Automated Pipeline Design

*
Daniel Kroening
Computer Science Dept., University of Saarland
Im Stadtwald, B45
D-66041 Saarbruecken, Germany

kroening@cs.uni-sh.de

ABSTRACT

The interlock and forwarding logic is considered the tricky part
of a fully-featured pipelined microprocessor and especially debug-

Wolfgang J. Paul

Computer Science Dept., University of Saarland

Im Stadtwald, B45
D-66041 Saarbruecken, Germany

wjp@cs.uni-sh.de

4) interlock hardware has to be added where ever a structural
hazard is left in the design or forwarding might fail.

In the open literature, steps 3) and 4), i.e., adding forwarding and

ging these parts delays the hardware design process considerablyinterlock hardware, is usually considered the tricky and error prone
It is therefore desirable to automate the design of both interlock part. This paper addresses how to automate the steps 3) and 4).
and forwarding logic. The hardware design engineer begins with We therefore assume that steps 1) and 2) are already done manu-
a sequential implementation without any interlock and forwarding ally, i.e., we take a sequential machine which already has a pipeline

logic. A tool then adds the forwarding and interlock logic required

for pipelining. This paper describes the algorithm for such a tool
and the correctness is formally verified. We use a standard DLX
RISC processor as an example.

Keywords

Pipeline, Forwarding, Interlock

1. INTRODUCTION
1.1 Pipeline Design

structure. This machine is call@depared sequentiahachine [20].

We describe the algorithm used in order to do the transforma-
tion of the prepared sequential machine into a pipelined machine.
Furthermore, we formally verified the correctness of that transfor-
mation using the theorem proving system PVS [8].

We think that critical designs should be a four-tuple: 1) the de-
sign itself, 2) a specification, 3) a human-readable proof, and 4)
a machine-verified proof. Moreover, we think that there will be a
considerable market for such four-tuples. However, the time re-
quired to manually write these proofs usually discourages vendors.

In addition to the forwarding and interlock hardware, our tool
therefore also generates a proof of correctness for the new hard-

Besides the mainstream microprocessors, there is a large marware. Assuming the correctness of the original sequential design,
ket for custom designs which incorporate smaller RISC processor we conclude that the pipelined machine with forwarding and in-
cores. These designs used to be simple sequential processors witkerlock is correct. The method is limited to in-order designs, out-

low complexity, which are easy to verify. Nowadays, customers
require cores with higher performance, which requires a pipelined

design. Assuming a sequential design is given, the engineers’ job is

to transform this design into a pipelined machine while maintaining
full binary compatibility.

of-order designs are not covered. The DLX RISC processor [10]
serves as an example.

1.2 Related Work

The concept of prepared sequential machines is taken from [20].

This task is described in many standard textbooks on computer Furthermore, [20] describes a manual transformation of a prepared

architecture such as [21, 10] or [9]. The task consists of the follow-
ing four steps:

1) The hardware is partitioned into pipeline stages,

2) structural hazards are resolved by duplicating components ods.

where possible,

3) in order to resolve the data hazards, forwarding (bypassing)
logic has to be added,

*Supported by the DFG graduate program “Effizienz und Kom-
plexitat von Algorithmen und Rechenanlagen”

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are;

not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

DAC 2001 June 18-22, 2001, Las Vegas, Nevada, USA.

Copyright 2001 ACM 1-58113-297-2/01/000655.00.

sequential DLX into a pipelined DLX. In [15], Levitt and Olukotun
verify pipelined machines by “deconstructing” the pipeline, i.e., by
reverting the transformation.

There is much literature on verifying processors with formal meth-
Using model-checking [6, 7], one achieves an impressive
amount of automatization but one suffers from the state space ex-
plosion problem. This is addressed by BDDs (binary decision dia-
grams) [4, 17]. Velev and Bryant [24] verify a dual-issue in-order
DLX with speculation by automating the Burch and Dill pipeline
flushing approach. The function units are abstracted by means of
uninterpreted functions.

