
From Architecture to Layout: Partitioned Memory Synthesis

for Embedded Systems-on-Chip

L. Benini � L. Macchiarulo z A. Macii z E. Macii z M. Poncino z

z Politecnico di Torino

DAI

Torino, ITALY 10129

� Universit�a di Bologna

DEIS

Bologna, ITALY 40136

Abstract

We propose an integrated front-end/back-end ow for the auto-

matic generation of a multi-bank memory architecture for em-

bedded systems. The ow is based on an algorithm for the auto-

matic partitioning of on-chip SRAM. Starting from the dynamic

execution pro�le of an embedded application running on a given

processor core, we synthesize a multi-banked SRAM architecture

optimally �tted to the execution pro�le.

The partitioning algorithm is integrated with the physical design

phase into a complete ow that allows the back-annotation of

layout information to drive the partitioning process. Results,

collected on a set of embedded applications for the ARM pro-

cessor, have shown average energy savings around 34%.

1 Introduction

A key challenge in low power design for Systems-on-Chip (SoC)

containing embedded cores and memories is to reduce the power

consumed in accessing memory [1, 2, 3, 4]. Data memory ac-

cesses are critical for power in data-dominated embedded ap-

plications (e.g., MPEG decoding, speech processing, etc.), and

they are harder to deal with than instruction accesses, because

they tend to be more irregular. Nevertheless, the critical rel-

evance of data memory energy reduction has been stressed by

many authors [2, 3], and a number of system-level data memory

optimization techniques have been proposed.

One of the most e�ective solutions is memory partitioning. The

rationale in this approach is to sub-divide a large memory into

many smaller memories that can be accessed independently.

Energy-per-access is reduced because on every access only a sin-

gle small memory consumes power, while all the others remain

quiescent.

Memory designers and computer architects have long ago ac-

knowledged the importance of partitioning, and many circuit

design techniques [5, 6, 7], as well as architectural optimiza-

tions [8, 9, 10, 11, 12] have been proposed to partition (i.e.,

sub-bank) memories and improve energy e�ciency.

The full potential of memory partitioning can be exploited by

focusing jointly on how to partition the memory space and how

to distribute memory accesses in the partitioned memory archi-

tecture.

For embedded systems, it is possible to tailor a memory par-

tition to a given target application. This objective can be

achieved by analyzing data accesses with either data ow anal-

ysis [2, 3], or execution pro�ling [13].

A key point in application-speci�c memory partitioning tech-

niques is how to take into account the overhead that comes with

a partitioned memory: (i) Power and area of the control logic

for memory selection and addressing; (ii) Area growth caused

by the instantiation of multiple memory banks as opposed to

a monolithic memory; (iii) Timing bottlenecks and additional

power caused by bus multiplexing. Most of the overhead be-

comes apparent only at the physical design level, when a parti-

tioned memory architecture is placed and routed. Current au-

tomatic memory partitioning techniques [2, 3, 13] do not fully

address this issue.

This paper proposes an integrated optimization approach that

starts from an embedded application targeted for a processor

family, and outputs a complete layout, fully placed and routed,

of a power-optimal partitioned memory, tailored for the chosen

embedded application. The layout includes memory macros,

core, addressing and memory selection logic, control signals and

system buses. Our optimization algorithm takes layout-related

overhead into account both during top-down optimization and

bottom-up validation. The �rst objective is achieved thanks to a

preliminary analysis, that can be run once and for all for a given

technology, and that leads to a precise pre-characterization of

the expected partitioning overhead to be used by the memory

partitioning algorithm. Overhead estimation is exploited by

the partitioning algorithm to speed-up its search for a power-

optimal partition. The second objective is achieved by develop-

ing a seamless ow that integrates high-level memory partition-

ing, logic synthesis, placement and routing, parasitic extraction

and back annotation, timing, area and power analysis.

Results show that the architecture-to-layout approach provides:

(i) Dramatic power reductions, since it allows us to tighten the

safety margins during optimization; (ii) Precise control of side

constraints (timing, area) during power optimization; (iii) One-

pass optimization, without the need of iterations in the time-

consuming physical design step. The partitioned memory archi-

tectures obtained with the proposed approach result in energy

savings of 34% on average (54% maximum), estimated on actual

layouts.

