
Automated Pipeline Design

Daniel Kroening
�

Computer Science Dept., University of Saarland
Im Stadtwald, B45

D-66041 Saarbruecken, Germany

kroening@cs.uni-sb.de

Wolfgang J. Paul
Computer Science Dept., University of Saarland

Im Stadtwald, B45
D-66041 Saarbruecken, Germany

wjp@cs.uni-sb.de

ABSTRACT
The interlock and forwarding logic is considered the tricky part
of a fully-featured pipelined microprocessor and especially debug-
ging these parts delays the hardware design process considerably.
It is therefore desirable to automate the design of both interlock
and forwarding logic. The hardware design engineer begins with
a sequential implementation without any interlock and forwarding
logic. A tool then adds the forwarding and interlock logic required
for pipelining. This paper describes the algorithm for such a tool
and the correctness is formally verified. We use a standard DLX
RISC processor as an example.

Keywords
Pipeline, Forwarding, Interlock

1. INTRODUCTION

1.1 Pipeline Design
Besides the mainstream microprocessors, there is a large mar-

ket for custom designs which incorporate smaller RISC processor
cores. These designs used to be simple sequential processors with
low complexity, which are easy to verify. Nowadays, customers
require cores with higher performance, which requires a pipelined
design. Assuming a sequential design is given, the engineers’ job is
to transform this design into a pipelined machine while maintaining
full binary compatibility.

This task is described in many standard textbooks on computer
architecture such as [21, 10] or [9]. The task consists of the follow-
ing four steps:

1) The hardware is partitioned into pipeline stages,

2) structural hazards are resolved by duplicating components
where possible,

3) in order to resolve the data hazards, forwarding (bypassing)
logic has to be added,

�Supported by the DFG graduate program “Effizienz und Kom-
plexität von Algorithmen und Rechenanlagen”

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2001,June 18-22, 2001, Las Vegas, Nevada, USA.
Copyright 2001 ACM 1-58113-297-2/01/0006 ...$5.00.

4) interlock hardware has to be added where ever a structural
hazard is left in the design or forwarding might fail.

In the open literature, steps 3) and 4), i.e., adding forwarding and
interlock hardware, is usually considered the tricky and error prone
part. This paper addresses how to automate the steps 3) and 4).
We therefore assume that steps 1) and 2) are already done manu-
ally, i.e., we take a sequential machine which already has a pipeline
structure. This machine is calledprepared sequentialmachine [20].

We describe the algorithm used in order to do the transforma-
tion of the prepared sequential machine into a pipelined machine.
Furthermore, we formally verified the correctness of that transfor-
mation using the theorem proving system PVS [8].

We think that critical designs should be a four-tuple: 1) the de-
sign itself, 2) a specification, 3) a human-readable proof, and 4)
a machine-verified proof. Moreover, we think that there will be a
considerable market for such four-tuples. However, the time re-
quired to manually write these proofs usually discourages vendors.

In addition to the forwarding and interlock hardware, our tool
therefore also generates a proof of correctness for the new hard-
ware. Assuming the correctness of the original sequential design,
we conclude that the pipelined machine with forwarding and in-
terlock is correct. The method is limited to in-order designs, out-
of-order designs are not covered. The DLX RISC processor [10]
serves as an example.

1.2 Related Work
The concept of prepared sequential machines is taken from [20].

Furthermore, [20] describes a manual transformation of a prepared
sequential DLX into a pipelined DLX. In [15], Levitt and Olukotun
verify pipelined machines by “deconstructing” the pipeline, i.e., by
reverting the transformation.

There is much literature on verifying processors with formal meth-
ods. Using model-checking [6, 7], one achieves an impressive
amount of automatization but one suffers from the state space ex-
plosion problem. This is addressed by BDDs (binary decision dia-
grams) [4, 17]. Velev and Bryant [24] verify a dual-issue in-order
DLX with speculation by automating the Burch and Dill pipeline
flushing approach. The function units are abstracted by means of
uninterpreted functions.

