
Timing Driven Placement using Physical Net Constraints
Bill Halpin

Design Technology, Intel
2200 Mission College

Santa Clara, CA 95054
1 408 765 9867

william.halpin@intel.com

C.Y. Roger Chen
Syracuse University

Department of EE&CS
Syracuse, NY 13244

1 315 443 4179
crchen@syr.edu

Naresh Sehgal
EPD, Intel

2200 Mission College
Santa Clara, CA 95054

1 408 765 4179
naresh.k.sehgal@intel.com

ABSTRACT
This paper presents a new timing driven placement algorithm that
explicitly meets physical net lengths constraints. It is the first recursive
bi-section placement (RBP) algorithm that meets precise half perimeter
bounding box constraints on critical nets. At each level of the recursive
bi-section, we use linear programming to ensure that all net constraints
are met. Our method can easily be incorporated with existing RBP
methods. We use the net constraint based placer to improve timing
results by setting and meeting constraints on timing critical nets. We
report significantly better timing results on each of the MCNC
benchmarks and achieve an average optimization exploitation of 69%
versus previously reported 53%.

1. INTRODUCTION
The placement field has been the subject of much research[1]
[3][5][8][10][11], due to its importance in the design of VLSI circuits.
There are 3 main goals in the automated placement problem: minimizing
chip area, achieving routable designs, and maximizing circuit
performance. Maximizing circuit performance has been the focus of
continued attention in placement as semiconductor process advances
have scaled cell delays more rapidly than interconnect delay[2].

Previous recursive bi-section timing driven placers have utilized net
weights to reduce the length of timing critical nets. This is problematic
since the improvement resulting from an increased weight is
unpredictable as the various increasing and decreasing weights in the
system interact. This is a serious drawback as the unpredictability can
lead to oscillations in the net criticality and weight, limiting the extent of
timing improvement.

2. MOTIVATION
In this paper we present a new placement method that explicitly meets
net length constraints using linear programming[13][14]. This work was
motivated by the need in high performance microprocessor design for
accurate control of maximum net lengths and a frustration with the lack
of precise net length control provided by net weighting

approaches[15][16]. As mentioned earlier, net weights suffer from a
number of drawbacks. Foremost of these, it is not possible to
predict the net length obtained in response to a net weight.

The natural choice for controlling net delays in timing driven
placement is a limit constraining the net’s maximum bounding box.
These net constraints give precise control to the circuit designer or to
an automated timing driven placement algorithm.

Our approach can be easily incorporated with many RBP methods
including analytical methods[6][5][10] and min-cut[11] approaches.
Moreover, our placer immediately reports if it is not able to meet a
net constraint at any level of partitioning. This allows the designer to
take some other action such as circuit changes (e.g. sizing, buffering
or splitting).

3. PROPOSED APPROACH
In this paper we focus on fixed die placements that are achieved
through recursive bi-section placement (RBP)[5][6][7][10][11]. RBP
is widely used in both academia and industry because it is fast,
scales well to large problem sizes, and produces excellent wirelength
results. RBP determines the locations of the cells through a series of
recursive bi-partitioning steps of the circuit netlist and placement
areas. The algorithm starts with a single “parent” region containing
all of the cells and covering the entire placement area. In each
successive step, the placement area of each “parent” region is
divided to form 2 child regions. Similarly, the cells in each parent
region are partitioned into 2 groups that are assigned to the 2
physical regions. Once a cell is assigned to a physical region, it will
remain in the region for the remainder of the placement algorithm.
These partitioning steps continue until each region contains less then
some threshold of cells.

We introduce the following terms to explain RBP. A netlist
hypergraph),(EVH has n cells },...,,{ 21 nvvvV = ; a net Ee ∈ is
defined to be a subset of V with size greater than one, i.e. 1>e . A
cell, iv , has area, a

iv , and a physical location given by its x and y
coordinates: x

iv and y
iv .