2 Memory Partitioning Algorithm

In [13], an algorithm for the automatic partitioning of the mem-

ory space of an embedded application into multiple memory

banks was proposed. We have enhanced the search engine de-

veloped in that work to allow a tighter integration in the archi-

tecture-to-layout ow. For a better understanding of the modi-

�cations required by the integration with the back-end, we will

briey outline its main features.

The algorithm is formulated as an optimization problem con-

sisting of the computation of a set of memory cuts, up-to a

maximum of Max blocks, on an abstract view (an array of M

locations) of the data memory to be partitioned. The optimum

cut set is computed using a recursive, branch-and-bound algo-

rithm driven by a cost function that models the overall memory

energy used by the target application during its execution.

The recursive formulation allows to express the multi-way parti-

tioning problem as a set of bi-partitioning instances. At a given

recursion depth, l, it is assumed that the �rst l�1 cuts have been

already computed; the last cut is obtained by bi-partitioning

the remaining block of memory. An e�cient bi-partitioning al-

gorithm is thus central to the overall partitioning process.

Because of the size of the overall search space, e�ective bounds

are needed to make the exploration feasible.

The algorithm uses two bounds to prune the search space. The

�rst one is imposed by the physical interpretation of the par-

titioning process; that is, the feasibility of a partition is sub-

ject to the fact that the energy overhead of an extra bank is

properly amortized. This fact is modeled as an array � =

[0; �1; : : : ; �Max-1]; �i expresses the energy overhead imposed

for moving from i � 1 to i memory partitions (�0 is referred to

the case of the monolithic memory). This implies that a bi-

partition at a given recursion depth l is rejected if this does not

improve the current minimum of at least �l.

The second bound exploits a peculiar property of the energy cost

function used to drive the partitioning process. This cost func-

tion is obtained by multiplying two monotonically increasing

functions of memory size: The energy for a read/write memory

access and the total cumulative read/write access counts. There-

fore, by construction, the energy cost function is also monotoni-

cally increasing with respect to memory size. This implies that,

as soon as the � constraint is violated, say, at a given iteration

i, further iterations on values k > i can be avoided because the

energy consumed in those memory blocks will be larger.

The algorithm of [13] solves the partitioning problem from an

abstract point of view. However, practical application of the

algorithm to a realistic memory partitioning framework must

take into account several additional factors, possibly trading o�

optimality for exibility. The following are important issues

that were not considered in the original algorithm:

� Accurate estimation of the energy partitioning overhead: In

the original algorithm the �s were estimated in a conservative

way, under reasonable assumptions on the placement of the

memory blocks. The energy partitioning overheads should be

computed using information back-annotated from actual lay-

outs; this requires the integration of the memory partitioning

program in a complete design ow.

Accurate evaluation of hardware overhead is key for an ef-

fective use of the partitioning tool, because it allows the ex-

ploration of partitioning alternatives at the application level,

without the need of interacting with the back-end framework

for each partitioning solution.

� Cycle time and area constraints: Although energy optimiza-

tion is the primary target, the optimum partitioning solution

should not violate possible user-speci�ed cycle time and area

constraints. From the algorithmic point of view, constraints

are easily taken into account by specifying a set of relative

penalties, similarly to the energy overhead �s.

Concerning cycle time, the address decoder that activates the

various memory banks increases the cycle time of the system;

on the other hand, the cycle time imposed by the memories

can be reduced because smaller memories are used. Concern-

ing area, partitioning into multiple banks intuitively increases

the total area. However, the actual overhead can be much

smaller than expected because smaller blocks may be placed

more easily.

� Design ow integration issues: The implementation of the

algorithm within a realistic design ow requires the adoption

of some approximations to trade-o� execution times of the

partitioning algorithm with the optimality of the produced

solution. For example, although the algorithm is able to gen-

erate partitions of any size, their actual size is bound to the

rules of a real-life automatic memory generator.