Theorem proving systems such as HOL [5], PVS [8], or ACL2
[13] do not suffer from the state space explosion problem. There
has been much success in verifying complete, complex systems us-
ing theorem provers [2, 11, 22]. However, theorem proving systems
involve much manual work. Recently, Clarke [3], McMillan [18,
19], and Dill et.al. [1] apply classical theorem proving techniques
for model- and equivalence-checking.

2. THE SEQUENTIAL MACHINE

We start with a sequential implementation of the design. This
design is supposed to be partitioned into stages already. Letn de-
note the number of stages the design has. A microprocessor design
consists of both registers and the (combinatorial) circuits between
them.

Each register is assigned to a stage. By convention, a registerR is
assigned to the stagek2f0; : : : ;n�1g that writesR. LetR2 out(k)
denote thatR is an output register of stagek.

During step 1) as described above, one introduces instances of
specific registers in multiple stages. Thus, letR:k denote the in-
stance of registerRwritten by stagek�1. For example, a pipelined
microprocessor might have instruction registers in stages two and
three which are denoted by IR.2 and IR.3.

Each register has a given domain, i.e., the set of values the regis-
ter might have. LetW (R) denote this set. In analogy toout(k), let
in(k) denote the set of registers a stage takes as inputs. For exam-
ple, the first stage might want to read the value of the PC (program
counter) register, thusPC2 in(0).

The designer is expected to provide a list of the names of the
registers, their domain, and the stages they belong to. It is left to
specify the data paths of the machine. LetR1; : : : ;Rj denote the list
of inputs registers of stagek. LetR0

1; : : : ;R
0

l denote the list of output
registers of stagek.

The (combinatorial) data paths of stagek are now modeled as
mapping from the set of input values to the set of output values:

fk : W (R1)� : : :�W (Rj)�!W (R0

1)� : : :�W (R0

l)

For example, this includes circuits such as the ALU. In addition
to that, let

fkRwe: W (R1)� : : :�W (Rj)�! f0;1g

denote a write enable signal of registerR2 out(k). Let uek denote
the update enablesignal of stagek. If uek is active, the output
registers of stagek are updated. The value clocked into a register
depends on whether an instance ofR is also in the previous stage
or not.

� If so, the new value is the value provided byfk if fkRwe
is active and is provided by the previous stage if the write
enable signal is not active. The clock enable signal for such
a register is justuek.

� If not so, the new value is always provided byfk. The clock
enable signalce of the register is active iff both the write
enable and update enable signals are active:

ce= fkRwê uek

If R is part of a register file (e.g., general purpose register file),
one needs three signals in order to model the interface to the register
file. The function fk provides the data value (Din), the function
fkRwethe write enable input. Letα(R) be the number of address
bits the register file takes and

Wa(R) = f0;1gα(R)

the set of addresses the register file takes. Furthermore, let

fkRwa: W (R1)� : : :�W (Rj)�!Wa(R)

denote the signal which is fed into the register file as address for
writing data. This is illustrated in figure 1.

In case of a read access to a register file (e.g., operand fetching
in decode stage), let

fkRra : W (R1)� : : :�W (Rj)�!Wa(R)

denote the signal which is fed into the register file as address.

R0

R1

R2

R3

1

Din

A

w
α

W (R0)

Figure 1: Signals required in order to write into a register file
consisting of four registers. In this example,α is two.

Table 1: The sequential scheduling of a three stage pipeline in
the absence of stalls

cycle 0 1 2 3 4 5 6...
ueT

0 1 0 0 1 0 0 1
ueT

1 0 1 0 0 1 0 0
ueT

2 0 0 1 0 0 1 0

The signalsfkRweand fkRwaare precomputed, as described in
[21]. Let Rwe: j and Rwa: j denote the precomputed versions of
these signals in stagej .

In addition to the register list, the transformation tool takes the
functions (i.e., the signal names in HDL) as described above as
inputs.

The circuits that provide the inputs to the functionsfkR and so
on are modeled by the input generation functiongk. In case of the
prepared sequential machine the function just passes the appropri-
ate register values and does not model any gates. We will later on
modify it in order to introduce the forwarding hardware. Each time
we mention a function name such asfkR or fkRra, we omit the
parametergkRof the function for sake of simplicity.