A placement region,),(ca rrr , is defined as a rectangular physical
area, ar and a set of cells cr which are placed somewhere in ar .
The number of cells in the region is defined as cr . Given a region r,
a partitioning, or bi-section, },{ rl rrr → creates 2 children regions

lr and rr referred to as the left and right children of r. We refer to r
as the parent region of lr and rr . The partitioning divides the parent
region’s area ar into to halves, a

l
r and a

r
r . The partitioning also

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Design Automation Conference ’01, June 18-22, 2001, Las Vegas,
Nevada.
Copyright 2001 ACM 1-58113-297-2/01/0006…$5.00.

divides the cells in the parent region, cr , into 2 groups, c
l

r and c
r

r . The
following properties hold over the partitioning operation:

∅=aa
rl

rr Ι , aaa rrr
rl

=∪ , ∅=cc
rl

rr Ι and ccc rrr
rl

=∪ .

A placement, P, is a set of placement regions, R, in which every cell in V
is in exactly one region and no region overlaps another region. A legal
placement is one which every placement region contains one cell.

The critical step in RBP is the creation of the region partitioning:

},{ irili rrr → . Several techniques have been used for this partitioning
step including mincut[11] and numerical[1][5][10] methods. Our
proposed method is not restricted to any of these techniques and can be
incorporated with any RBP routine. In our work we use a quadratic
programming based partitioner similar to GordianL[6].

The main contribution of this work is a technique to ensure that every
cell is assigned to a region such that there is some location for every cell
within its region for which all net constraints will be met.

3.1 Net Constraint Representation
A net constraint represents a physical bound on the half perimeter of a
net and hence the placement of the cells connected by the net. Formally,
a net constraint, bc λλλ ,= , where Vc ⊂λ , 1>cλ and bλ is the
half perimeter of the bounding box constraining the locations of cλ .

For a placement,)(HP , a net constraint, λ is feasible, () 1==λf , if
for every cv λ∈ there is some location of v within its region such that
bounding box enclosing the cell locations is less than or equal to the
constraint bound box. The set of net constraints for a netlist is defined
as },...,{ 21 nλλλ=Μ . An unconstrained net will have ∞=bλ . A
placement at any stage of partitioning is said to be feasible if

() 1==∀ Μ∈ λλ f .

3.2 Constraint Chain Representation
In general it is not possible to create feasible assignments by checking
each constraint individually. This is illustrated by the example in Figure
1. Figure 1 shows such a case with 2 constraints: 1λ and

2λ where },{ 211 vvc =λ and },{ 322 vvc =λ , 221 =bλ and 232 =bλ . If we
consider 1λ separately, we would conclude that the original assignment,

crv 41 ∈ and crv 72 ∈ is feasible. With crv 41 ∈ at (20,30), the area shaded
with the horizontal hashes shows the feasible locations for 2v .

Similarly considering only 2λ , we would conclude that the original
assignment, crv 72 ∈ and crv 83 ∈ is feasible. With crv 83 ∈ at (40,
30), the feasible locations for 2v are shown by the area shaded with
the vertical hashes. In fact, these assignments are not feasible as
there is no location of crv 72 ∈ for which both 1λ and 2λ are feasible.
These two net constraints contain a common cell, 2v and must be
solved together which will result in the reassignment of 2v from

cr7 to cr6 . The feasible area for 2v is the area in which the hashes
overlap. We say that 1λ and 2λ are connected by 2v . The connected
property is transitive. We define a chain as a set of net constraints in
which every pair of net constraints is connected. A chain is feasible
if all of the net constraints in the chain are feasible.

For a netlist, H, with net constraints, M, a maximal chain, MC, is a
chain for which there is no constrained net in M connected to a net
in MC that is not in MC. It is easy to show that if all MC are
feasible for)(HP , then)(HP is feasible. Furthermore each of the
chain feasibility problems can be solved separately. We make use of
these properties to efficiently solve the net constraint problem.

4. MODELING AS LINEAR PROGRAM
We have implemented our net constraint algorithm as a linear
program. This section describes the modeling.

4.1 Modeling for Single Net Constraint
In this section we describe the linear programming model for a single
net constraint. As mentioned earlier, a net constraint, λ , has m cells

},...,,{ 21 pmpp
c vvv=λ . These cells must be placed so that the sum of

the height, hλ , and width, wλ , of their bounding box is less than the
net constraint, bwh λλλ ≤+ . Unlike other RBP
techniques[1][5][6][10][11] our problem requires that we solve for
the x and y coordinates of each instance simultaneously as the
constraint problem is not separable in x and y since

bwh λλλ ≤+ depends on both the x and y values.

