
Pre-silicon Verification of the Alpha 21364 Microprocessor
Error Handling System

Richard Lee and Benjamin Tsien
Compaq Computer Corporation

181 Lytton Avenue, Palo Alto, CA 94301

{richardl, tsien}@pa.dec.com

ABSTRACT
This paper presents the strategy used to verify the error logic in
the Alpha 21364 microprocessor. Traditional pre-sili con
strategies of focused testing or unit-level random testing yield
limited results in finding complex bugs in the error handling
logic of a microprocessor. This paper introduces a technique to
simulate error conditions and their recovery in a global
environment using random test stimulus closely approximating
traff ic found in a real system. A significant number of bugs were
found using this technique. A majority of these bugs could not be
uncovered using a simple random environment, or were counter-
intuiti ve to focused test design.

1. INTRODUCTION
Reliabilit y is an important feature in a microprocessor used for
mission criti cal systems [1]. As microprocessor feature sizes
decrease, the probabilit y of logic errors due to alpha and non-
terrestrial particle strikes increases. Experiments show that
structures such as memory and register cell s are the most
susceptible to these transient errors and in high performance
microprocessors, these are the structures that are most
prominent. To ensure correct operation, error logic is designed
into the micro-architecture to detect these transient failures and
to correct the errors if possible. If a detected error cannot be
corrected, the error logic must be designed to provide the correct
information and status to enable graceful degradation of the
system. The error handling system of a microprocessor, by its
very nature, is only called upon on relatively rare occasions i.e.
when an error occurs. An undetected error or poor error
containment can lead to disastrous consequences if the error logic
fail s to operate correctly [2]. The correct verification of the
microprocessor error handling logic is both important and
complex.
Transient errors occur asynchronously to the normal operation of
the microprocessor. The correct verification of the error handling
logic must comprehend the cross product of the microprocessor
machine states and its potential error conditions. Additionall y,
error handling requires complex interactions between hardware
and software at a global level; assumptions made at the interface
level are prone to misinterpretation.

Traditional verification methods include focused and random
testing [3-5]. Focused testing is effective for validating well -
documented and understood areas. Error handling verification,
however, requires the abilit y to generate complex interactions
that may not be intuiti ve. Thus, focused tests are ineffective here
because of the size and complexity of the state space. Random
testing is better suited when a test space is large. However, if
complex interactions between units cannot be identified, then
simple random testing cannot be used to target interesting states.
The limitations of the traditional methods described above
indicate that these techniques cannot be relied upon as the sole
means of finding complex bugs in error handling logic.
This paper introduces a global random error environment to meet
the challenge of error handling verification. To achieve complex
interactions between units, the approach allows error injection
and recovery as well as re-injection of uncorrectable errors.
Correctable errors can be continuously injected anywhere in the
system, at any time. The environment also allows injected errors
into a system running with reali stic self-checking stimulus.
When executed in conjunction with correctable and uncorrectable
errors, this approach provides maximum test coverage. The
results show that many of the bugs found using this approach
could not have been found or would have taken much more effort
to find using focused or simple random testing.

2. BACKGROUND
The Alpha 21364 microprocessor [6] is the fourth generation of
the Alpha microprocessor family. The system-on-a-chip design
of the Alpha 21364 microprocessor includes two levels of cache
memory, a memory controller, an interprocessor router, and the
Alpha 21264 core [7]. The Alpha 21364 design lends itself to the
design of glueless, scalable, shared memory multiprocessor
systems. A complete set of error handling features is
incorporated into the Alpha 21364 micro-architecture including
extensive parity and ECC protection on interfaces and memory
structures. Error conditions are recorded to a comprehensive set
of configuration status registers (CSR’s) which are used by error
handlers to react accordingly.

3. CHALLE NGES AND SOLUTIONS
There are two major challenges to comprehensive global error
testing: exploding states and inter-unit collaboration.

