Pre-silicon Verification of the Alpha 21364 Microprocessor
Error Handling System

Richard Lee and Benjamin Tsien
Compag Computer Corporation
181 Lytton Avenue, Palo Alto, CA 94301

{richardl, tsien}@pa.dec.com

ABSTRACT

This paper presents the strategy used to verify the eror logc in
the Alpha 21364 microprocesor. Traditional pre-silicon
strategies of focused testing o unit-level random testing yield
limited results in finding complex bugs in the eror handing
logc of a microprocesor. This paper introduces a technique to
simulate eror condtions and their recovery in a global
environment using random test stimulus closely approximating
traffic foundin ared system. A significant number of bugs were
foundusing this technique. A majority of these bugs could ot be
uncovered using a simple random environment, or were counter-
intuiti ve to focused test design.

1. INTRODUCTION

Reliability is an important feaure in a microprocessor used for
misgon critical systems [1]. As microprocesor fedure sizes
decrease, the probability of logic errors due to alpha axd ron-
terrestrial particle strikes increases. Experiments dow that
structures such as memory and register cells are the most
susceptible to these transient errors and in high performance
microprocesrs, these ae the structures that are most
prominent. To ensure correct operation, error logic is designed
into the micro-architecture to detect these transient fail ures and
to correct the arors if posshle. If a detected error cannot be
corrected, the aror logic must be designed to provide the correct
information and status to enable graceful degradation of the
system. The aror handing system of a microprocesr, by its
very nature, is only called upon on relatively rare occasions i.e.
when an error ocaurs. An uncktected error or poor error
containment can lead to disastrous consequences if the errar logic
fails to operate correctly [2]. The correct verification of the
microprocesr error handing logc is both important and
complex.

Transient errors occur asynchronously to the normal operation of
the microprocessor. The correct verification of the eror handing
logc must comprehend the cross product of the microprocessor
machine states and its potential error conditions. Additionaly,
error handling requires complex interactions between hardware
and software & a global level; asaumptions made & the interface
level are prone to misinterpretation.

Traditional verification methods include focused and random
testing [3-5]. Focused testing is effective for validating well-
documented and unarstood aress. Error handling verification,
however, requires the aility to generate complex interactions
that may not be intuitive. Thus, focused tests are ineffective here
because of the size and complexity of the state space. Random
testing is better suited when a test space is large. However, if
complex interactions between urits cannot be identified, then
simple random testing cannot be used to target interesting states.
The limitations of the traditional methods described above
indicate that these techniques cannot be relied upon as the sole
means of finding complex bugs in errar handling logic.

This paper introduces a global random error environment to mee
the challenge of error handling verification. To achieve complex
interactions between urnits, the gproach alows error injection
and recovery as well as re-injection of uncorrectable erors.
Correctable erors can be continuously injected anywhere in the
system, at any time. The ewironment dso allows injected errars
into a system running with redistic self-checking stimulus.
When executed in conjunction with correctable and urcorrectable
errors, this approach provides maximum test coverage. The
results dhow that many of the bugs found wsing this approach
could not hawe bea foundor would have aken mub more dfort
to find using focused or simple random testing.

2. BACKGROUND

The Alpha 21364 microprocesor [6] is the fourth generation of
the Alpha microprocessor family. The system-on-a-chip design
of the Alpha 21364 microprocessor includes two levels of cache
memory, a memory controller, an interprocesor router, and the
Alpha21264core [7]. The Alpha 21364 esign lends itself to the
design of glueless scalable, shared memory multi procesor
systems. A complete set of error handing feaures is
incorporated into the Alpha 21364 micro-architecture including
extensive parity and ECC protection on interfaces and memory
structures. Error conditions are recorded to a comprehensive set
of configuration status registers (CSR'’s) which are used by error
hand ersto react accordingly.

3. CHALLE NGES AND SOLUTIONS

There ae two major challenges to comprehensive global error
testing: exploding states and inter-unit coll aboration.