By enabling the update enable signalsuek round robin (table 1),
one gets a sequential machine. In the following, we assume that
this sequential machine behaves as desired. It will serve as a refer-
ence for the correctness proof. However, there is a vast amount of
literature on formally verifying sequential machines, e.g., [16, 25].

3. ADDING A STALL ENGINE
In order to realize interlock, we need means to stall the execution

in certain stages while the execution proceeds in the stages below.
Thus, as first step of the transformation into a pipelined machine,
we add astall engine. A stall engine is a module that takes a set of
stall signals for each stage as inputs and provides the update enable
signals (latch advance signals) as output. This concept is taken
from [20]. For this paper, we take a stall engine described in [12]
and extend it by a rollback (squashing) mechanism: for each stage
s2 f1; : : : ;n�1g, a one-bit registerf ullb:s is added. In addition to
that, a signalf ullk is defined as follows:

f ull0 = 1
k2 f1; : : : ;n�1g : f ullk = f ullb:k

The signalrollbackk indicates that a misspeculation is detected
in stagek. We will later on describe how this is done. Using the
signal rollbackk, a set of signalsrollback0k is defined. The signal
rollback0k is active if the instruction in stagek has to be squashed
because of misspeculation.

rollback0k =
n�1_

i=k

rollbacki

The signalstallk is supposed to be active iff the stagek is to
be stalled for any reason. We will define it later on. Using the
full signal and the stall signal, the update enable signal is defined.
A stage is updated if it is full and not stalled and if there is no
rollback:

uek = f ullk^stallk^ rollback0k
The full bit registers are initialized with zero and updated as fol-

lows: A stage becomes full if it is updated or stalled:

s2 f1; : : : ;n�1g :
f ullb:s := ues�1_stalls

The notation ”:=” with a register on the left hand side is used in
order to denote the inputs of the register.

The signalstallk is defined using a signaldhazk, which indicates
that a data hazard occurs in stagek, and using a signalextk that
indicates the presence of any other external stall condition in the
stage, e.g., caused by slow memory. Stagek is stalled if there is a
data hazard, or an external stall condition or if stagek+1 is stalled:

k2 f1; : : : ;n�1g :
stallk = (dhazk_extk_stallk+1)^ f ullk

stalln�1 = (dhazn�1_extn�1)^ f ullk

Using this stall engine, we can stall the machine in any arbitrary
stage and the other stages keep running if possible. This includes
removal of pipeline bubbles if possible.

4. FORWARDING

4.1 Generic Approach
The forwarding logic is added as follows: LetRbe an input reg-

ister of stagek. If an instance ofR is either output of stagek�1
or stagek, nothing needs to be changed, i.e., no forwarding hard-
ware is required. Assume registerR is written by stagew, i.e.,
R2 out(w). For example, in a five stage DLX as in [10], a GPR
register operand is read in stagek= 1 (decode) but written by stage
w= 4 (write back). In this case, one needs to add forwarding logic.

In case of a microprocessor, the result of some instructions are
already available in an early stage. For example, in a standard five
stage DLX the result of ALU instructions is already available in
stage 2 (execute). These results are saved in a register. The trans-
formation tool does not try to determine this register automatically.
The designer is expected to name the register responsible for for-
warding manually instead. We think that this manual effort is very
low. In case of the five stage DLX, one needs to specify two regis-
ters, one in the execute stage and one in the memory stage.

The register is calledforwarding register. Furthermore, we as-
sume that as soon as a value is stored in the register, it is the final
value as written into the register which is to be forwarded. LetQ
denote the forwarding register for forwardingR.