Theorem proving systems such as HOL [5], PVS [8], or ACL2
[13] do not suffer from the state space explosion problem. There
has been much success in verifying complete, complex systems us-
ing theorem provers [2, 11, 22]. However, theorem proving systems
involve much manual work. Recently, Clarke [3], McMillan [18,
19], and Dill et.al. [1] apply classical theorem proving techniques
for model- and equivalence-checking.

2. THE SEQUENTIAL MACHINE

We start with a sequential implementation of the design. This —f = RO
design is supposed to be partitioned into stages alreadyn det W(RO |-
note the number of stages the design has. A microprocessor design A R1
consists of both registers and the (combinatorial) circuits between o T T R2 T
them. T e o= =

Each register is assigned to a stage. By convention, a reBister —|$ R3
assigned to the stage= {0,...,n—1} that writesR. LetR < out(k) 1

denote thaR is an output register of stagee
During step 1) as described above, one introduces instances ofFigure 1: Signals required in order to write into a register file

specific registers in multiple stages. Thus, Rt denote the in- consisting of four registers. In this exampleg is two.

stance of registaéR written by stagd— 1. For example, a pipelined

microprocessor might have instruction registers in stages two and

three which are denoted by IR.2 and IR.3.

Each register has a given domain, i.e., the set of values the regis-12P!€ 1: The sequential scheduling of a three stage pipeline in

the absence of stalls

ter might have. LeWV (R) d(_enote this set. In analog_y twit(k), let oycle [0 T2 3415060

in(k) denote the set of registers a stage takes as inputs. For exam- T

ple, the first stage might want to read the value of the PC (program ue(% 1/0j]0J1]0]0|1

counter) register, thuBC € in(0). Ue_lr 0j1|]0j0j1]0]O
The designer is expected to provide a list of the names of the ue 0j0oj1)j0j0j1]o0

registers, their domain, and the stages they belong to. It is left to
specify the data paths of the machine. Rgf...,R; denote the list
of inputs registers of stade LetR;, ..., R denote the list of output
registers of stagk.

The (combinatorial) data paths of stag@re now modeled as
mapping from the set of input values to the set of output values:

The signalsfyRweand fyRwaare precomputed, as described in
[21]. Let Rwej and Rwaj denote the precomputed versions of
these signals in stage

In addition to the register list, the transformation tool takes the
fko W(R) x...x W(R)) — W (R x... x W(R) functions (i.e., the signal names in HDL) as described above as
inputs.

The circuits that provide the inputs to the functiofp® and so
on are modeled by the input generation functignIn case of the
flRwe: W (Ry) x...x W (Rj) — {0,1} prepared sequential machine the function just passes the appropri-
ate register values and does not model any gates. We will later on
modify it in order to introduce the forwarding hardware. Each time
we mention a function name such §R or fyRra, we omit the
parametegyR of the function for sake of simplicity.

By enabling the update enable signa& round robin (table 1),
one gets a sequential machine. In the following, we assume that
¢ If so, the new value is the value provided ly if fyRwe this sequential machine behaves as desired. It will serve as a refer-

is active and is provided by the previous stage if the write ence for the correctness proof. However, there is a vast amount of

enable signal is not active. The clock enable signal for such literature on formally verifying sequential machines, e.g., [16, 25].

a register is justig.

o If not so, the new value is always provided by The clock 3. ADDING A STALL ENGINE

enable signate of the register is active iff both the write In order to realize interlock, we need means to stall the execution

enable and update enable signals are active: in certain stages while the execution proceeds in the stages below.
Thus, as first step of the transformation into a pipelined machine,
we add astall engine A stall engine is a module that takes a set of

If Ris part of a register file (e.g., general purpose register file), stall signals for each stage as inputs and provides the update enable
one needs three signals in order to model the interface to the registesignals (latch advance signals) as output. This concept is taken
file. The functionfy provides the data value (Din), the function from [20]. For this paper, we take a stall engine described in [12]
fxRwethe write enable input. Let(R) be the number of address and extend it by a rollback (squashing) mechanism: for each stage
bits the register file takes and se{1,...,n—1}, a one-bit registefullb.sis added. In addition to