Addressing all the issues listed above is key for enabling a com-

plete design path, from architecture to layout. Among the above

issues, the accurate estimation of the partitioning overhead is

de�nitely the most critical. The solution we propose is based on

the idea of linking together the partitioning tool (the front-end)

with physical-design tools (i.e., back-end) and thus of supplying

the partitioning algorithm with realistic overhead data calcu-

lated after layout. Details on the front-end/back-end integration

ow are provided in the next section.

3 Physical Design of Partitioned Memory

Accurately taking into account the partitioning overhead (added

logic to compute the real addresses, added loads due to wiring,

placement constraints) during optimization and validation is es-

sential for calculating a realistic memory partition.

In this section, we discuss the physical design ow that we have

developed. The input of the ow is the list of partitions pro-

duced by the tool described in Section 2, and its output is a

legal layout of placed and routed blocks, that is, the core and

memory system, including address decoder and memory selec-

tor. A back-end ow manager automatically takes care of all

the phases of the physical design, all the way down to detailed

routing. The following are the main steps of the ow, that are

described in detail in the following subsections:

� Decoder generation;

� Memory generation;

� Block placement;

� Block routing;

� Power/ Delay/Area estimation.

The target technology is a 0:25�m process from ST Microelec-

tronics, with six levels of metal (only the �rst two levels were

used for signal routing between blocks). Memory blocks are

synthesized using ST's embedded SRAM generators, that pro-

vide accurate timing, area and power information for the var-

ious memory cuts. The generators allow the user to specify

�ne details of the internal memory organization (such as bu�er

parametric sizing, various degrees of output multiplexing, etc.).

Since we target power minimization, the internal structure of

the memory banks has been speci�ed so as to minimize energy-

per-access during read and write cycles.

The processor that interfaces with the customized memory sys-

tem is an ARM9 core [14]. The control and addressing logic are

synthesized in standard cell style onto the 0:25�m low-power

HCMOS library from ST Microelectronics.

3.1 Decoder Generation

The knowledge of the cut points for the addresses is used to

generate a synthesizable Verilog description of a block (the de-

coder, hereafter) that interfaces with the CPU to translate its

addresses and control signals into the multiple control and ad-

dress signals needed to drive the various memory banks. The

decoder takes the address lines of the core as inputs, and pro-

duces two output signals:

� Memory select: According to the interval of the virtual ad-

dress issued by the core, it selects and activates the memory

block that physically maps that address.

� Physical address: The virtual address has to be re-scaled to

the address w.r.t. the selected memory bank. For example,

if the second bank maps the virtual addresses starting from

the virtual (CPU) address of 1FFF to address 2FFF, when

the issued address is between those two limits, the physical

address has to be equal to virtual address{1FFF

The Verilog description is synthesized using Synopsys Design

Compiler, that maps it on the standard cell library. The syn-

thesis is timing- driven to ensure that the �nal implementation

will not su�er from performance degradation.

The technology mapped decoder is then passed to a commercial

place and route tool (Cadence Silicon Ensemble), together with

the description of the standard cell library, to obtain a standard

cell implementation. The result of this phase is an independent

block which has to be placed and routed together with all the

other blocks of the design. This \hierarchical" solution has been

chosen, instead of routing the standard cell netlist together with

the memory blocks, for two reasons: power distribution uses

metal-2 lines inside the standard celle structure, while power

distribution in the overall system uses levels 3 and 4 of metal;

this would cause conicts with standard cell power routing. This

approach is consistent with common practice P&R tools that

usually deal separately with block and cell routing, by cutting

out an area explicitly for block design out of the standard cell

area. Second, the area of the decoder with respect to the CPU

core and memories is very small. Therefore, having the decoder

enclosed in a small atomic block helps the task of the global

placer and router, because it will tend to place the decoder close

to the address pins of the core representing its primary inputs.

3.2 Memory Generation

The partitioning tool generates memory cuts that are consistent

with the rules of the memory generator, that is, they are auto-

matically translated into actual valid memory blocks. Clearly,

a memory generator is required, in order to obtain the physical

views required by the back-end ow.

The proprietary tool by ST Microelectronics used in our ow

yields multiple views of a memory bank: A data-sheet descrip-

tion, a functional and a timing view (both in Verilog), a frame

view with blockage information for oorplanning and a physical

view for placement and routing.