Using the write enable signals ofQ, a valid signal is defined as
follows: The input is valid iff the registerQ is written in stagek (as
indicated byfkQwe) or in any prior stage. In order to determine if
it was written in any prior stage, we pipeline the valid bit by adding
one-bit registersQv:k. Thus, the valid signal of stagek is:

Qkvalid = Qv:k_ fkQwe

The registerQv:k is updated with:

Qv:k := Qk�1valid

This allows defining signalsRkhit[j], which indicate the stage
that the instruction writing the desired value ofR is in. The hit sig-
nal of a stage is then active iff the stage is full, and the instruction

in the stage writes the register that is to be forwarded, and the ad-
dresses match. For comparison, the precomputed versions of the
write enable signal and of the write address ofR, i.e., Rwe: j and
Rwa: j , are used.

8 j 2 fk+1; : : : ;w�1g :

Rkhit[j] = f ull j ^Rwe: j ^

(fkRra= Rwa: j)

The address comparison is realized with an equality tester. It is
omitted if the registerR is not part of a register file.

If any hit signal of a stagej is active, lettopdenote the smallest
such j :

top = minf j 2 fk+1; : : : ;wg jRkhit[j]g

In hardware, one uses a set of multiplexers for this task. If a hit
signal is active, the value from the given stage is taken. LetgkR
denote the input value generated by the forwarding logic in stage
k for registerR. If top is the stage the registerR is output of, i.e.,
top= w, one takes the value present at the input of the register:

top= w =) gkR= fwR

If the hit is in any other stage, one takes the value which is writ-
ten into the designated forwarding registerQ. Note that the write
enable signal of that register might or might not be active. We
therefore have to select the appropriate value. If the write enable
signal is active, we take the value which is written. If not so, the
register was written in an earlier stage already. We take the value
from the previous stage therefore.

top 6= w =) gkR=

�
ftopQ : ftopQwe
Q:top : otherwise

If no hit signal is active, the value is taken from the registerR. If
R is part of a register file, leta= fkRradenote the address.

topundefined =) gkR= R:(w+1)[a]

Data Hazards This fails if a hit is indicated but the value for-
warded is not valid yet, as defined above. For example, in case of
the five stage DLX this happens if one has to forward the result of
a load instruction that is in the execute stage. Thus, a data hazard
is signaled in this case by activatingdhazk. In addition to that, we
enabledhazk if the data hazard signal of stagetop is active.

Forwarding not only occurs while fetching operands. Many mi-
croprocessors, e.g., MIPS, use one or more delay slots for branch
instructions, called delayed branch. Given a sequential implemen-
tation of a machine with delayed branch, the pipeline transforma-
tion tool automatically generates a pipelined machine with one or
more delay slots.

4.2 Case Study
As case study, we applied our tool to a five stage DLX RISC

machine. The machine does not feature a floating point unit. The
machine uses a branch delay slot and therefore does not need spec-
ulation for the instruction fetch. The prepared sequential machine
reads the two GPR operands in the decode stage (stage 1). Given
thatC:2 andC:3 are used as forwarding registers forGPR, the tool
generates the forwarding hardware depicted in figure 2. The fig-
ure shows the forwarding hardware for one operand (calledGPRa)
only. The interlock hardware is not depicted due to lack of space.

Note that this hardware gets slow with larger pipelines. With
larger pipelines, one can use a find first one circuit and a balanced
tree of multiplexers or an operand bus with tri-state drivers.

=? =? =?

we

Ar Dout

Aw

G
PR

.5

sh
if

t4
lo

ad

Din

A
L

U

M

0
1 1

0

1
0

f ull2 f ull3 f ull4

GPRa2hit[2] GPRa2hit[3] GPRa2hit[4]

f1GPRara

g1GPRa

C:4C:2 C:3

MDRr:4MAR:3

f4GPRwa:2

f4GPRwe:2 f4GPRwe:3

f4GPRwa:3 f4GPRwa:4

f4GPRwe:4

Figure 2: Generated forwarding hardware for the five-stage DLX. Most registers and interlock hardware are omitted.

5. SPECULATION
As described above, the stall engine provides means to evict

instructions from the pipe if misspeculation is detected in stage
k by enabling therollbackk signal. The designer is expected to
state which input value is speculative and which value is specu-
lated on. The transformation tool adds hardware which compares
the guessed value with the actual value as soon as available and en-
ables the rollback signal if the comparison fails. The comparison
is done if the stage is full and not stalled in order to ensure that the
input operands are valid. In case of a rollback, the correct value is
used as input for subsequent calculations. We do not rely on the
speculation mechanism to learn from the rollback.