3.1 Exploding States

An error condition ocaurs asynchronously within a system. For
example, an alpha particle can strike amemory cell and flip its
value, or signals within an external cable can be dfected hy
noise. Errorssud asthese a@ correctable on thefly , hence their
effect on the rest of the system can be confined. A more serious

error is one that can be detected bu whose original stete is lost.
Here, the error condition must be contained to minimize its effect
on the rest of the system. The containment mechanism adds
many more states to the design because the handing o such
errors requires acoounting for the cross products of al the states
in the system. Verificationof the aror logic is a non-trivial task
because events ocaur relative to ane another both logcally and
temporaly. This crossproduct of al the state machines in the
“normal” flow of the design, coupled with the alditiona states
introduced by the detection of errors, results in an explosion of
the state space under error conditi ons.

This large number of states cannot be eaily identified nor
exhaustively tested through focused tests. What is needed is a
comprehensive random environment to suppement focused
testing. This random environment must support the injection of
random error types at random times. Furthermore, because of
the large number of cases, this support must be done with
minimal overheal.

3.2 Inter-unit Collaboration

An error detected by a logc block or unit may neel to be
communicated to ather units. The consumers of corrupted data
need information about these arors they can either correct
them or attempt to minimize their effects. Bad data needs to be
isolated from goad data so that the error cen be @ntained and the
impact on the rest of the system minimized. This technique
requires complex interactions among different hardware and
software components. A specific error verified to be handed
correctly within a unit does not mean that an error will be
correctly handed across al the dfected urts within a system.
An error neals to be verified to be correctly handled as it
progresses from unit to unit and from processor to procesor,
leaving a ‘trail” in the form of error status registers and
interrupts.

4. REQUIREMENTS

To med the chall enges identified above, a global random error-

testing environment was implemented. The requirements

necessry for this environment are asfollows

* Correctable erors — Correctable erors are arors detected
and then corrected by the hardware and generaly do not
involve intervention outside of the unit. In the eror test
environment, these ae dlowed to happen repeaedly in the
background, anywhere in the system.

* Uncorrectable arors — An urcorrectable eror is a detected
error that cannot be corrected by hardware. The challenge
isto control the side effect of the eror andallow the system
to recover. Recovery from an urcorrectable aror is the best
way to make sure that an erroneous dde dfect did not
happen. With a full understanding of the eror mechanisms
of each urcorrectable eror, the system can be brought to an
error-free state. This level of recovery requires a strategy
for error injection time and locations, error containment, and
post error clean up and recovery.

e Error rate — Simulating on a pre-silicon model is dow. The
test environment should have minimal overheal in error
injection and recovery. Additionally, because the system
being tested is a multiprocessor, the ewironment should
alow multiple erors to happen simultaneously as long as

they do not interfere with each other. This constraint is
needed to correctly verify the isolation of these errors.

o Sdf-checking — All test cases dould be self-checking to
require minimal human interaction. This requirement means
self-checking on the error status @ well as the datainvolved
with an error, based on the aralysisof error effects.

* Redistic stimulus — The stimulus needs to approximate the
traffic on ared system while anerror isbeing injected.

* Engineeing effort — The dfort needed to wverify error
handing should be minimal. Thus, any solution must be
simple aswell aseffective.

5. IMPLEMENTATION

A global random error-testing environment was creaed from the
requirements listed above. This environment consists of adding
error-handling capacity to an existing environment.

51 RAMP

For the purpose of doing multi processor (MP) verification of the
Alpha 21364 we had ealier developed an environment to all ow
runnng various garing agorithms, similar to [8]. This
environment, the Random MP (RAMP) Exerciser, alows these
MP agaithms to run undr a mini-OS environment in a
distributed full-chip model. The RAMP OS is made up of a set
of privileged architecture library (PAL) [9] cdlls along with a
boat up reset sequence. The PAL cals range from context
switching to trandation bufer (TB) miss handers. The MP
agorithms, also referred as RAMP tasks, can be written in
standard C or assembly programming languages and are
independent of the simulation configuration.

The novelty of RAMP is the interaction between the OS and the
tasks. Prior to simulation, scripts can be used to randomize the
number of tasks and their placement within the simulation
topology. This task information, consisting o an instantiation
count and aunique id for each instantiation, is compiled into the
OS and communicated to the tasks during start up. Similarly, a
shared memory region is also defined and communicated to the
tasks. For example, during the startup of afalse-sharing task, we
simply index the id into the shared memory region.