Wa(R) = {0,1}°®) that, a signaffully is defined as follows:

.) fullp = 1
the set of addresses the register file takes. Furthermore, let ke{l..,n—1}: full, = fullbk

filRwa: - W (Ry) x... x W (Ry) — Wa(R) The signalrollback indicates that a misspeculation is detected
denote the signal which is fed into the register file as address for in stagek. We will later on describe how this is done. Using the

For example, this includes circuits such as the ALU. In addition
to that, let

denote a write enable signal of regiskee out(k). Letueg denote
the update enablesignal of stagek. If ug is active, the output
registers of stagk are updated. The value clocked into a register
depends on whether an instanceRois also in the previous stage
or not.

ce= fyRweA ug

writing data. This is illustrated in figure 1. signalrollback, a set of signalsollback, is defined. The signal
In case of a read access to a register file (e.g., operand fetchingrollback, is active if the instruction in stagehas to be squashed
in decode stage), let because of misspeculation.
filRra: W (Ry) x... x W(Rj) — W4(R) n-1

. . . .) rollback, = \/ rollback
denote the signal which is fed into the register file as address. i—k

The signalstall, is supposed to be active iff the stagds to in the stage writes the register that is to be forwarded, and the ad-
be stalled for any reason. We will define it later on. Using the dresses match. For comparison, the precomputed versions of the
full signal and the stall signal, the update enable signal is defined. write enable signal and of the write addressRpfi.e., Rwej and
A stage is updated if it is full and not stalled and if there is no Rwaj, are used.

rollback: _
S Vjie{k+1,...,w—1}:
ug = full Astallg Arollback, Rehitlj] = full; ARwej A
The full bit registers are initialized with zero and updated as fol- (fyRra= Rwaj)

lows: A stage becomes full if it is updated or stalled:

se{l,...,n—-1}:
fullb.s = ue_jqVstalls

The address comparison is realized with an equality tester. Itis
omitted if the registeR is not part of a register file.

If any hit signal of a stage¢ is active, letop denote the smallest

The notation ":=" with a register on the left hand side is used in suchj:
order to denote the inputs of the register. o .

The signaktall is defined using a signahaz, which indicates top = min{je{k+1,... w}|Rehit[j]}
that a data hazard occurs in stdgeand using a signadxi that
indicates the presence of any other external stall condition in the
stage, e.g., caused by slow memory. Stagestalled if there is a
data hazard, or an external stall condition or if stkgel is stalled:

In hardware, one uses a set of multiplexers for this task. If a hit
signal is active, the value from the given stage is taken. gikBt
denote the input value generated by the forwarding logic in stage
k for registerR. If topis the stage the regist&is output of, i.e.,
ke{l,...,n—1}: top=w, one takes the value present at the input of the register:

stally, = (dhazVexiVstall, 1) A fullg _ _
stallh 1 = (dhaz_1Vexh 1) A full top=w = GR=fuR
If the hit is in any other stage, one takes the value which is writ-
Jen into the designated forwarding regis@r Note that the write
enable signal of that register might or might not be active. We
therefore have to select the appropriate value. If the write enable
4. FORWARDING sngr_1a| is actlve,_ we t_ake the value which is written. If not so, the
register was written in an earlier stage already. We take the value
from the previous stage therefore.

fiopQ : fiopQwe
Q.top : otherwise

Using this stall engine, we can stall the machine in any arbitrary
stage and the other stages keep running if possible. This include
removal of pipeline bubbles if possible.