The parameters used to generate memory cuts are the number

of words, the word width, and the number of output MUXes.

These three quantities are obviously not independent. In our

case, the word width is �xed to 32 bits; however, for a given

number of words, di�erent memory con�gurations can be gen-

erated, corresponding to di�erent memories with di�erent fea-

tures in terms of shapes of the memory (di�erent aspect ratios),

delays and power dissipation. As the main focus of this work

is power reduction, we always choose the least power expensive

cut, that turns out to be the memory with the least number of

columns. This choice, however, could be suboptimal in terms of

delay and/or area.

Two features of the generated memories are particularly attrac-

tive for the proposed ow. First, the functional signals (control,

data and address buses) are to be accessed on the same side of

the memory: This allows easier oorplanning (as shown in next

section) and simpli�es thus the physical design phase. Second,

the memories can be turned o� rapidly, so that it is possible

to activate and deactivate a memory block at every clock cycle

without impairing the performance of the whole system.

3.3 Block Placement

After the memory cuts are generated and the decoder synthe-

sized, it is possible to place them on the die. We explored two

di�erent choices for the placement phase: (i) A fully automated

strategy, with no insight on the functionality of the blocks, that

relies on the block-placer contained in Silicon Ensemble to en-

force minimal wire length; (ii) A directed oorplanning strat-

egy, which uses the knowledge of the position of the pins and

the functionality of the blocks to ease the routing phase. Out

of the many choices for regular placement, we explored that of

a bus-channel arrangement, in which the blocks are placed as in

Figure 1.

CS2

mreq

A<13:0>

CPU Core

Memory3

Memory2

Memory 1

CS3
CS1A 1 A2 A3

D<31:0>

Figure 1: Floorplan for Non-Automatic Placement.

In both routing styles the system has to be described in a Verilog

�le, and the physical view of the blocks is given in a LEF �le

format. Those �les are obtained from the previous two phases

for the decoder and the memories, while the processor core is a

�xed block of the design. After the entire design description is

input, the placement operation can proceed.

In the case of automated placement, Silicon Ensemble is in-

voked to perform a legal placement of the blocks. In order to

ease routability of the design, block halos are imposed, and no

timing driven constraint added. Therefore the P&R suite tries

to minimize the basic cost function of total wire length, which

directly impacts power consumption; assuming equal switching

activities on the buses, wiring power is basically dependent on

the total length. Automatic placement typically tries to perform

a strict bin-packing of the various blocks; this typically reduces

the overall area, but it might complicate the routing phase.

In the case of directed placement, all memories are placed in

such a way that all their pins lay on the same straight line,

so that the decoder can easily feed them from above. This ar-

rangement is made possible by the positioning of the pins of the

generated memory cuts. This arrangement is typically not very

e�cient from the point of view of area, especially in the case

of highly asymmetrical partitions; on the other hand, ease of

routing and predictability are a plus of this method.

3.4 Routing

The routing phase is completely automated; wire length is the

cost metric used to drive routing. The model used for the power

dissipated by the wires is basically proportional to their length,

besides switching activity (which is not related to the physical

design). Also, the power dissipated in the decoder is largely de-

pendent on its output load, which is primarily given by memory

address bus capacitance. Therefore, a standard routing tool,

using total wire length as cost function, is well suited for our

purposes. Only the two lowest metal layers are used to perform

routing. This typically guarantees a good solution in terms of

wiring delays and homogeneity of routing, at the possible ex-

pense of some minor area loss. The choice is also dictated by

the decision to leave the topmost levels free for global power

distribution nets.

Even if routing options for the automatic and �xed case are

exactly the same, the di�erent placement style inuences this

phase as well. In particular, the automatic placement can make

it di�cult for the tool to route speci�c nets, therefore increasing

the probability of introducing geometric violations. Even when

this is not the case, automatically placed blocks have a bigger

spread in their wire lengths, that can adversely inuence timing

performance of the system. In both cases routing is followed by

an automatic search and repair phase that solves all violation

problems, leaving a legal placed and routed design whose power,

area and timing performances can be accurately estimated.

3.5 Power Estimation

After the routing phase, we have a complete physical design

of the interconnect, together with accurate information about

memories, core and decoder placements; it is now possible to

evaluate the power consumption of the resulting architecture.