3.1 Exploding States
An error condition occurs asynchronously within a system. For
example, an alpha particle can strike a memory cell and fli p its
value, or signals within an external cable can be affected by
noise. Errors such as these are correctable on the fly , hence their
effect on the rest of the system can be confined. A more serious

error is one that can be detected but whose original state is lost.
Here, the error condition must be contained to minimize its effect
on the rest of the system. The containment mechanism adds
many more states to the design because the handling of such
errors requires accounting for the cross products of all the states
in the system. Verif ication of the error logic is a non-trivial task
because events occur relative to one another both logicall y and
temporall y. This cross product of all the state machines in the
“normal” flow of the design, coupled with the additional states
introduced by the detection of errors, results in an explosion of
the state space under error conditions.
This large number of states cannot be easil y identified nor
exhaustively tested through focused tests. What is needed is a
comprehensive random environment to supplement focused
testing. This random environment must support the injection of
random error types at random times. Furthermore, because of
the large number of cases, this support must be done with
minimal overhead.

3.2 Inter-unit Collaboration
An error detected by a logic block or unit may need to be
communicated to other units. The consumers of corrupted data
need information about these errors so they can either correct
them or attempt to minimize their effects. Bad data needs to be
isolated from good data so that the error can be contained and the
impact on the rest of the system minimized. This technique
requires complex interactions among different hardware and
software components. A specific error verified to be handled
correctly within a unit does not mean that an error will be
correctly handled across all the affected units within a system.
An error needs to be verified to be correctly handled as it
progresses from unit to unit and from processor to processor,
leaving a “trail ” in the form of error status registers and
interrupts.

4. REQUIREMENTS
To meet the challenges identified above, a global random error-
testing environment was implemented. The requirements
necessary for this environment are as follows:
• Correctable errors – Correctable errors are errors detected

and then corrected by the hardware and generall y do not
involve intervention outside of the unit. In the error test
environment, these are allowed to happen repeatedly in the
background, anywhere in the system.

• Uncorrectable errors – An uncorrectable error is a detected
error that cannot be corrected by hardware. The challenge
is to control the side effect of the error and allow the system
to recover. Recovery from an uncorrectable error is the best
way to make sure that an erroneous side effect did not
happen. With a full understanding of the error mechanisms
of each uncorrectable error, the system can be brought to an
error-free state. This level of recovery requires a strategy
for error injection time and locations, error containment, and
post error clean up and recovery.

• Error rate – Simulating on a pre-sili con model is slow. The
test environment should have minimal overhead in error
injection and recovery. Additionall y, because the system
being tested is a multiprocessor, the environment should
allow multiple errors to happen simultaneously as long as

they do not interfere with each other. This constraint is
needed to correctly verify the isolation of these errors.

• Self-checking – All test cases should be self-checking to
require minimal human interaction. This requirement means
self-checking on the error status as well as the data involved
with an error, based on the analysis of error effects.

• Reali stic stimulus – The stimulus needs to approximate the
traff ic on a real system while an error is being injected.

• Engineering effort – The effort needed to verify error
handling should be minimal. Thus, any solution must be
simple as well as effective.

5. IMPLEMENTATION
A global random error-testing environment was created from the
requirements li sted above. This environment consists of adding
error-handling capacity to an existing environment.

5.1 RAMP
For the purpose of doing multiprocessor (MP) verification of the
Alpha 21364, we had earlier developed an environment to allow
running various sharing algorithms, similar to [8]. This
environment, the Random MP (RAMP) Exerciser, allows these
MP algorithms to run under a mini-OS environment in a
distributed full -chip model. The RAMP OS is made up of a set
of privileged architecture li brary (PAL) [9] call s along with a
boot up reset sequence. The PAL call s range from context
switching to translation buffer (TB) miss handlers. The MP
algorithms, also referred as RAMP tasks, can be written in
standard C or assembly programming languages and are
independent of the simulation configuration.
The novelty of RAMP is the interaction between the OS and the
tasks. Prior to simulation, scripts can be used to randomize the
number of tasks and their placement within the simulation
topology. This task information, consisting of an instantiation
count and a unique id for each instantiation, is compiled into the
OS and communicated to the tasks during start up. Similarly, a
shared memory region is also defined and communicated to the
tasks. For example, during the startup of a false-sharing task, we
simply index the id into the shared memory region.
We refer to the tasks participating in one sharing event as a
group of tasks. Under RAMP, we are allowed multiple groups of
tasks in the same simulation. For example, we can participate in
false sharing on a set of processors while doing a fetch-increment
lock test on another. We can even have multiple groups of false
sharing on different shared memory regions. To make multiple
grouping possible, the RAMP OS performs a li ghtweight virtual
to physical address translation based on mathematical functions.
This mapping allows tasks to be written in a fixed virtual address
without concerns that they overlap with another task, as in a real
OS. Likewise, the configuring of RAMP groups can be done by a
randomizer script and compiled in with the OS. With an OS and
a library of tasks, the RAMP environment can generate an
enormous amount of different test stimuli under varying
configurations.
We decided to leverage the existing RAMP environment. First
of all , running under an OS simpli fies the task construction, as
the OS already handles many of basic functions. Since RAMP
already has a sizable li brary of tasks, grouping of these tasks
allows varying background traff ic in addition to the task, creating