We introduce 2 variables, x

iv and y
iv , representing the location of

each cell. We compute hλ and wλ through the introduction of 4
bounding box variables, lxλ , uxλ , lyλ , and uyλ which form the
bounding rectangle of cλ . Figure 2 illustrates the use of the each of
the four constraint variables. In our LP model we introduce a
constraint for each bounding variable and cell in cλ . This will result
in cλ*4 inequality constraints in our LP for each net constraint.

As shown in Figure 2, we add a constraint for each cell and bounding

line pair for a total of 16 constraints. The first 4 establish lxλ as the

left boundary of cv λ∈ , the next 4 establish uxλ as the right

boundary of λ∈v , and so on.

Once we have the bounding lines, it is easy to compute the height
and width of the bounding box: lyuyh λλλ −= and lxuxw λλλ −= .
We constrain cλ to be within its bound bλ with the constraint:

blyuylxux λλλλλ ≤−+−)()(.

4.1 Modeling for Cell Assignments
We now describe our model of the cell assignments and region
constraints. As mentioned earlier, the partitioner cuts each parent
region into two children and assigns each cell in the parent region to

1v 3v

2v

20

30

10

20

40

40 60

1r 3r

2r

4r

5r

8r

9r

6r

7r

Figure 1. Chain Example

one of the children. The object of this assignment is to minimize the
overall total wirelength.

We have 3 goals in our modeling of the physical locations of a cell. First
we must ensure that the cell remains in one of the 2 child regions. This is
a requirement of the RBP problem. Our second goal is to bias the
assignment of the cell to the child suggested by the partitioner. We
impose this bias to minimize the perturbation from the original
partitioning assignment. We will allow cell reassignments only when
there is no other way to meet the constraint. Our third goal is to not
violate the capacity constraints of either child.

Referring to Figure 3, we explain the modeling for the cell movement and
reassignment. We see a parent region bounded on the left by a

lxr , on the
right by a

uxr , on the bottom by a
lyr and the top by a

yur ′ . The parent was
cut horizontally at a

uyr resulting in upper and lower regions. The cell, 1v ,
was assigned to the lower region by the original partitioning. Since 1v is
not allowed to move out of the parent region, the location of 1v is

bounded on the left, right and bottom resulting in the following 3
constraints: xa

lx vr 1≤ , xa
ux vr 1≥ , and ya

ly vr 1≤ respectively.

The remaining constraints concern the child region assignment of 1v . If

a
uy

y rv ≤1 then no reassignment has occurred. If a
yu

ya
uy rvr ′≤< 1 then the

cell has been reassigned. We model this cell reassignment with an
additional variable 1v∆ , which we call the reassignment variable. If

01 =∆v then the cell has been assigned to the same region suggested by
the partitioner. If 01 >∆v then the cell has been reassigned to the other
child. We introduce 2 new constraints into the model to reflect the
limitation of the movement of the cell within its two child regions:

()a
uy

a
yu

a
uy

y rrvrv −∆+≤ ′11 , and 10 1 ≤∆≤ v .

These two constraints together represent the constraint on the
maximum value of yv1 . We will minimize 1v∆ in our objective
function to bias against reassignments.

4.2 Objective Function
Section 4.1 discussed the cell modeling and introduces the cell
reassignment variable v∆ . In our net constraint placer we minimize
the reassignments to preserve the original partitioning assignment
unless necessary to meet the net constraints. The objective function
minimizes the reassignment through the term ∑

∈∈
∆
Mji

i
c
j

v
,

:min
λ

.

5. CONSTRAINT PLACEMENT
We now present the overall net constraint placement algorithm. We
deploy the net constraint solver within each cutting stage of the
recursive bi-section, immediately after the numerical or min-cut
algorithm has done its initial assignment of cells to regions. As
discussed in section 3.2 the problem is separable to a series of
maximal chain placement problems. For each maximal chain, we form
the linear program as described in Section 4. We solve this linear
program using the public domain linear programming solver,
lp_solve[17]. For any cell iv for which 0>∆ iv we re-assign this cell
to the other child of its parent. We complete these operations for all
maximal chains and then proceed to the next level of partitioning.