We refer to the tasks participating in one sharing event as a
groupof tasks. Under RAMP, we are al owed multi ple groups of
tasks in the same simulation. For example, we @n prticipatein
false sharing on a set of processors whil e doing a fetch-increment
lock test on another. We can even have multiple groups of false
sharing on dfferent shared memory regions. To make multiple
grouping posshle, the RAMP OS performs a lightweight virtual
to physical addresstranslation based on mathematical functions.
This mapping all ows tasks to be written in afixed virtual address
without concerns that they overlap with another task, asin ared
OS. Likewise, the configuring o RAMP groups can bedoneby a
randomizer script and compiled in with the OS. With an OS and
a library of tasks, the RAMP environment can generate an
enormous amount of different test stimuli under varying
configurations.

We decided to leverage the existing RAMP environment. First
of al, running under an OS simplifies the task construction, as
the OS aready handes many of basic functions. Since RAMP
drealy has a sizable library of tasks, grouping o these tasks
alows varying backgroundtraffic in addition to the task, creaing

amore interesting environment to inject errors. Self-checking
existing RAMP tasks aso helps to identify situations where
errors have not been contained. Finally, RAMP is drealy a
global test environment with PAL calls and exception hand ers.
Most error handling should simply be expanding these handers
for error conditions.

5.2 Extensionstothe RAMP Environment

The work to extend RAMP into an error verification environment
was undertaken on threefronts: error task, OS support, and error
injector demons, to best redize the list of requirements.

5.2.1 Error Task

Interesting errors involve agroupof procesors saring a piece of
data that is corrupted somewhere in the course of execution.
This error may then propagate through the system affecting ather
procesors. Procesors dharing the data may each enter interrupt
or machine check handlerswhen they reference the affected data.
The most natural solution is to creae eror task instances, that
when run in a group undr RAMP, can generate sharing an the
error data, check the dfects caused by these arors, and take the
appropriate ations to clean up afterwards. Placing error
handing in a task alows us to leverage the most out of the
RAMP environment. As with any other task in the RAMP
environment, we can mix and match dfferent tasks, thereby
creding interesting background traffic for resources that are
being shared. However, in order to mix error tasks with other
tasks or even other instances of the same earor task, we must
make sure we can isolate the errors to the groupof tasks to which
they belong. This means an error group must inject its errors to
known addresses 9 nothing belonging to aher tasks will be
affected. Since RAMP does addresstranslation, a fixed virtual
addresswithin the eror test will be mapped to different physical
addresses in dfferent groups. Also, there is a mechanism
between error groups and injectors to prevent multiple groups
from injecting errors to the same resource in the system before
each hes had a chance to hande them. Doing so corrupts error
registers and makes it hard to identify the owners of each error.
Extensive self-checking on the eror data guarantees errors are
handed and cleaned up poperly. Self-checking on non-error
tasks guarantees errors do not incorrectly propagate. Thus,
placing error handing in a user task alows us to achieve
multi ple uncorrectable erors in a system running uncer redistic
MP traffic whil e doing self-checking.

5.2.2 OSExtensions

Under the RAMP environment, we added interrupt and machine
check handers. In ared system, these handlers are expected to
evaluate the eror status reported by error registers and decide to
correct them, kill the process affected by the eror, or in the
worst case, gracefully shutdown the system. In our verification-
centric approach, the OS simply records the relevant errors into a
gueue & they ocaur in the handlers © the eror tasks may use
that information for checking. The OS aso performs if-
checking on other errors that should never ocaur due to the
design of our error environment. One such example is an
unexpected second error ocaurring before the first oneis handed.
Finaly, the OS cleas the eror registers additional error
events can trickle in and be recorded. This design alows us to
test under multiple eror groups, because the OS does not neel
any knowledge regarding which errors belong to which group.

The tasks themselves claim the arors that belong to them. The
OS, of course, neads to werify that all the erorsin a system were
claimed at theend of a smulation run.

The OS a'so provides a set of PAL callsto clean uperrors. Upon
interpretation of the aror information, the tasks decide on the
appropriate ations to repair the arors. It is important not to
indiscriminately repair every possble thing that can gowrong. If
we only repair the erors reported by the eror registers, we can
eaily detect if something unexpected has also happened. In
addition, fixing only what is necessary is least expensive (cycle-
wise) in terms of simulation.