a more interesting environment to inject errors. Self-checking on
existing RAMP tasks also helps to identify situations where
errors have not been contained. Finall y, RAMP is already a
global test environment with PAL call s and exception handlers.
Most error handling should simply be expanding these handlers
for error conditions.

5.2 Extensions to the RAMP Environment
The work to extend RAMP into an error verification environment
was undertaken on three fronts: error task, OS support, and error
injector demons, to best reali ze the li st of requirements.

5.2.1 Error Task
Interesting errors involve a group of processors sharing a piece of
data that is corrupted somewhere in the course of execution.
This error may then propagate through the system affecting other
processors. Processors sharing the data may each enter interrupt
or machine check handlers when they reference the affected data.
The most natural solution is to create error task instances, that
when run in a group under RAMP, can generate sharing on the
error data, check the effects caused by these errors, and take the
appropriate actions to clean up afterwards. Placing error
handling in a task allows us to leverage the most out of the
RAMP environment. As with any other task in the RAMP
environment, we can mix and match different tasks, thereby
creating interesting background traff ic for resources that are
being shared. However, in order to mix error tasks with other
tasks or even other instances of the same error task, we must
make sure we can isolate the errors to the group of tasks to which
they belong. This means an error group must inject its errors to
known addresses so nothing belonging to other tasks will be
affected. Since RAMP does address translation, a fixed virtual
address within the error test will be mapped to different physical
addresses in different groups. Also, there is a mechanism
between error groups and injectors to prevent multiple groups
from injecting errors to the same resource in the system before
each has had a chance to handle them. Doing so corrupts error
registers and makes it hard to identify the owners of each error.
Extensive self-checking on the error data guarantees errors are
handled and cleaned up properly. Self-checking on non-error
tasks guarantees errors do not incorrectly propagate. Thus,
placing error handling in a user task allows us to achieve
multiple uncorrectable errors in a system running under reali stic
MP traff ic while doing self-checking.

5.2.2 OS Extensions
Under the RAMP environment, we added interrupt and machine
check handlers. In a real system, these handlers are expected to
evaluate the error status reported by error registers and decide to
correct them, kill t he process affected by the error, or in the
worst case, gracefull y shutdown the system. In our verification-
centric approach, the OS simply records the relevant errors into a
queue as they occur in the handlers so the error tasks may use
that information for checking. The OS also performs self-
checking on other errors that should never occur due to the
design of our error environment. One such example is an
unexpected second error occurring before the first one is handled.
Finall y, the OS clears the error registers so additional error
events can trickle in and be recorded. This design allows us to
test under multiple error groups, because the OS does not need
any knowledge regarding which errors belong to which group.

The tasks themselves claim the errors that belong to them. The
OS, of course, needs to verify that all the errors in a system were
claimed at the end of a simulation run.
The OS also provides a set of PAL call s to clean up errors. Upon
interpretation of the error information, the tasks decide on the
appropriate actions to repair the errors. It is important not to
indiscriminately repair every possible thing that can go wrong. If
we only repair the errors reported by the error registers, we can
easil y detect if something unexpected has also happened. In
addition, fixing only what is necessary is least expensive (cycle-
wise) in terms of simulation.