Dissipated power can be divided into three contributions:

Memory power dissipation: This is the most important con-

tribution to the total power. It is obtained as the power per

access (determined from the datasheet of the memory cuts),

weighted by the relative activity of the accessed addresses w.r.t.

the total addressed space (extracted from the memory trace):

MX

i=1

(aiRi + biWi)

where the ai and bi are the number of read and write accesses

on the i-th memory, and Ri (Wi) denotes the energy for a read

(write) operations in the i-th memory. We assume that there

are M memory blocks.

The above formula computes memory dissipation as if at least

one memory is accessed per clock cycle, either with a read or

a write operation. Even if this assumption is somewhat ideal,

it gives correct �gures of energy, when applied to the entire

execution trace.

Interconnect power dissipation: This is the second contribu-

tion in order of importance, that is primarily responsible for the

power overhead due to memory partitioning. It can be com-

puted as:

#addrX

i=1

SWaddri
Caddri

+

#dataX

i=1

SWdatai
Cdatai

where Caddri
and Cdatai

represent the capacitances of the ad-

dress and data bus lines, respectively, and the SWaddri
and

SWdatai
the relative switching activities.

The contribution of data lines is larger than that of address

lines, because there are more data wires than address, they are

longer, and they generally have higher switching activity (data

tend to exhibit random behavior).

Decoder power dissipation: This component is the hardest

to estimate before the end of the ow; fortunately, it has a

marginal impact on the overall power consumption. Decoder

power roughly consists of two contributions: The power dissi-

pated inside the decoder, and the power dissipated in memory

addresses and select wires. The former is a function of the com-

plexity of the decoder logic, and is positively correlated with the

number of partitions. The latter, by far the most important, is

still related to the wire length.

Power estimation of the decoder has been obtained by using

the traced switching activity on the CPU addresses as input

switching activity, and running power simulation on the mapped

netlist, loaded by the real capacitances of the wires.

3.6 Delay and Area Estimation

Partitioning also a�ects other design parameters of the sys-

tem, namely, delay and area. Concerning timing, determining

whether, and how much, partitioning a�ects timing or not de-

pends on whether the decoder and the extra wiring are on the

critical path. This, in turn, is dependent on the details of the

communication protocol between the core and the memory.

In our case, where an ARM core is used, the protocol requires a

delay of one clock cycle between the issuing of the address and

the reading of the data-bus [14]. It is thus su�cient that the

time needed for the memory to retrieve the information, plus

the additional delays in the wiring and the decoder, remains

smaller than the clock cycle, in the worst case, to ensure a cor-

rect behavior with no performance degradation. If this is the

case, the partitioning program does not need to take into ac-

count any delay penalty, and power savings can be obtained at

no performance loss.

In order to evaluate the system timing, we start from a max-

imum operating frequency of 150 MHz (high enough for most

embedded applications, and towards the high end of the ARM

low-power core performance), and assign a delay budget to the

decoder plus the wiring; if the delay is smaller than this allowed

budget, the system can work at its maximum cycle time. The

evaluation of accurate timing �gures needs an extraction of the

parasitics of the interconnect. These parameters are fed back to

the decoder's synthesized netlist, so that the real decoder loads

are taken into account. The RC parameters allow estimation of

the interconnect delay itself. The sums of these two contribu-

tions are the delays for each address and selection signals, whose

maximum value is compared to the delay budget to check for

proper behavior at maximum frequency.

Concerning area, our �gures do not include the size of the core,

that is considered as a �xed block. Area is computed as the

di�erence between the area of the overall system and the core

area. This choice is acceptable for the controlled placemente, it

may be a bit inaccurate for the automatic placement, because

the actual size of the core may a�ect the routing area.

4 Experimental Results

4.1 Partitioning Overhead Characterization

The most intuitive way of characterizing the energy overhead

introduced by the partitioned memory is to take a set of sample

runs of the partitioning algorithm (obtained with some initial

reasonable overhead values) and to apply the ow of Section 3

to each partition. The overhead values evaluated on this sample

are back-annotated into the partitioning tool, and the process

is iterated until convergence on the overhead values has been

reached.