5.2.3 Error Demons

Demons [5] are programs that act as I/O devices within the RTL.
As virtual 1/0 devices, they can be accessed from the tasks and
they can also access memory during a simulation. Because they
are compiled into the RTL, they have acessto al of the RTL
signals. Error injection is a perfect role for the demons. Demons
are controlled by code running on the Alpha 21364 core through
I/O reads and writes to a set of predefined control registers. 1/0
operations provide the ided means for code running on one
model to communicate to demons on any model in a distributed
MP simulation environment. Communication is done through
the built-in coherency protocol and requires no additional
communication channel between dfferent models. In addition,
I/O operations are non-cacheable and have their own routing
channels. This approach hasa minimal effect on the chip and is
very unlikely to be dfected by error conditions caused by the test
stimulus.

We divided the task of error injection to be handed by multiple
demons. There is an error demon for each architectural unit in
the design. The division is in place since some @rors may not
need to involve the whole chip. In redity, the interesting errors
involve units from separate proceswors. Therefore, from a single-
procesor point of view, it is perfectly normal for different units
to be involved in handing different errors at the same time
without overwriting status registers. For example, an
uncorrectable data eror may ocaur in the cache due to a request
from the local Alpha 21364 core, while another group of tasks
injects an error at the memory unit that is processng a remote
request. These arors dould be recorded in their respective
status registers without interfering each other. Therefore, having
multi ple, separately programmable demons smplifies the task of
tracking injection states within a unit and all ows these demons to
simultaneously inject unrelated errors at their discretion.

To alow a more random error stimulus, we dlow multiple
groups of error tasks to configure a demon. Each task can
register with a demon, which returns an address offset that the
task uses to control the demon separately from other tasks. Each
task can separately request error injections and change weights
between the types of uncorrectable erors independently from
others. Of course, a demon would only inject an urcorrectable
error for one task at a time, urtil their errors are handed, so it
does not pollute the error status registers. Also, error checking is
made more dfective by allowing multiple users of a demon.
From the standpoint of a group of tasks, an error not recovered
correctly will be blatantly obvious to another group.

In the overall scheme, we choose to implement as much
intelli gence into the demons as we can. The demons randomly
choose between dfferent types of uncorrectable arors while the

tasks can provide minimal guidance in terms of weights. In
addition, demons also contain behavioral models predicting the
effects of the errors upan the status registers. That information is
used by the tasks to compare aginst what is read from the status
registers by the OS during handler routines. In this nse, the
analysis of the error conditions is done by the demons, which run
magnitudes faster than the same code on the model. We dso
reduce the engineering effort because we ae tetter able to debug
our code runring in the behavioral model in isolation.
Engineeing effort considerations were also a part of our decision
to implement most of the runtime aror checking and handling in
tasks, in addition to the reasons in the @ove sections. Code
written in C provides much better debuggability than assembly.

5.3 Process

5.3.1 TaskInitialization

When a task is darted by the OS, it receives an id within its
group. One task will be the master task, controlli ng the demons
and checking the arors, while others participate in generating
interesting traffic on the earor address A shared memory
location is reserved for error injection. The demon requires two
addresses, one to inject the arors and another to report them. It
isinitialized by an OS PAL call, which translates the aldresses
from virtual in the task to physical in the demon. In addition, a
virtual mapping o the demon control addressis returned to the
caler task. Although member tasks in a group are not started
simultaneously by the OS, the OS has an option to guaranteethat
the tasks will be running simultaneously at some time. In this
case, we perform a code barrier to make sure dl tasks are
synchronized at the same point in the code before we start any
error testing.

5.3.2 Task Exeaition

At the start of each loopof execution, we randomly pick a demon
and assert readiness by writing to its control address While
awaiting injection, we perform self-checking on the earor
address Fallowingisasimplified version of the code:

main() {

i=0;
while(lerror_injection_poll) {
j = byte_false_share();
if (i !=j) { //self-checked
evict_cache_block(error_injection_poll);
memory_barrier();
if (lerror_injection_poll)
break;
else
exit(1); // self-check error
i =i+ 1 & Oxff; //generate new check value
}
}
memory_barrier();
evict_cache_block(error_address);
code_barrier(my_group_id);

int byte_false_share() { //random FS variations
if (random < XXX) { //simple load-store
val = error_address[my_group_id];
error_address[my_group_id] = val + 1 & Oxff;
} else if (random < YYY) { //load-evict-store
val = error_address[my_group_id];
evict_cache_block(error_address);
error_address[my_group_id] = val + 1 & Oxff;
} else // other variations...