Thus, the guessed value provided by the designer has no influ-
ence on the correctness of the design; if the value is always wrong
this just slows down the machine. Thus, it is a matter of perfor-
mance only and not of correctness. We therefore do not have to
argue about the value provided by the speculation mechanism.

For example, if one speculates on whether a branch is taken or
not taken in stage 0 (instruction fetch), one can implement branch
prediction. In addition to that, we implemented precise interrupts in
a five stage DLX by speculating that an interrupt does not happen.
The truth is detected in stage 4 at the latest. In case of a misspec-
ulation, the pipeline is cleared using the rollback mechanism. This
concept is taken from [23].

6. FORMAL VERIFICATION

6.1 Pipeline Properties
We verified the correctness of the generated machines using the

theorem proving system PVS [8]. This comprises both data con-
sistency and liveness. The data consistency criterion is taken from
[20]: Let

I0; I1; : : :

denote an instruction sequence. For nonnegative integersi, pipeline
stagesk2 f0; : : : ;n�1g, and cyclesT we denote by

I(k;T) = i

the fact that instructionIi is in stagek in cycleT. This function is
calledscheduling function. In order to simplify some proofs, the
domain of the function above is extended to cyclesT in which no
instruction is in stagek (i.e., the stage is not full). If the stagek
was never full before cycleT, I(k;T) is supposed to be zero. If the
stagek was full before cycleT, the supposed value of the function
I(k;T) is defined using the value the function had in the last cycle
T 0 < T such thatf ull T

0

k holds. In this case,I(k;T) is supposed to
beI(k;T 0)+1 in anticipation of the next instruction in the stage. In
contrast to the definition of the scheduling function in [20], such a
scheduling function is total.

Let RT
I denote the actual value ofR in the implementation ma-

chine during cycleT. The same notation is used for signals, e.g.,
f ull Tk denotes the value of the signalf ullk during cycleT.

For sake of simplicity, we omit rollback in the following argu-
ments. ForT = 0, I(k;T) is zero for all stages. An inductive defi-

nition for I andT > 0 for a pipelined machine is [14]:

I(k;T) =

8><
>:

I(k;T�1) : ueT�1
k

I(0;T�1)+1 : ueT�1
k ^k= 0

I(k�1;T�1) : ueT�1
k ^k 6= 0

LEMMA 1. One shows the following properties of this function
by induction:

1. For T > 0, the value of I for a given stage increases by one
iff the update enable signal of the stage is active:

I(k;T) =

�
I(k;T�1) : uek(cT�1) = 0
I(k;T�1)+1 : otherwise

2. Given a cycle T , the values of the scheduling functions of two
adjoining stages are either equal or the value of the schedul-
ing function of the later stage is one higher.

3. Iff the values are equal, the full bit of the later stage is not
set.

f ullTk = 0, I(k�1;T) = I(k;T)

Negating both sides of the last equation results in:

f ullTk = 1, I(k�1;T) = I(k;T)+1

6.2 Data Consistency
Let R be a register which is visible to the programmer. ByRi

S
we denote the correct value ofR right before the execution of in-
structionIi . Let instructioni be in stagek during cycleT and let
R2 out(k) be a visible register. The data consistency claim is:

RT
I

!
= Ri

S

This is shown by induction onT. Due to lack of space, we omit
the full proof. The interesting part is how to argue the correctness of
the input values generated by the forwarding logic. For this paper,
we restrict the proof to the case that a registerR is read which is
part of a register file and a hit signal is active withtop 6= w. In
the following claims, let stagek the stage for which forwarding is
done, and letI(k;T) = i, f ull Tk , andR2 out(w) hold. Furthermore,
let x be the address of the operand of instructionIi which is to be
forwarded.

LEMMA 2. If there is an active hit signal, register R[x] is not
modified from instruction I(top;T)+1 to instruction i:

RI(top;T)+1
S [x] = Ri

S[x]

It is not surprising that one argues about the instructionI(top;T)+1.
In case of an active hit signal, the forwarding hardware takes the
outputof the stagetop.