An alternative solution consists of performing statistical charac-

terization, based on a set of synthetic partitions (i.e., arti�cially

generated) from which the overhead values are extracted. To

this purpose, we �rst need to determine which parameters de-

�ne the dimension of the exploration space.

The values of the �s are used to model only the additional energy

caused by extra wiring and the decoder, while memory energy

is already taken into account in the partitioning algorithm. We

might thus expect that the value of the �s only depend on the

number of blocks of the partition. In general, however, also

the actual sizes of the blocks of the partition may a�ect the �s.

For instance, a quasi-balanced bi-partition (e.g., (50%; 50%))

may have a di�erent overhead than a very unbalanced one (e.g.,

(10%; 90%)) because of the di�erent loads seen at the bus out-

puts.

In our experiments, we have characterized the values of the �s

for the cases of two, three, and four partitions. For each case, we

have chosen a number of di�erent combinations of memory block

sizes, and averaged the values of � obtained for the di�erent

con�gurations.

Partitions Benchmark Synthetic
Manual Automatic Manual Automatic

2 44.93 57.34 42.25 43.03
3 63.45 77.04 62.42 85.61
4 { { 88.54 102.98

Table 1: Synthetic vs. Application-Dependent Overheads.

Table 1 reports the data of the comparison between the energy

overhead values obtained with the two characterization strate-

gies discussed above. Column Benchmarks refers to the values of

� obtained by the partitioning algorithm on a set of embedded

applications; Column Synthetic refers to values of � obtained

from synthetic partitions. For each characterization type, two

values are reported: Column Automatic refers to a fully auto-

matic run of the place and route tool, whereas column Manual

refers to a partially manual layout, where some blocks have been

pre-placed. The values in the table are expressed in �W=MHz.

For the case of manual layout, the results show very good match

between the overhead values obtained from both synthetic and

application-dependent partitions. This fact con�rms that the

�s are basically insensitive to the actual sizes of the memory

blocks of the partition, and mainly depend on the number of

memory blocks. This has an important consequence, because

the application-independent characterization of the �s allows a

designer to use the memory partitioning algorithm as a memory

optimization tool in the context of system-level design explo-

ration. In other words, the partitioner can be used to accurately

estimate the energy savings of di�erent memory architectures

without the need of a complete layout of each solution.

For the automatic case, the overhead values obtained from syn-

thetic and application-dependent partitions are less correlated

than in the case of manual layuot; this is due to the inherent

approximation of the place and route tool, that is typically more

e�ective for cell-based designs than for macro-based ones.

Notice also that none of the selected benchmarks resulted in

a 4-way partition; this implies that an application-dependent

characterization may sometime span only a limited region of

the exploration space. In this case, it is then mandatory to

resort to synthetic partitions to set up a meaningful sample set

for characterization.

4.2 Energy Optimization

The memory partitioning tool that includes the back-end ow

of Section 3 has been validated on a set of C programs that rep-

resent typical embedded applications, and that are distributed

along with Ptolemy [15], a simulation framework for HW/SW

descriptions. ARMulator [16], a software emulator for core pro-

cessors of the ARM family, has then been used to trace data

memory accesses.

Benchmark Address Partitions Savings [%]

Space Automatic Manual

Adaptfilter 3085 [1232 1584 288] 22.02 27.55

Butterfly 2095 [1216 896] 9.80 11.38

Chaos 4473 [1584 2736 160] 39.50 38.69

Dft 6584 [3200 144 3264] 48.79 44.55

iirDemo 3838 [1376 2208 272] 29.03 33.34

integrator 4153 [1504 2464 192] 37.26 36.41

interp 4120 [1440 2464 224] 35.92 35.56

loop 8196 [2400 5632 192] 53.50 53.88

scramble 1814 [976 848] 7.43 8.58

upsample 8239 [2448 5632 176] 53.23 54.00

Avg. 33.65 34.39

Table 2: Energy Savings.

The algorithm of [13], fed with the energy overheads determined

with \synthetic" characterization, has been used to generate the

partitions.

The execution traces have then been pro�led to extract the rel-

evant information required by the back-end ow:

� Switching activity values on the individual bits of both data

and address buses.