return val;

In the main code, all tasks perform false sharing while awaiting
the demon to inform error injection through a memory write to
the polling address When that ocaurs, al members of a group
stop sharing an the data to perform recovery. However, because
memory latency is variable in an Alpha 21364 system, an error
may have dready been observed by a task resulting in bad data
that fails =lf-checking. Under that situation, the polling address
datais evicted and re-requested after doing a memory barrier. A
memory barrier guarantees any outstanding requests to the aror
address have been resolved. Upon receiving a response for the
second oll we can determine whether the self-check had been
legitimate or we had just gatten corrupted data.

The running task is not aware of the eror recording done by the
OS behind the scenes. The Alpha 21364 core may jump back
and forth between interrupt handers, machine check handers,
and error task code before dl the erors are recorded. To
guarantee dl the erors are recorded on one processor, a memory
barrier is performed. The tasks then perform a code barrier to
synchronize dl the members, guarantedng all errors on all
member procesors are recorded before procealing to hande the
error.

The master task walks through the aror queues on the dfected
procesors depending an the type of error. Errors in the queues
are claimed if they match the aldress and checked against the
demon’s expectation. The demons aso supdy information on
what actions need to be taken to recover from the arors, such as
the necesdty to reinitialize the directory state for a memory
block. These ations are performed by the master task to all ow
another injection. Also during recovery, the master task notifies
the demon that all errors have been coll ected, so the demon can
inject errors for another ready groupof tasks.

5.4 Examplesof Errors

Error injection to different areas of the chip has diverse
consequences on the types of error conditions and the number
and composition of processors observing errors. This ction
describes some of these complex sequences that are ahievable
and verifiable though global random error testing.

5.4.1 Cache TagUncorredable Error

The Alpha 21364 fas a large L2 set-assciative cache. A tag
error is detected when alookup to an index results in away with
atag error. If the Alpha 21364 core makes a request to that
index, we would receive amachine check. However, if the eror
is detected duing a remote probe, the remote requestor would
also receive amachine check. In addition, as the coherency of
the block is compromised by the corruption of the tag, the
directory is eventually made awvare of the eror, which causes a
memory controll er error that triggers an interrupt.

The demon would report the type of transaction that encountered
the aror aong with its error status. The task is intelli gent
enough to check the status recorded by the CSRs against the
demon. In addition, the effectsof additional errors are taken into
consideration, and the aror queues of all members in the group,
along with the memory unit of the processor containing the
shared memory, are examined for error ocaurrences belonging to
this address

5.4.2 Router Uncorredable Error
An urcorrectable eror in the data section of a packet causes a
router error in the node where it is detected and triggers an

interrupt. The packet is converted to a known pettern and
transmitted to the destination, where it causes a machine check.
The aror pattern itself does not cause further router errors. It is
important to be ale to inject errors in any node dong the path a
message packet takes between source and cestination. The
Alpha 21364usesadaptive routing S pre-arranging injection ata
node is impossble because the path of a packet is unpredictable.
However, a useful attribute of the Alpha 21364router protocol is
that packets always take the shortest path from source to
destination. Random injection of router errors is achieved by
randomizing the number of hops before an error is injected.
Also, to track the packet before injection, a spare hit in the
header is used to indicate aspecia packet. In addition, the data
is replaced with the injection hop count and the polli ng address
of the error group. The router demon at each hg decrements the
counter and when it reeches zero, we inject the eror. During
injection, the data portion of the packet is randomized with a
combination of correctable and urcorrectable erors as well as
non-error ticks. The injector router also communicates the eror
information along with its CPU id to the error gioup. The mader

task doing the recovery would check the injector processor along
with the requestor proces=or for errors. It also tolerates any other
group members that have received bad responses from forwards.
Any extraneous errors elsewhere that are not claimed will

eventually self-check by another group or be caught by checking
done at theend d the simulation.