5.2.3 Error Demons
Demons [5] are programs that act as I/O devices within the RTL.
As virtual I/O devices, they can be accessed from the tasks and
they can also access memory during a simulation. Because they
are compiled into the RTL, they have access to all of the RTL
signals. Error injection is a perfect role for the demons. Demons
are controlled by code running on the Alpha 21364 core through
I/O reads and writes to a set of predefined control registers. I/O
operations provide the ideal means for code running on one
model to communicate to demons on any model in a distributed
MP simulation environment. Communication is done through
the built -in coherency protocol and requires no additional
communication channel between different models. In addition,
I/O operations are non-cacheable and have their own routing
channels. This approach has a minimal effect on the chip and is
very unli kely to be affected by error conditions caused by the test
stimulus.
We divided the task of error injection to be handled by multiple
demons. There is an error demon for each architectural unit in
the design. The division is in place since some errors may not
need to involve the whole chip. In realit y, the interesting errors
involve units from separate processors. Therefore, from a single-
processor point of view, it is perfectly normal for different units
to be involved in handling different errors at the same time
without overwriti ng status registers. For example, an
uncorrectable data error may occur in the cache due to a request
from the local Alpha 21364 core, while another group of tasks
injects an error at the memory unit that is processing a remote
request. These errors should be recorded in their respective
status registers without interfering each other. Therefore, having
multiple, separately programmable demons simpli fies the task of
tracking injection states within a unit and allows these demons to
simultaneously inject unrelated errors at their discretion.
To allow a more random error stimulus, we allow multiple
groups of error tasks to configure a demon. Each task can
register with a demon, which returns an address offset that the
task uses to control the demon separately from other tasks. Each
task can separately request error injections and change weights
between the types of uncorrectable errors independently from
others. Of course, a demon would only inject an uncorrectable
error for one task at a time, until their errors are handled, so it
does not pollute the error status registers. Also, error checking is
made more effective by allowing multiple users of a demon.
From the standpoint of a group of tasks, an error not recovered
correctly will be blatantly obvious to another group.
In the overall scheme, we choose to implement as much
intelli gence into the demons as we can. The demons randomly
choose between different types of uncorrectable errors while the

tasks can provide minimal guidance in terms of weights. In
addition, demons also contain behavioral models predicting the
effects of the errors upon the status registers. That information is
used by the tasks to compare against what is read from the status
registers by the OS during handler routines. In this sense, the
analysis of the error conditions is done by the demons, which run
magnitudes faster than the same code on the model. We also
reduce the engineering effort because we are better able to debug
our code running in the behavioral model in isolation.
Engineering effort considerations were also a part of our decision
to implement most of the runtime error checking and handling in
tasks, in addition to the reasons in the above sections. Code
written in C provides much better debuggabilit y than assembly.

5.3 Process
5.3.1 Task Initiali zation
When a task is started by the OS, it receives an id within its
group. One task will be the master task, controlli ng the demons
and checking the errors, while others participate in generating
interesting traff ic on the error address. A shared memory
location is reserved for error injection. The demon requires two
addresses, one to inject the errors and another to report them. It
is initi ali zed by an OS PAL call , which translates the addresses
from virtual in the task to physical in the demon. In addition, a
virtual mapping of the demon control address is returned to the
caller task. Although member tasks in a group are not started
simultaneously by the OS, the OS has an option to guarantee that
the tasks will be running simultaneously at some time. In this
case, we perform a code barrier to make sure all tasks are
synchronized at the same point in the code before we start any
error testing.

5.3.2 Task Execution
At the start of each loop of execution, we randomly pick a demon
and assert readiness by writi ng to its control address. While
awaiting injection, we perform self-checking on the error
address. Following is a simpli fied version of the code:

main() {
…
i = 0;
while(!error_injection_poll) {
 j = byte_false_share();
 if (i != j) { //self-checked
 evict_cache_block(error_injection_poll);
 memory_barrier();
 if (!error_injection_poll)
 break;
 else
 exit(1); // self-check error
 i = i + 1 & 0xff; //generate new check value
 }
}
memory_barrier();
evict_cache_block(error_address);
code_barrier(my_group_id);
…

int byte_false_share() { //random FS variations
 if (random < XXX) { //simple load-store
 val = error_address[my_group_id];
 error_address[my_group_id] = val + 1 & 0xff;
 } else if (random < YYY) { //load-evict-store
 val = error_address[my_group_id];
 evict_cache_block(error_address);
 error_address[my_group_id] = val + 1 & 0xff;
 } else // other variations…
…
 return val;
}