6. TIMING DRIVEN PLACEMENT
One of the motivations for this net constraint approach was its
application in timing driven placement. In this section we describe
how we utilize our net constraint placer to reduce the longest circuit
path.

6.1 Determining the Net Constraints
Our net constraint placement algorithm requires that we identify the
critical circuit nets and establish the appropriate constraints on these
nets to reduce the longest circuit path. We employ an iterative
approach where we place, recompute slacks, and then slowly tighten
the constraints on critical nets. We then start the cycle again at the
placement stage.

In each of the timing iterations, we tighten the constraint for critical
nets. A net is critical if it is on a path with a delay in the longest 5%.
The constraint for nets on the most critical path is reduced by 25%
while the constraint on the least critical nets are reduced 5%. The
remaining critical nets will vary linearly between 25% and 5%
depending on the delay of the path it is on.

7. RESULTS
We have implemented our net constraint algorithm in C++ and on
LINUX and ran all of our experiments on a IBM MPro system with
dual Intel Pentium™ 800 MHz processors. We use lp_solve[17] to
solve our linear program. We used the MCNC[18] benchmarks to
compare our results to Eisenmann [8] and TimberWolf [3]. We take
the results for both approaches from[8]. As with [8] we have
assumed a capacitance per unit length of 242 pF/m and a resistance
per unit length of 25.5 kO/m. Table 1 presents the absolute longest

a
lxr

uyλ uxλ lyλ

a
lyr

a
uyr

1v

a
uxr

uyλ uxλ lyλ

a
yur ′

Figure 3. Modeling for Cell Assignments

lxλ
uxλ

lyλ

uyλ

1v
3v

2v

4v

≤lxλ xv1 , ≤lxλ xv2 , ≤lxλ xv3 , ≤lxλ xv4

≥uxλ xv1 , ≥uxλ xv2 , ≥uxλ xv3 , ≥uxλ xv4

≤lyλ yv1 , ≤lyλ yv2 , ≤lyλ yv3 , ≤lyλ yv4
≥uyλ yv1 , ≥uyλ yv2 , ≥uyλ yv3 , ≥uyλ yv4

Figure 2. Modeling for Net Constraint

delay path values for each routine in nanoseconds and the improvement
in worst path delay over the other 2 methods.

Our method produces lower longest path timing results on every circuit
with the improvements ranging from 2.7% to 11.8% over [8] and 80.5%
to 90.5% over [3]. The relative timing and CPU run time numbers are
presented in Table 2 along with the “unloaded” path delay for each
circuit. The unloaded path delay is computed by setting all of the wire
parasitic values to 0 and computing the longest path for circuit. In order
to compare the effectiveness of the timing driven methods we calculate
the exploitation potential for each circuit and placer. The exploitation
potential is a measure of how much the density result can be improved
relative to the unloaded path delay. We calculate the exploitation as the
percent of the optimization potential that was achieved for the timing
driven method over its density result.

Our net constraint based timing driven method is significantly better in
exploiting the optimization potential than previous methods. Our
exploitation exceeds that of [8] with improvement ranging from 21.5%
to 110% and an average exploitation improvement of 57%. Comparing
with [3] our exploitation improvement ranges from 6.6% to 160% and
averages 97%.

8. CONCLUSION
We have presented the first recursive bi-section placement method that
explicitly meets net constraints. At each bi-section step, we use linear
programming to create an assignment of cells to regions that meets the
net constraints. The linear program model is constructed to minimize the
number of reassignments from the original partitioning. We present
significant timing improvements on every MCNC benchmark in both
longest path delay and optimization potential exploitation.

9. REFERENCES

[1] Michael A. B. Jackson, Arvind Srinivasan and E. S. Kuh, “A Fast Algorithm

for Performance-Driven Placement,” Digest of Technical Papers, ICCAD, pp.

328-331, November 1990.

[2] D. Sylvester and K. Keutzer, “Getting to the Bottom of Deep Submicron,”

pp. 203-211, ICCAD 1998.