Due to lack of space, we omit the full proof of this lemma. It uses
the following arguments: Since stagetop is the first stage with an
active hit signal, all stages above do not have the hit signal set. Let

diff = I(k;T)� I(top�1;T)

denote the difference between the scheduling functions. Using
lemma 1 one can argue that this is also the number of instruc-
tions (i.e., full stages) in the pipeline between stagek andtop. For
an empty stage, nothing has to be shown since the values of the
scheduling functions match. For a full stage one argues that the
instruction in that stage does not write the register.

LEMMA 3. During cycle T , let there be an active hit signal and
let the data hazard signal be not active. The claim is that the input
generated by the forwarding logic during cycle T are correct:

gkR
!
= Ri

S[x]

Proof The claim is shown inductively beginning with the last
stage and proceeding from stagek+ 1 to stagek. In case of the
last stage, which is stagen�1, there is nothing to show since there
is no stage below to forward from. Assuming the claim holds for
stagesk0 with k< k0 < n, the claim is shown for stagek as follows:

As required in the premise, the data hazard signalRkdhazT is not
active. By definition of the data hazard signal, this implies that the
valid bit of the stagetop is active and that the data hazard signal of
stagetop is not active.

As described above, one assumes the correctness of the inputs
of the stagesk0 > k in order to show the correctness of the inputs
of stagek. Sincetop> k, one can apply the induction premise for
stagetop. This shows the correctness of the inputs of the stagetop.

The claim is now shown by a case split on the value oftop (in
PVS, a separate lemma is used for the possible values oftop).

Let top 6= w hold, i.e., the hit is not in the stage which writesR.
As above, let registerQ be the designated forwarding register and
registerA the register with the address. In this case, the forwarding
logic returns the value written intoQ:(top+1).

One can show show that this value is the value ofR[x] after the
execution of the instruction in stagetop by using that the valid
signal is active, i.e.:

gkR = RI(top;T)+1
S [x]

Thus, the claim is transformed into:

RI(top;T)+1
S [x]

!
= Ri

S[x]

Using lemma 2, the claim is concluded.

6.3 Liveness
The liveness criterion is that a finite upper bound exists such that

a given instruction terminates. We omit the proof here. The tem-
plates for both the data consistency and the liveness proofs required
a large amount of manual work in PVS (about one man-month).

7. CONCLUSION
We describe a method which aids the process of designing pipelined

microprocessors by transforming a prepared sequential machine
into a pipelined machine by adding forwarding and interlock logic.
The transformation is not fully automated but the manual effort is
very low, since the designer only has to specify the registers hold-
ing intermediate results.

The proof of correctness is limited to the changes made during
the transformation; the correctness of the prepared sequential ma-
chine is assumed to be shown already. However, automated ver-
ification of sequential machines is considered state-of-the art. As
case study, we easily verify a sequential DLX without floating point
unit using the automated rewriting rules and decision procedures of
PVS. This machine is transformed into a pipelined machine. Be-
sides the hardware, the tool generates the proofs necessary in order
to verify the forwarding and interlock hardware, which yields a
provably correct pipeline with forwarding.

APPENDIX

A. REFERENCES

[1] C. Barrett, D. Dill, and J. Levitt. A decision procedure for
bit-vector arithmetic. InProceedings of ACM/IEEE Design
Automation Conference (DAC’98), pages 522–527. ACM,
1998.

[2] M. Bickford and M. Srivas. Verification of a pipelined
microprocessor using CLIO. InProceedings of Workshop on
Hardware Specification, Verification and Synthesis:
Mathematical Aspects. Springer, 1989.

[3] A. Biere, E. Clarke, E. Raimi, and Y. Zhu. Verifying safety
properties of a PowerPC microprocessor using symbolic
model checking without BDDs. InProceedings of the 11th
International Conference on Computer Aided Verification
(CAV’99), pages 60–71. Springer, 1999.