� Switching activity at the output of the decoder function; this

values also depends on the set of resulting memory cuts, which

determines the toggle count of the decoder's outputs.

� Total number of read/write accesses for each block of the

partition.

The partitions obtained from the partitioning tool are then used

to drive the physical design ow, as described in Section 3.

Benchmark Savings [%]

Pre-Layout Post-Layout

Automatic Manual Automatic Manual

Adaptfilter 28.62 29.89 22.02 27.55

Butterfly 13.90 13.94 9.80 11.38

Chaos 39.26 40.53 39.50 38.69

Dft 41.87 48.32 48.79 44.55

iirDemo 34.03 35.30 29.03 33.34

integrator 36.90 38.17 37.26 36.41

interp 36.25 37.52 35.92 35.56

loop 53.03 54.30 53.50 53.88

scramble 11.50 11.54 7.43 8.58

upsample 53.09 54.48 53.23 54.00

Avg. 34.84 36.39 33.65 34.39

Table 3: Energy Savings Before and After Layout.

Table 2 shows the power results for the benchmark applica-

tions. Column Address Space reports the number of distinct

data addresses in the trace; column Partitions gives the list of

the memory cuts as returned by the partitioning program. Col-

umn Savings shows the energy savings with respect to the case

of monolithic memory, as estimated on the actual layouts. The

two values shown regard automatic (column Automatic) and

manual (column Manual) placement strategies.

Savings range from 7% to 54%, with an average of 33.6% for the

automatic placement, and 34.4% for the manual placement.

We observe that the system is assumed to be clocked at 150MHz.

This cycle time (6:66ns) is used as a cycle time constraint during

the physical design phase. From the analysis of the cycle oper-

ations of the ARM core, the memory blocks and the delays of

Benchmark Automatic [%] Manual [%] Area Ratio
Memory Wiring Decoder Memory Wiring Decoder Automatic Manual

Adaptfilter 85.0 13.7 1.3 91.0 7.5 1.5 1.75 1.95

Butterfly 93.0 6.4 0.6 94.0 5.2 0.8 1.49 1.57

Chaos 92.0 6.4 1.6 91.0 7.6 1.4 1.41 2.28

Dft 86.0 13.0 1.0 91.0 7.8 1.2 1.56 1.83

iirDemo 93.0 6.3 0.7 91.0 7.9 1.1 1.38 1.75

integrator 93.0 6.1 0.9 94.0 5.1 0.9 2.12 1.97

interp 86.0 12.6 1.4 91.0 7.8 1.2 2.15 1.91

loop 92.0 6.9 1.1 91.0 7.5 1.5 1.62 1.74

scramble 92.0 6.6 1.4 91.0 8.0 1.0 1.49 1.59

upsample 91.0 7.2 1.8 90.0 8.6 1.4 1.72 1.75

Avg. 90.3 8.5 1.2 91.5 7.3 1.2 1.67 1.83

Table 4: Energy Breakdown and Area Overhead of the Partitioned Memories.

the wires and the decoder, we have observed that all the designs

end up with a cycle time shorter than the initial constraint. For

this reason, delay �gures are not reported in the table.

In Table 3, we compare the estimated energy savings of Table 2

(i.e., estimates after layout), to those provided by the evalu-

ation of the cost function used by the partitioning algorithm

(estimates before layout). This experiment is very important to

demonstrate the e�ectiveness of the memory partitioning tool

as a high-level exploration tool.

The di�erence between pre- and post-layout estimates are very

small, especially for the case of the manual oorplan; this was

somehow expected from the results in Table 1.

The experimental data suite is completed in Table 4 with in-

formation about the breakdown of the energy consumption of

the various components of the system. For all the examples,

the memory accounts for the largest fraction of the energy con-

sumption (around 90%), while the decoder has a marginal im-

pact on the total energy (around 1%). The energy breakdown

is roughly the same for both the automatic and manual layout

cases. The table also includes (columns Area Ratio) results on

area overheads, as the ratio of the partitioned memory area over

the monolithic memory area. The values are taken as the area

of the bounding box of the entire layout.