In the main code, all tasks perform false sharing while awaiting
the demon to inform error injection through a memory write to
the polli ng address. When that occurs, all members of a group
stop sharing on the data to perform recovery. However, because
memory latency is variable in an Alpha 21364 system, an error
may have already been observed by a task resulting in bad data
that fail s self-checking. Under that situation, the polli ng address
data is evicted and re-requested after doing a memory barrier. A
memory barrier guarantees any outstanding requests to the error
address have been resolved. Upon receiving a response for the
second poll we can determine whether the self-check had been
legitimate or we had just gotten corrupted data.
The running task is not aware of the error recording done by the
OS behind the scenes. The Alpha 21364 core may jump back
and forth between interrupt handlers, machine check handlers,
and error task code before all the errors are recorded. To
guarantee all the errors are recorded on one processor, a memory
barrier is performed. The tasks then perform a code barrier to
synchronize all the members, guaranteeing all errors on all
member processors are recorded before proceeding to handle the
error.
The master task walks through the error queues on the affected
processors depending on the type of error. Errors in the queues
are claimed if they match the address and checked against the
demon’s expectation. The demons also supply information on
what actions need to be taken to recover from the errors, such as
the necessity to reiniti ali ze the directory state for a memory
block. These actions are performed by the master task to allow
another injection. Also during recovery, the master task notifies
the demon that all errors have been collected, so the demon can
inject errors for another ready group of tasks.

5.4 Examples of Err ors
Error injection to different areas of the chip has diverse
consequences on the types of error conditions and the number
and composition of processors observing errors. This section
describes some of these complex sequences that are achievable
and verifiable though global random error testing.

5.4.1 Cache Tag Uncorrectable Error
The Alpha 21364 has a large L2 set-associative cache. A tag
error is detected when a lookup to an index results in a way with
a tag error. If the Alpha 21364 core makes a request to that
index, we would receive a machine check. However, if the error
is detected during a remote probe, the remote requestor would
also receive a machine check. In addition, as the coherency of
the block is compromised by the corruption of the tag, the
directory is eventuall y made aware of the error, which causes a
memory controller error that triggers an interrupt.
The demon would report the type of transaction that encountered
the error along with its error status. The task is intelli gent
enough to check the status recorded by the CSRs against the
demon. In addition, the effects of additional errors are taken into
consideration, and the error queues of all members in the group,
along with the memory unit of the processor containing the
shared memory, are examined for error occurrences belonging to
this address.

5.4.2 Router Uncorrectable Error
An uncorrectable error in the data section of a packet causes a
router error in the node where it is detected and triggers an

interrupt. The packet is converted to a known pattern and
transmitted to the destination, where it causes a machine check.
The error pattern itself does not cause further router errors. It is
important to be able to inject errors in any node along the path a
message packet takes between source and destination. The
Alpha 21364 uses adaptive routing so pre-arranging injection at a
node is impossible because the path of a packet is unpredictable.
However, a useful attribute of the Alpha 21364 router protocol is
that packets always take the shortest path from source to
destination. Random injection of router errors is achieved by
randomizing the number of hops before an error is injected.
Also, to track the packet before injection, a spare bit in the
header is used to indicate a special packet. In addition, the data
is replaced with the injection hop count and the polli ng address
of the error group. The router demon at each hop decrements the
counter and when it reaches zero, we inject the error. During
injection, the data portion of the packet is randomized with a
combination of correctable and uncorrectable errors as well as
non-error ticks. The injector router also communicates the error
information along with its CPU id to the error group. The master
task doing the recovery would check the injector processor along
with the requestor processor for errors. It also tolerates any other
group members that have received bad responses from forwards.
Any extraneous errors elsewhere that are not claimed will
eventuall y self-check by another group or be caught by checking
done at the end of the simulation.