4.1 Generic Approach

The forwarding logic is added as follows: LRtbe an input reg-
ister of stagek. If an instance oR is either output of stagk— 1
or stagek, nothing needs to be changed, i.e., no forwarding hard- L .) .)
ware is required. Assume registRris written by stagew, i.e., _If no hit S|gnal_|s active, the value is taken from the regifelf
R € out(w). For example, in a five stage DLX as in [10], a GPR Ris part of a register file, let = fyRradenote the address.
register operand is read in stage: 1 (decode) but written by stage
w =4 (write back). In this case, one needs to add forwarding logic.
In case of a microprocessor, the result of some instructions areData Hazards This fails if a hit is indicated but the value for-
already available in an early stage. For example, in a standard fivewarded is not valid yet, as defined above. For example, in case of
stage DLX the result of ALU instructions is already available in the five stage DLX this happens if one has to forward the result of
stage 2 (execute). These results are saved in a register. The trans load instruction that is in the execute stage. Thus, a data hazard
formation tool does not try to determine this register automatically. is signaled in this case by activatiddpaz. In addition to that, we
The designer is expected to name the register responsible for for-enabledhaz if the data hazard signal of stagep is active.
warding manually instead. We think that this manual effort is very ~ Forwarding not only occurs while fetching operands. Many mi-
low. In case of the five stage DLX, one needs to specify two regis- croprocessors, e.g., MIPS, use one or more delay slots for branch
ters, one in the execute stage and one in the memory stage. instructions, called delayed branch. Given a sequential implemen-
The register is callefbrwarding register Furthermore, we as- tation of a machine with delayed branch, the pipeline transforma-
sume that as soon as a value is stored in the register, it is the finaltion tool automatically generates a pipelined machine with one or
value as written into the register which is to be forwarded. Qet more delay slots.
denote the forwarding register for forwardiRg
Using the write enable signals @, a valid signal is defined as 4.2 Case Study
follows: The input is valid iff the registe® is written in stage (as As case study, we applied our tool to a five stage DLX RISC
indicated byf,Qwe or in any prior stage. In order to determine if machine. The machine does not feature a floating point unit. The
it was written in any prior stage, we pipeline the valid bit by adding machine uses a branch delay slot and therefore does not need spec-
one-bit registerQvk. Thus, the valid signal of stades: ulation for the instruction fetch. The prepared sequential machine
o reads the two GPR operands in the decode stage (stage 1). Given
Quvalid = QukV fkQwe thatC.2 andC.3 are used as forwarding registers @PR the tool
The registeQvk is updated with: generates the forwarding hardware depicted in figure 2. The fig-
ure shows the forwarding hardware for one operand (c&iE&kg

top£AFw = oR= {

topundefined — gkR=R.(w+1)[d]

Quk:= Qc-yvalid only. The interlock hardware is not depicted due to lack of space.
This allows defining signal&hit[j], which indicate the stage Note that this hardware gets slow with larger pipelines. With
that the instruction writing the desired valueRfs in. The hit sig- larger pipelines, one can use a find first one circuit and a balanced

nal of a stage is then active iff the stage is full, and the instruction tree of multiplexers or an operand bus with tri-state drivers.

MARS3 MDRr.4 '§
s Din
5 &
=
c.2 = Cc3 C.4
)
—® —® i 4 Aw &
f4GPRwa2 f4GPRwa3 f4GPRwa4 0}
f,GPRwe2 [T f.GPRwe3 | | f.GPRwed | | we
fiGPRara Ar Doutl—
full, fullz fulls
GPRahit[3] GPRahit[4]
))
01GPRa
o o

Figure 2: Generated forwarding hardware for the five-stage DLX. Most registers and interlock hardware are omitted.

5. SPECULATION theorem proving system PVS [8]. This comprises both data con-
As described above, the stall engine provides means to evict Sistency and liveness. The data consistency criterion is taken from

instructions from the pipe if misspeculation is detected in stage [20]: Let

k by enabling therollbacky signal. The designer is expected to

state which input value is speculative and which value is specu-

lated on. The transformation tool adds hardware which compares denote an instruction sequence. For nonnegative integapeline

the guessed value with the actual value as soon as available and enstagek € {0,...,n— 1}, and cyclesT we denote by

ables the rollback signal if the comparison fails. The comparison

is done if the stage is full and not stalled in order to ensure that the

input operands are valid. In case of a rollback, the correct value is

used as input for subsequent calculations. We do not rely on the

speculation mechanism to learn from the rollback.