[3] William Swartz and Carl Sechen, “Timing Driven Placement for Large

Standard Cell Circuits,” DAC, pp. 211-215, 1995.

[4] Wern-Jieh and Carl Sechen, “Efficient and Effective Placement for Very

Large Circuits,” IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, pp. 349-359, 1995.

[5] A. Srinivasan, A K. Chaudhary, E. S. Kuh, “RITUAL: Performance Driven

Placement Algorithm for Small Cell ICs,” ICCAD, pp. 48-51, Nov. 1991.

[6] Jurgen M. Kleinhans, Georg Sigl, Frank M. Johannes, and Kurt Antreich,

“GORDIAN: VLSI Placement by Quadratic Programming and Slicing

Optimization,” IEEE Transactions on Computer Aided Design, Volume 10,

No. 3 pp. 356-365, 1991.

[7] K. Doll, F. M. Johannes, and K.J. Antreich, “Iterative placement

improvement by network flow methods,” IEEE Transactions on CAD, vol.

13 pp.1190-1200, Oct 1994.

[8] H. Eisenmann and F. M. Johannes, “Generic Global Placement and

Floorplanning,” ACM/IEEE DAC, 1998.

[9] J. Cong, “Timing models for Interconnects and Devices,” DAC, 1997.

[10] R.S. Tsay, “Timing-Driven Placement,” DAC, 1997.

[11] Shih-Lian Ou and Massoud Pedram, “Timing-driven Placement Based on

Partitioning with Dynamic Cut-net Control,” DAC, 2000.

[12] S. Hur and J. Lillis, “Mongrel : Hybrid Techniques for Standard Cell

Placement,” ICCAD 2000.

[13] Jorge Nocedal and Stephen J. Wright, “Numerical Optimization,” Springer-

Verlag, 1999.

[14] H. Paul Williams, “Model Building in Mathematical Programming,” John

Wiley and Sons, 1999.

[15] Bill Halpin, C.Y. Roger Chen, and Naresh Sehgal, “A Sensitivity Based

Placer for Standard Cells,” GLS-VLSI, 1999.

[16] Ren-Song Tsay and Juergen Koehl, “An Analytic Net Weighting Approach

for Performance Optimization in Circuit Placement,” DAC, pp620-624,

1991.

[17] ftp://ftp.es.ele.tue.nl/pub/lp_solve/. Information and Communication

Systems group at the Electrical Engineering department of the Eindhoven

University of Technology, 1998.

[18] “www.cbl.ncsu.edu/benchmarks/layoutsynth92/

Circuit Eisenman’98 TimberWolf[7] Our Approach Improvement Improvement
 without

timing
with timing without

timing
with timing without timing with timing vs Eisenmann vs TimberWolf

fract 21.2 19.8 208 131 21.8 18.8 5.1% 85.6%
struct 92.5 90.1 907 449 93.1 87.7 2.7% 80.5%
biomed 48.6 35.7 - - 49.2 31.5 11.8%
avq.small 102 80 1106 798 104 75.6 5.5% 90.5%
avq.large 113 94 - - 115 85.7 8.8%

Table 1 Timing Results: Longest Path for Density and Timing Algorithms

Circuit Eisenmann[13] TimberWolf[7] Our Approach Improvement Improvement
 lower

bound
exploitation rel. CPU lower

bound
exploitation rel. CPU lower

bound
exploitation rel.

CPU
vs Eisenmann vs

TimberWolf
fract 18.5 52% 0.33 18.5 41% 55.56 18.5 91% 1 75.3% 123.7%
struct 84 28% 0.16 84 56% 4.57 84 59% 1 110.2% 6.6%
biomed 27 60% 0.73 - 27 80% 1 33.5%
avq.small 69.9 69% 2.27 142 32% 25.97 69.9 83% 1 21.5% 160.7%
avq.large 79.9 57% 2.08 - 79.9 83% 1 45.4%
avg 53% 111% 43% 2870% 79% 1 57% 97%

Table 2 Relative Timing Results: Exploitation of Optimization Potential and relative CPU requirements

	Main
	DAC01
	Front Matter
	Table of Contents
	Session Index
	Author Index