[4] R. Bryant. Graph-based algorithms for boolean function
manipulation.IEEE Transactions on Computers,
C-35(8):677–691, August 1986.

[5] A. Camilleri, M. Gordon, and T. Melham. Hardware
verification using higher order logic. InFrom HDL
Descriptions to Guaranteed Correct Circuit Designs, pages
41–66. North-Holland, 1986.

[6] E. Clarke and A. Emerson. Synthesis of synchronization
skeletons for branching time temporal logic. InIn Logic of
Programs: Workshop. Springer, 1981.

[7] E. Clarke, A. Emerson, and A. Sistla. Automatic verification
of finite-state concurrent systems using temporal logic
specifications.ACM Transactions on Programming
Languages and Systems, 8(2):244–263, 1986.

[8] D. Cyrluk, S. Rajan, N. Shankar, and M. Srivas. Effective
theorem proving for hardware verification. In2nd
International Conference on Theorem Provers in Circuit
Design, pages 203–222. Springer, 1994.

[9] M. Flynn. Computer Architecture: Pipelined and Parallel
Processor Design. Jones & Bartlett, 1995.

[10] J. Hennessy and D. Patterson.Computer Architecture: A
Quantitative Approach. Morgan Kaufmann Publishers, INC.,
2nd edition, 1996.

[11] R. Hosabettu, G. Gopalakrishnan, and M. Srivas. A proof of
correctness of a processor implementing Tomasulo’s
algorithm without a reorder buffer. InCorrect Hardware
Design and Verification Methods, pages 8–22. Springer,
1999.

[12] C. Jacobi and D. Kroening. Proving the correctness of a
complete microprocessor. InProc. of 30. Jahrestagung der
Gesellschaft f¨ur Informatik. Springer, 2000.

[13] M. Kaufmann and J. Moore. ACL2: An industrial strength
version of nqthm. InIn Proc. of the Eleventh Annual
Conference on Computer Assurance, pages 23–34. IEEE,
1996.

[14] D. Kroening, W. Paul, and S. Mueller. Proving the
correctness of pipelined micro-architectures. InProc. of the
ITG/GI/GMM-Workshop ”Methoden und
Beschreibungssprachen zur Modellierung und Verifikation
von Schaltungen und Systemen”, pages 89–98. VDE, 2000.

[15] J. Levitt and K. Olukotun. A scalable formal verification
methodology for pipelined microprocessors. In33rd Design
Automation Conference (DAC’96), pages 558–563. ACM,
1996.

[16] M. McFarland. Formal verification of sequential hardware:
A tutorial. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 12(5):633–654, 1993.

[17] K. McMillan. Symbolic Model Checking. Kluwer, 1993.

[18] K. McMillan. Verification of an implementation of
Tomasulo’s algorithm by composition model checking. In
Proc. 10th International Conference on Computer Aided
Verification, pages 110–121, 1998.

[19] K. McMillan. Verification of infinite state systems by
compositional model checking. InCorrect Hardware Design
and Verification Methods, pages 219–233. Springer, 1999.

[20] S. Müller and W. Paul.Computer Architecture: Complexity
and Correctness. Springer, 2000.

[21] D. Patterson and J. Hennessy.Computer Organization and
Design – The Hardware / Software Interface. Morgan
Kaufmann Publishers, 1994.

[22] J. Sawada and W. Hunt. Results of the verification of a
complex pipelined machine model. InCorrect Hardware
Design and Verification Methods, pages 313–316. Springer,
1999.

[23] J. Smith and A. Pleszkun. Implementing precise interrupts in
pipelined processors.IEEE Transactions on Computers,
37(5):562–573, 1988.

[24] M. N. Velev and R. E. Bryant. Formal verification of
superscalar microprocessors with multicycle functional units,
exceptions, and branch prediction. InProceedings of
ACM/IEEE Design Automation Conference (DAC’00), pages
112–117. ACM Press, 2000.

[25] P. Windley. Formal modeling and verification of
microprocessors.IEEE Transactions on Computers,
44(1):54–72, 1995.

	Main
	DAC01
	Front Matter
	Table of Contents
	Session Index
	Author Index