Thus, the guessed value provided by the designer has no influ-
ence on the correctness of the design; if the value is always wrong e fact that instructioly is in stagek in cycle T. This function is
this just slows down the machine. Thus, it is a matter of perfor- cajled scheduling function In order to simplify some proofs, the
mance only and not of correctness. We therefore do not have to gomain of the function above is extended to cycfem which no
argue about the value provided by the speculation mechanism. jnstryction is in stagé (i.e., the stage is not full). If the stage

For example, if one speculates on whether a branch is taken oryas never full before cycl&, 1 (k, T) is supposed to be zero. If the
not taken in stage 0 (instruction fetch), one can implement branch stagek was full before cycléT, the supposed value of the function
pr?diction. Igi(;l(dli;ion to thiat,_we ikr]rlplemgnted predcise inter;\upts in | (k, T) is defined using the value the function had in the last cycle
a five stage speculating that an interrupt does not happen. - T ; ;

The truthgis detectgd ?n stage 2 at the latest. IrF: case of a mi;);:)pecgel< T SIUCh thatfully holds. In this casel(k, T) is supposed to

. RO . .) (k, T") 41 in anticipation of the next instruction in the stage. In
ulation, the pipeline is cleared using the rollback mechanism. This contrast to the definition of the scheduling function in [20], such a
concept is taken from [23]. scheduling function is total.

Let R] denote the actual value & in the implementation ma-

lo,l1,...

I(k,T) =i

6. FORMAL VERIFICATION chine during cyclel. The same notation is used for signals, e.g.,
. . . fuIIII denotes the value of the signidll, during cycleT.
6.1 Pipeline Properties For sake of simplicity, we omit rollback in the following argu-

We verified the correctness of the generated machines using thements. FofT =0, I(k,T) is zero for all stages. An inductive defi-

nition for I andT > O for a pipelined machine is [14]: LeEmMMA 3. During cycle T, let there be an active hit signal and
let the data hazard signal be not active. The claim is that the input

I(k,T—-1) : Uefol generated by the forwarding logic during cycle T are correct:
I(kT) = 1(0,T—1)+1 : ug *Ak=0 o
I(k-1,T—-1) : ug"*Ak#0 &R = Rg[X]

LEMMA 1. One shows the following properties of this function Proof ~The claim is shown inductively beginning with the last
by induction: stage and proceeding from stage- 1 to stagek. In case of the
last stage, which is stage- 1, there is nothing to show since there
is no stage below to forward from. Assuming the claim holds for
stagek’ with k < k' < n, the claim is shown for stageas follows:

1. For T > 0, the value of | for a given stage increases by one
iff the update enable signal of the stage is active:

Ik T) = I(k,T—1) : uek(cT—l) -0 A_s required_in Fhe premise, the data ha_zard sigadha{ is not
) I(k, T—1)+1 : otherwise act_lve._ By definition of Fhe dz_alta hazard signal, this |mp||es_that the
valid bit of the stageéopis active and that the data hazard signal of
. . . stagetopis not active.
2. Givenacycle T, the values of the scheduling functions of two A5 described above, one assumes the correctness of the inputs
adjoining stages are either equal or the value of the schedul- f the stage&’ > k in order to show the correctness of the inputs

ing function of the later stage is one higher. of stagek. Sincetop> k, one can apply the induction premise for
3. Iff the values are equal, the full bit of the later stage is not Stagetop. This shows the correctness of the inputs of the stape
set. The claim is now shown by a case split on the valuéagd (in
PVS, a separate lemma is used for the possible valuesnf
fullf =0 1(k—1,T)=1(kT) Lettop+# w hold, i.e., the hit is not in the stage which writes