5 Conclusions

We have proposed an integrated memory energy optimization

approach that, starting from an embedded application executed

on a core processor, builds a power-optimal memory partition

that is directly placed and routed on a target technology, to-

gether with its addressing and memory selection logic, control

signals and system buses.

The key feature of the proposed approach is the use of layout-

related information during the memory partitioning phase, in

the form of pre-characterized energy overheads used to speed

up the the search for the optimal partition, as well as during

the validation phase, thanks to a ow that links memory parti-

tioning to physical design.

The accurate characterization of the energy overheads translates

high-level optimization margins into real energy savings; there-

fore, the memory partitioning tool can be used as a high-level

memory optimization tool for the fast exploration of partition-

ing alternatives.

Results show that the architecture-to-layout approach provides

signi�cant power reductions (34% on average, on the actual lay-

out), and accurate control of side constraints (timing, area) dur-

ing power optimization.

References

[1] J. Rabaey, M. Pedram, Low Power Design Methodologies,
Kluwer, 1996.

[2] F. Catthoor, S. Wuytack, E. De Greef, F. Balasa, L.
Nachtergaele, A. Vandecappelle, Custom Memory Manage-
ment Methodology Exploration for Memory Optimization for
Embedded Multimedia System Design, Kluwer, 1998.

[3] P. Panda, N. Dutt, Memory Issues in Embedded Systems-on-
Chip Optimization and Exploration, Kluwer, 1999.

[4] S. Coumeri, Modeling Memory Organizations for the Synthe-
sis of Low Power System. Doctoral Dissertation, EE and CS
Dept. Carnegie Mellon University, May 1999.

[5] K. Itoh, K. Sasaki, Y. Nakagome, \Trends in Low-Power RAM
Circuit Technologies," Proceedings of the IEEE Vol. 83, No. 4
, pp. 524-543, April 1995.

[6] B. Amrutur, M. Horowitz, \Speed and power scaling of
SRAM's," Journal of Solid-State Circuits, Vol. 35, No. 2,
pp. 175-185, February 2000.

[7] N. Kavabe, K. Usami, \Low-Power Technique for On-Chip
Memory using Biased Partitioning and Access Concentration,"
CICC-00, pp. 275-278, May 2000.

[8] A. Farrahi, G. Tellez, M. Sarrafzadeh, \Memory Segmenta-
tion to Exploit Sleep Mode Operation," DAC-32, pp. 36-41,
June 1995.

[9] C. Su, A. Despain, \Cache Design Tradeo�s for Power and
Performance Optimization: A Case Study," ISLPD-95, pp. 63-
68, April 1995.

[10] U. Ko, P. Balsara, \Energy Optimization of Multilevel Cache
Architectures for RISC and CISC Processors," IEEE Trans.
on VLSI Systems, Vol. 6, No. 2, pp. 299-308, June 1998.

[11] W. Shiue, C. Chakrabarti, \Memory Exploration for Low
Power, Embedded Sistems," DAC-35, pp. 140-145, June 1998.

[12] S. Coumeri, Modeling Memory for System Synthesis, IEEE
Trans. on VLSI, Vol. 8, No. 3, pp. 327-334, June 2000.

[13] L. Benini, A. Macii, M. Poncino, \A Recursive Algorithm
for Low-Power Memory Partitioning," ISLPED-00, pp. 78{83,
July 2000.

[14] S. Segars, \The ARM9 Family - High Performance Micropro-
cessors for Embedded Applications," ICCD'98, pp. 230-235,
October 1998.

[15] J. Davis II, M. Goel, C. Hylands, B. Kienhuis, E. A. Lee, J.
Liu, X. Liu, L. Muliadi, S. Neuendor�er, J. Reekie, N. Smyth,
J. Tsay and Y. Xiong, \Overview of the Ptolemy Project,"
ERL Technical Report UCB/ERL No. M99/37, Dept. EECS,
University of California, Berkeley, July 1999.

[16] ARM Corporation, ARM Software Development Toolkit, Ver-
sion 2.50, Reference Guide, ARM DUI 0041C, Chapter 12,
November 1998.

	Main
	DAC01
	Front Matter
	Table of Contents
	Session Index
	Author Index