5.5 Difficultiesand Workarounds

Sometimes, handling certain errors requires all the procesors in
the system to be in a recovery mode. For example, in some
cases, the hardware requires that memory traffic be quieted to a
single node. Synchronizing processors for recovery is time
consuming and may not even be necessry if there is no sharing
at that node. We devised a method, through simulation tricks, to
isolate such node while dlowing aher unrelated nodes to
continue operating. Studying the Alpha 21364 coherency
protocol in detail, one can infer that certain messges creae
other messages. For example, requests can result in forwards
sent by the directory controller. These forwards then result in
acknowl edgements back to the directory node. Acquiring a block
exclusive by a requestor can also result in victims being sent
back to the directory node. To isolate anode, any new requests
destined to the node ae first buffered up A demon control
register is polled urtil the directory controller is empty of all
outstanding requests. Then, any new victims become buffered
until the demon determines that all existing victims are drained.
During this time, the router’s inter-procesr traffic handling is
not affected. With the local procesor also sleeping, it is eay to
clean up the memnory location and reintegratethe node.

6. RESULTS

We believe we had goad success with the global random error
approach. The types of bugs we found with this test method are
much more complex than we had previously encountered using
either focused testing o unit level random testing.

6.1 Analyss

Figure 1 shows the number of error-related bug counts attributed
to each verification method used to verify the eror logic on the
Alpha 21364 at the time we started to use global random error

testing. Prior to and duing the ealy introduction of global
testing, the bug rate was high and traditi onal methods of focused
and random testing yielded significant number of bugs.
However, as time progessed towards the end of the project,
global testing compriseda larger shareof the sum.

Bugs

| Focused m Random 0 Global |

Figure 1: Err or bug breakdown according to test stimulus

While focused and random testing tapered off due to their
limitations, global testing continued to find more bugs. This was
in part due to the thoroughnessof the method. Many of the bugs
were simply too complex for focused or random teststo find.
Figure 2 classfies the bugs found sing the global random error
testing whether they could also have been found through other
means. We classfy abug as“global only” if:

1) A focused test aroundthe aeaof the bug is too complex or
unintuitive to be designed by a verification enginee with a
reasonabl e effort.

2) A random exerciser does not cover the cross product of the
bug due to unexpected complex interactions.

From our analysis, we believe the mgjority of the bugs found Ly

the global environment could not reasonably have been found by

any other test stimulus. Furthermore, in doing similar analysis,
we found global testing should also be dfective in finding many
of the bugs foundusing ather techniques.

1 Focused
[mRandom
W Random and Focused
ONeither (Globa Only)

Figure 2: Clasdfication of bugsfound in global testing

Table 1 compares the dfectiveness of each environment in
finding complex bugs. We define complex bugs to be bugs that
either involve multiple units on dfferent processors or require
timing sensitive cross products. Also, we ae more stringent in
clasgfying bugs involving correctable arors as complex, because
they do not usualy require recovery and can be injected
continuously on any random simulation models.

Focused 4%
Random | 13%
Global 5%

Table 1: Percent “complex” bugsin each environment

This table shows that only 4% of the bugs found lky focused
testing were considered complex and indicates that focused
testing generally catches bugs in error cases that are usually well
conceived and dbcumented. Random testing may find some
complex crossproducts that escape focused testing. The majority
of the bugs found using global testing are consdered complex.

6.2 Examplesof Error Bugs

The analysis of error bugs sows the bugs found wsing gobal
random error testing are more complex than those found through
other methods. The foll owing are examples of such bugs.

6.2.1 Multiple Victimsin a Global System

In this case, a method to recover from an error in one unit causes
an inpu pattern to violate the protocol assumptions made by
another unit. Normally, only one victim to a block can exist in
the system at any given time. To \ictimize implies that one
procesor had exclusive ownership of the block. It is logcal to
make the asumption that the directory controller should only
expect to seeone victim when it is handling a transaction. This
was a vaid asaumption urtil we started testing the aror logic.
During the recovery of a cache tag error, the acepted hander
sequence would turn off error protection and perform a sequence
of loads to clea out the tags of all ways at an index, thereby
replacing the bad tag. However, should a tag error corrupt the
status of a way to exclusive, we would urintentionally send a
victim out to the directory controller of the block. If we ae in
the process of handing a transaction to the same block at the
directory controller and a legitimate victim has merged to the
transaction, a second (bad) victim merge to the same transaction
results in a resource le&k with the buffer holding the data for the
first victim. This case is important because if the node causing
the incorrect victim were in a different partition from the node
containing the protocol logc, an error in one partition may affect
a different partition, resulting in error containment issues. It is
interesting to note that we rethought and chose a different
strategy for tag error recovery aswe fixed the bug.

