (BCET) for each task is half of its WCET.

In Table 1 and Table 2, columns , , and
represent the power consumption by algorithms VSLP, LPFS, and
LPPS, respectively. To better present our results, in Table 1, we
let be 100 and normalize the other two correspondingly.
Column Worst. Exec represents the cases when task execution
times equal their WCETs, and column Norm. Exec represents the
cases when the task execution times are normally distributed.

From the statistical data shown in Table 1, one can readily con-
clude that our voltage scheduling strategy leads to more energy sav-
ing than the other two approaches, regardless of whether the job
execution times are equal to or less than their WCETs. The reason
for this is that: when the ready queue is not empty, LPFS always
uses the full speed to execute the jobs; LPPS is more efficient and

uses the lowest maximum constant speed; in our approach, even
lower speed is possible according to the voltage schedule obtained
by Algorithm 2. Moreover, note that in Table 1, our algorithm can
save more energy when the processor utilization is lower. This con-
forms with the following intuition: when the processor utilization
is low, our algorithm tends to find a constant speed which can be
applied to relatively long intervals while still meet the deadline re-
quirements for the jobs. When the processor utilization is higher,
the interval with constant speed becomes relatively shorter and sav-
ing becomes somewhat less. The results applying our approach to
two real world systems, as shown in Table 2, also agree with our
analysis above. Finally, we would like to emphasize that VSLP and
LPFS can be applied to both periodic tasks and tasks that do not
occur periodically, while LPPS is limited to only periodic tasks.

6. SUMMARY
In this paper, we study the problem of determining the optimal

voltage schedule for a real-time system with fixed-priority jobs im-
plemented on a variable voltage processor. Two algorithms are pre-
sented in the paper. The first one takes time, where is
the number of jobs to be scheduled, and finds the minimum con-
stant speed needed to complete each job. The second algorithm,
with time complexity, builds on the first one and produces
the following: (i) the minimum constant voltage (or speed) needed
to complete a set of jobs, and (ii) a voltage schedule which always
results in lower energy consumption compared to using the min-
imum constant voltage and shutting down the system when it is
idle. The experimental results obtained from both randomly gener-
ated and real-world real-time systems have shown that our voltage
schedule algorithm consistently leads to more energy saving than
existing approaches. Furthermore, our algorithms do not limit to
only periodic tasks. Our future work is to improve the algorithms
presented and strive to find an optimal voltage schedule.
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