As above, let registe® be the designated forwarding register and
registerA the register with the address. In this case, the forwarding
fulll =1 1(k=1,T)=1(kT)+1 logic returns the value written in@.(top+1).
One can show show that this value is the valu&jof after the

. execution of the instruction in stadep by using that the valid

6.2 Data Consistency signal is active, i.e.:
Let R be a register which is visible to the programmer. Ry |(topT)+1

we denote the correct value Bfright before the execution of in- aR = Rg™™ (x]
structionl;. Let instructioni be in stagek during cycleT and let
R € out(k) be a visible register. The data consistency claim is:

Negating both sides of the last equation results in:

Thus, the claim is transformed into:

) I(topT)+1
RI = RS Rs X

Rs[x]
This is shown by induction ofi. Due to lack of space, we omit Using lemma 2, the claim is concluded.
the full proof. The interesting partis how to argue the correctness of g 3 | jyeness
the input values generated by the forwarding logic. For this paper,
we restrict the proof to the case that a regifas read which is
part of a register file and a hit signal is active withp # w. In

the following claims, let stagk the stage for which forwarding is
done, and lek(k, T) =1, fullﬂ(', andR € out(w) hold. Furthermore,

let x be the address of the operand of instructiowhich is to be

forwarded. 7. CONCLUSION

We describe a method which aids the process of designing pipelined
microprocessors by transforming a prepared sequential machine
into a pipelined machine by adding forwarding and interlock logic.
Rls(top,T)Jrl[X] _ R'é[x} The transf(_)rmation is not fully automated but_ the manu_al effort is

very low, since the designer only has to specify the registers hold-
ing intermediate results.

The proof of correctness is limited to the changes made during
the transformation; the correctness of the prepared sequential ma-
chine is assumed to be shown already. However, automated ver-

the following arguments: Since statgp is the first stage with an ification of sequential machines is considered state-of-the art. As

active hit signal, all stages above do not have the hit signal set. Let case st_udy, we easily verify a s_,e_quential DLX withc_Jut floating point
unit using the automated rewriting rules and decision procedures of

diff =1(k, T)—I(top—1,T) PVS. This machine is transformed into a pipelined machine. Be-
sides the hardware, the tool generates the proofs necessary in order
to verify the forwarding and interlock hardware, which yields a
provably correct pipeline with forwarding.

The liveness criterion is that a finite upper bound exists such that
a given instruction terminates. We omit the proof here. The tem-
plates for both the data consistency and the liveness proofs required
a large amount of manual work in PVS (about one man-month).

LEMMA 2. If there is an active hit signal, register[R is not
modified from instruction(kop, T) + 1 to instruction i:

Itis not surprising that one argues about the instrudtjoop, T)+1.
In case of an active hit signal, the forwarding hardware takes the
outputof the stageop.

Due to lack of space, we omit the full proof of this lemma. It uses

denote the difference between the scheduling functions. Using
lemma 1 one can argue that this is also the number of instruc-
tions (i.e., full stages) in the pipeline between stegadtop. For

an empty stage, nothing has to be shown since the values of the

scheduling functions match. For a full stage one argues that the APPENDIX

instruction in that stage does not write the register. A. REFERENCES

[1] C. Barrett, D. Dill, and J. Levitt. A decision procedure for
bit-vector arithmetic. IfProceedings of ACM/IEEE Design
Automation Conference (DAC'98)ages 522-527. ACM,
1998.

[2] M. Bickford and M. Srivas. Verification of a pipelined
microprocessor using CLIO. IRroceedings of Workshop on
Hardware Specification, Verification and Synthesis:
Mathematical AspectsSpringer, 1989.

[3] A. Biere, E. Clarke, E. Raimi, and Y. Zhu. Verifying safety
properties of a PowerPC microprocessor using symbolic
model checking without BDDs. IRroceedings of the 11th
International Conference on Computer Aided Verification
(CAV’'99), pages 60-71. Springer, 1999.

[4] R. Bryant. Graph-based algorithms for boolean function
manipulation|EEE Transactions on Computers
C-35(8):677—691, August 1986.