5.5 Diff iculties and Workarounds
Sometimes, handling certain errors requires all the processors in
the system to be in a recovery mode. For example, in some
cases, the hardware requires that memory traff ic be quieted to a
single node. Synchronizing processors for recovery is time
consuming and may not even be necessary if there is no sharing
at that node. We devised a method, through simulation tricks, to
isolate such node while allowing other unrelated nodes to
continue operating. Studying the Alpha 21364 coherency
protocol in detail , one can infer that certain messages create
other messages. For example, requests can result in forwards
sent by the directory controller. These forwards then result in
acknowledgements back to the directory node. Acquiring a block
exclusive by a requestor can also result in victims being sent
back to the directory node. To isolate a node, any new requests
destined to the node are first buffered up. A demon control
register is polled until the directory controller is empty of all
outstanding requests. Then, any new victims become buffered
until the demon determines that all existing victims are drained.
During this time, the router’s inter-processor traff ic handling is
not affected. With the local processor also sleeping, it is easy to
clean up the memory location and reintegrate the node.

6. RESULT S
We believe we had good success with the global random error
approach. The types of bugs we found with this test method are
much more complex than we had previously encountered using
either focused testing or unit level random testing.

6.1 Analysis
Figure 1 shows the number of error-related bug counts attributed
to each verification method used to verify the error logic on the
Alpha 21364 at the time we started to use global random error

testing. Prior to and during the early introduction of global
testing, the bug rate was high and traditional methods of focused
and random testing yielded significant number of bugs.
However, as time progressed towards the end of the project,
global testing comprised a larger share of the sum.

� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �

� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �

Time

B
ug

s

� � �
Focused Random Global

Figure 1: Err or bug breakdown according to test stimulus

While focused and random testing tapered off due to their
limitations, global testing continued to find more bugs. This was
in part due to the thoroughness of the method. Many of the bugs
were simply too complex for focused or random tests to find.
Figure 2 classifies the bugs found using the global random error
testing whether they could also have been found through other
means. We classify a bug as “global only” if:
1) A focused test around the area of the bug is too complex or

unintuiti ve to be designed by a verification engineer with a
reasonable effort.

2) A random exerciser does not cover the cross product of the
bug due to unexpected complex interactions.

From our analysis, we believe the majority of the bugs found by
the global environment could not reasonably have been found by
any other test stimulus. Furthermore, in doing similar analysis,
we found global testing should also be effective in finding many
of the bugs found using other techniques.

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� � �
Focused

� � �
Random
Random and Focused
Neither (Global Only)

Figure 2: Classification of bugs found in global testing

Table 1 compares the effectiveness of each environment in
finding complex bugs. We define complex bugs to be bugs that
either involve multiple units on different processors or require
timing sensiti ve cross products. Also, we are more stringent in
classifying bugs involving correctable errors as complex, because
they do not usuall y require recovery and can be injected
continuously on any random simulation models.

Focused 4%
Random 13%
Global 59%

Table 1: Percent “ complex” bugs in each environment

This table shows that only 4% of the bugs found by focused
testing were considered complex and indicates that focused
testing generall y catches bugs in error cases that are usuall y well
conceived and documented. Random testing may find some
complex cross products that escape focused testing. The majority
of the bugs found using global testing are considered complex.

6.2 Examples of Err or Bugs
The analysis of error bugs shows the bugs found using global
random error testing are more complex than those found through
other methods. The following are examples of such bugs.

6.2.1 Multiple Victims in a Global System
In this case, a method to recover from an error in one unit causes
an input pattern to violate the protocol assumptions made by
another unit. Normall y, only one victim to a block can exist in
the system at any given time. To victimize implies that one
processor had exclusive ownership of the block. It is logical to
make the assumption that the directory controller should only
expect to see one victim when it is handling a transaction. This
was a valid assumption until we started testing the error logic.
During the recovery of a cache tag error, the accepted handler
sequence would turn off error protection and perform a sequence
of loads to clear out the tags of all ways at an index, thereby
replacing the bad tag. However, should a tag error corrupt the
status of a way to exclusive, we would unintentionall y send a
victim out to the directory controller of the block. If we are in
the process of handling a transaction to the same block at the
directory controller and a legitimate victim has merged to the
transaction, a second (bad) victim merge to the same transaction
results in a resource leak with the buffer holding the data for the
first victim. This case is important because if the node causing
the incorrect victim were in a different partiti on from the node
containing the protocol logic, an error in one partiti on may affect
a different partiti on, resulting in error containment issues. It is
interesting to note that we rethought and chose a different
strategy for tag error recovery as we fixed the bug.