6.2.2 Low Probalility Event Involving Diredory

Controller

When the owner of a block detects uncorrectable ECC errors in
the data it wants to victimize, it signals that information when
sending the victim packet. The directory controller that handes
the victim would tag the directory state to a special state
indicating the block is incoherent. In this bug, there was a
request from a different node ariving first at the directory
controller at aroundthe sametime. A request is always sroged
at the local procesor. In this case, our snogp just mised the
specialy tagged victim and replied an “in-flight” status to the
directory controller. Under normal conditions, we dways read
the directory state first, drain the victim, and then respond to the
requestor. However, the background traffic in the directory
controller exaggerates the delay in the directory read so the
victim write to the memory ocaurs ealier. All of the &ove
conditions: error victim, snoop miss or ealy victim write, are
rare events and when combined together, produced a bug that

resulted in no response being sent to the requestor. The pre-
sili con environment all owed us to debug and fix this bug within
hours.

7. CONCLUSIONS

With the increasing market requirements for reliable, high-
performance systems, high reliability has become an extremely
important feaure of large-scale SMP systems. Testing the aitire
system's ability to hande maor and minor errors
deterministically is a complex task because it involves an
exploding number of states and interactions among multi ple units
and multiple processors. The aility to test complex global
errors pre-sili con saves mgjor efforts post-sili con.

Our global error testing environment based on RAMP uses
random error injection to cover as many states as posshle while
the combination of OS, user tasks, and 1/0O demons crede
complex inter-procesor traffic patterns during which errors are
injected and handled. Many of the bugs found wsing this new
environment are complex bugs that could not have been found
with unit-level random testing or focused testing. We believe we
satisfied our goal of creding redistic error stimulus in a global
MP environment to allow us to test error conditions in quick
succesgon, using minima engineging effort. Finaly, we
believe that we have raised the confidence in the integrity of the
Alpha 21364microprocessor through testing error conditionsin a
global environment.

8. ACKNOWLEDGEMENTS

We wish to thank Scott Kreider and John Fu, for their
encouragement and support; Jason Mancini for his work in the
memory error injector code; Jonathan Nall for the
implementation to buffer inter-procesor traffic during recovery
of a node. Appreciation is also extended to members of the
design team for their feedback.

9. REFERENCES

[1] “Data Integrity Concepts, Features, and Techndogy,” Compag White
Paper, 1999

[2] E. Jennet a, “Fault Injedion into VHDL Modes The MEFISTO
Tods” in Procealings of the 24th International Symposium on Fault
Tolerant Computing, pp. 66-75, 1994

[3] M.Kantrowitz and L.M. Noack, Functional Verification d a Multi-
isaue, Pipelined, Superscalar Alpha-Procesor — the Alpha 21164 CPU
Chip. Digital Technical Journal, 7(1):136-144, August 1995

[4] M. Bass T.W. Blanchard, D.D. Josephson, D. Weir, and D.L.
Halperin, Design Methoddogies for the PA 7100LC Microprocesor,
Hewlett-Packard Journal, 46(2):23-25, April 1995

[5] S. Taylor et a, “Functional Verification d a Multi-issie, Out-of-
Order, Superscalar Alpha Procesor — The DEC Alpha 21264
Microprocesor,” in 35th Design Automation Conference Proceealings,
1998

[6] P. Bannon “Alpha 21364 A Scalable Singechip SMP” in
Proceglings from Microprocesor Forum October 1998
http://www.alphapowered.com/alpha tech presentshtml.

[7] Linley Gwennap, “ Digital 21264Sets New Standard,” Microprocessor
Report, pp. 11-16, 1996

[8] A. Hos®ini, D. Mavroidis, and P. Konas, “Code generation and
analysis for the functional verification d microprocesors,” in 33rd
Design Automation Conference Procealings, 1996

[9] RichardL. Sites, AlphaArchitedure Reference Manud, Digital Press
Burlington, MA, 1992

	Main
	DAC01
	Front Matter
	Table of Contents
	Session Index
	Author Index