[5] A. Camilleri, M. Gordon, and T. Melham. Hardware
verification using higher order logic. From HDL
Descriptions to Guaranteed Correct Circuit Desigpages
41-66. North-Holland, 1986.

[6] E. Clarke and A. Emerson. Synthesis of synchronization
skeletons for branching time temporal logic.linLogic of
Programs: WorkshopSpringer, 1981.

[7] E. Clarke, A. Emerson, and A. Sistla. Automatic verification
of finite-state concurrent systems using temporal logic
specificationsACM Transactions on Programming
Languages and Systen®2):244—263, 1986.

[8] D. Cyrluk, S. Rajan, N. Shankar, and M. Srivas. Effective
theorem proving for hardware verification. 2nd
International Conference on Theorem Provers in Circuit
Design pages 203—-222. Springer, 1994.

[9] M. Flynn. Computer Architecture: Pipelined and Parallel
Processor DesignJones & Bartlett, 1995.

[10] J. Hennessy and D. Patters@umputer Architecture: A
Quantitative ApproachMorgan Kaufmann Publishers, INC.,
2nd edition, 1996.

R. Hosabettu, G. Gopalakrishnan, and M. Srivas. A proof of
correctness of a processor implementing Tomasulo’s
algorithm without a reorder buffer. IBorrect Hardware
Design and Verification Methodpages 8—22. Springer,
1999.

C. Jacobi and D. Kroening. Proving the correctness of a
complete microprocessor. Proc. of 30. Jahrestagung der
Gesellschaftdi Informatik Springer, 2000.

M. Kaufmann and J. Moore. ACL2: An industrial strength
version of nqthm. Irin Proc. of the Eleventh Annual
Conference on Computer Assuranpages 23-34. |IEEE,
1996.

D. Kroening, W. Paul, and S. Mueller. Proving the
correctness of pipelined micro-architecturesPhoc. of the
ITG/GI/GMM-Workshop "Methoden und
Beschreibungssprachen zur Modellierung und Verifikation
von Schaltungen und Systemepéages 89-98. VDE, 2000.
[15] J. Levitt and K. Olukotun. A scalable formal verification
methodology for pipelined microprocessors38rd Design
Automation Conference (DAC'98)ages 558-563. ACM,
1996.

M. McFarland. Formal verification of sequential hardware:
A tutorial. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and SystenE2(5):633—654, 1993.

[17] K. McMillan. Symbolic Model Checkinglluwer, 1993.

[11]

[12]

[13]

[14]

[16]

[18] K. McMillan. Verification of an implementation of
Tomasulo’s algorithm by composition model checking. In
Proc. 10th International Conference on Computer Aided
Verification pages 110-121, 1998.

[19] K. McMillan. Verification of infinite state systems by
compositional model checking. orrect Hardware Design
and Verification Methodgages 219-233. Springer, 1999.

[20] S. Mliller and W. PaulComputer Architecture: Complexity

and CorrectnessSpringer, 2000.

D. Patterson and J. Hennes§pmputer Organization and

Design — The Hardware / Software Interfaddorgan

Kaufmann Publishers, 1994.

[22] J. Sawada and W. Hunt. Results of the verification of a
complex pipelined machine model. Gorrect Hardware
Design and Verification Methodpages 313-316. Springer,
1999.

[23] J. Smith and A. Pleszkun. Implementing precise interrupts in

pipelined processortEEE Transactions on Computers

37(5):562-573, 1988.

M. N. Velev and R. E. Bryant. Formal verification of

superscalar microprocessors with multicycle functional units,

exceptions, and branch prediction.Rmoceedings of

ACM/IEEE Design Automation Conference (DAC’0f8ages

112-117. ACM Press, 2000.

P. Windley. Formal modeling and verification of

microprocessordEEE Transactions on Computers

44(1):54-72, 1995.

[21]

[24]

[25]

	Main
	DAC01
	Front Matter
	Table of Contents
	Session Index
	Author Index