6.2.2 Low Probabilit y Event Involving Directory
Controller
When the owner of a block detects uncorrectable ECC errors in
the data it wants to victimize, it signals that information when
sending the victim packet. The directory controller that handles
the victim would tag the directory state to a special state
indicating the block is incoherent. In this bug, there was a
request from a different node arriving first at the directory
controller at around the same time. A request is always snooped
at the local processor. In this case, our snoop just missed the
speciall y tagged victim and replied an “ in-fli ght” status to the
directory controller. Under normal conditions, we always read
the directory state first, drain the victim, and then respond to the
requestor. However, the background traff ic in the directory
controller exaggerates the delay in the directory read so the
victim write to the memory occurs earlier. All of the above
conditions: error victim, snoop miss, or early victim write, are
rare events and when combined together, produced a bug that

resulted in no response being sent to the requestor. The pre-
sili con environment allowed us to debug and fix this bug within
hours.

7. CONCLUSIONS
With the increasing market requirements for reliable, high-
performance systems, high reliabilit y has become an extremely
important feature of large-scale SMP systems. Testing the entire
system’s abilit y to handle major and minor errors
deterministicall y is a complex task because it involves an
exploding number of states and interactions among multiple units
and multiple processors. The abilit y to test complex global
errors pre-sili con saves major efforts post-sili con.
Our global error testing environment based on RAMP uses
random error injection to cover as many states as possible while
the combination of OS, user tasks, and I/O demons create
complex inter-processor traff ic patterns during which errors are
injected and handled. Many of the bugs found using this new
environment are complex bugs that could not have been found
with unit-level random testing or focused testing. We believe we
satisfied our goal of creating reali stic error stimulus in a global
MP environment to allow us to test error conditions in quick
succession, using minimal engineering effort. Finall y, we
believe that we have raised the confidence in the integrity of the
Alpha 21364 microprocessor through testing error conditions in a
global environment.

8. ACKNOWLEDGEMENTS
We wish to thank Scott Kreider and John Fu, for their
encouragement and support; Jason Mancini for his work in the
memory error injector code; Jonathan Nall for the
implementation to buffer inter-processor traff ic during recovery
of a node. Appreciation is also extended to members of the
design team for their feedback.

9. REFERENCES
[1] “Data Integrity Concepts, Features, and Technology,” Compaq White

Paper, 1999.
[2] E. Jenn et al, “Fault Injection into VHDL Models: The MEFISTO

Tools,” in Proceedings of the 24th International Symposium on Fault
Tolerant Computing, pp. 66-75, 1994.

[3] M.Kantrowitz and L.M. Noack, Functional Verification of a Multi -
issue, Pipelined, Superscalar Alpha-Processor – the Alpha 21164 CPU
Chip. Digital Technical Journal, 7(1):136-144, August 1995.

[4] M. Bass, T.W. Blanchard, D.D. Josephson, D. Weir, and D.L.
Halperin, Design Methodologies for the PA 7100LC Microprocessor,
Hewlett-Packard Journal, 46(2):23-25, April 1995.

[5] S. Taylor et al, “Functional Verification of a Multi -issue, Out-of-
Order, Superscalar Alpha Processor – The DEC Alpha 21264
Microprocessor,” in 35th Design Automation Conference Proceedings,
1998.

[6] P. Bannon, “Alpha 21364: A Scalable Single-chip SMP,” in
Proceedings from Microprocessor Forum October 1998,
http://www.alphapowered.com/alpha_tech_presents.html.

[7] Linley Gwennap, “Digital 21264 Sets New Standard,” Microprocessor
Report, pp. 11-16, 1996.

[8] A. Hosseini, D. Mavroidis, and P. Konas, “Code generation and
analysis for the functional verification of microprocessors,” in 33rd
Design Automation Conference Proceedings, 1996.

[9] Richard L. Sites, Alpha Architecture Reference Manual, Digital Press,
Burlington, MA, 1992.

	Main
	DAC01
	Front Matter
	Table of Contents
	Session Index
	Author Index

