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ABSTRACT 
This paper presents a new timing driven placement algorithm that 
explicitly meets physical net lengths constraints. It is the first recursive 
bi-section placement (RBP) algorithm that meets precise half perimeter 
bounding box constraints on critical nets. At each level of the recursive 
bi-section, we use linear programming to ensure that all net constraints 
are met. Our method can easily be incorporated with existing RBP 
methods. We use the net constraint based placer to improve timing 
results by setting and meeting constraints on timing critical nets. We 
report significantly better timing results on each of the MCNC 
benchmarks and achieve an average optimization exploitation of 69% 
versus previously reported 53%. 

 
1. INTRODUCTION 
The placement field has been the subject of much research[1] 
[3][5][8][10][11], due to its importance in the design of VLSI circuits. 
There are 3 main goals in the automated placement problem: minimizing 
chip area, achieving routable designs, and maximizing circuit 
performance. Maximizing circuit performance has been the focus of 
continued attention in placement as semiconductor process advances 
have scaled cell delays more rapidly than interconnect delay[2]. 
 
Previous recursive bi-section timing driven placers have utilized net 
weights to reduce the length of timing critical nets. This is problematic 
since the improvement resulting from an increased weight is 
unpredictable as the various increasing and decreasing weights in the 
system interact. This is a serious drawback as the unpredictability can 
lead to oscillations in the net criticality and weight, limiting the extent of 
timing improvement. 
 

2. MOTIVATION 
In this paper we present a new placement method that explicitly meets 
net length constraints using linear programming[13][14]. This work was 
motivated by the need in high performance microprocessor design for 
accurate control of maximum net lengths and a frustration with the lack 
of precise net length control provided by net weighting 

approaches[15][16]. As mentioned earlier, net weights suffer from a 
number of drawbacks. Foremost of these, it is not possible to 
predict the net length obtained in response to a net weight.  
 
The natural choice for controlling net delays in timing driven 
placement is a limit constraining the net’s maximum bounding box. 
These net constraints give precise control to the circuit designer or to 
an automated timing driven placement algorithm. 
 
Our approach can be easily incorporated with many RBP methods 
including analytical methods[6][5][10] and min-cut[11] approaches. 
Moreover, our placer immediately reports if it is not able to meet a 
net constraint at any level of partitioning. This allows the designer to 
take some other action such as circuit changes (e.g. sizing, buffering 
or splitting). 

 
3. PROPOSED APPROACH 
In this paper we focus on fixed die placements that are achieved 
through recursive bi-section placement (RBP)[5][6][7][10][11]. RBP 
is widely used in both academia and industry because it is fast, 
scales well to large problem sizes, and produces excellent wirelength 
results. RBP determines the locations of the cells through a series of 
recursive bi-partitioning steps of the circuit netlist and placement 
areas. The algorithm starts with a single “parent” region containing 
all of the cells and covering the entire placement area. In each 
successive step, the placement area of each “parent” region is 
divided to form 2 child regions. Similarly, the cells in each parent 
region are partitioned into 2 groups that are assigned to the 2 
physical regions. Once a cell is assigned to a physical region, it will 
remain in the region for the remainder of the placement algorithm. 
These partitioning steps continue until each region contains less then 
some threshold of cells. 
 
We introduce the following terms to explain RBP. A netlist 
hypergraph ),( EVH  has n cells },...,,{ 21 nvvvV = ; a net Ee ∈  is 
defined to be a subset of V with size greater than one, i.e. 1>e . A 
cell, iv , has area, a

iv , and a physical location given by its x and y 
coordinates: x

iv and y
iv .  

 
A placement region, ),( ca rrr , is defined as a rectangular physical 
area, ar  and a set of cells cr  which are placed somewhere in ar . 
The number of cells in the region is defined as cr . Given a region r, 
a partitioning, or bi-section, },{ rl rrr → creates 2 children regions 

lr  and rr referred to as the left and right children of r. We refer to r 
as the parent region of lr  and rr . The partitioning divides the parent 
region’s area ar  into to halves, a

l
r and a

r
r . The partitioning also 
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divides the cells in the parent region, cr , into 2 groups, c
l

r  and c
r

r . The 
following properties hold over the partitioning operation:  

∅=aa
rl

rr Ι , aaa rrr
rl

=∪ , ∅=cc
rl

rr Ι and ccc rrr
rl

=∪ .  
 
A placement, P, is a set of placement regions, R, in which every cell in V 
is in exactly one region and no region overlaps another region. A legal 
placement is one which every placement region contains one cell. 

 
The critical step in RBP is the creation of the region partitioning:  

},{ irili rrr → . Several techniques have been used for this partitioning 
step including mincut[11] and numerical[1][5][10] methods. Our 
proposed method is not restricted to any of these techniques and can be 
incorporated with any RBP routine. In our work we use a quadratic 
programming based partitioner similar to GordianL[6]. 
 
The main contribution of this work is a technique to ensure that every 
cell is assigned to a region such that there is some location for every cell 
within its region for which all net constraints will be met.  
 
3.1 Net Constraint Representation 
A net constraint represents a physical bound on the half perimeter of a 
net and hence the placement of the cells connected by the net. Formally, 
a net constraint, bc λλλ ,= , where Vc ⊂λ , 1>cλ  and bλ  is the 
half perimeter of the bounding box constraining the locations of cλ .  
 
For a placement, )(HP , a net constraint, λ  is feasible, ( ) 1==λf , if 
for every cv λ∈ there is some location of v within its region such that 
bounding box enclosing the cell locations is less than or equal to the 
constraint bound box. The set of net constraints for a netlist is defined 
as },...,{ 21 nλλλ=Μ . An unconstrained net will have ∞=bλ . A 
placement at any stage of partitioning is said to be feasible if 

( ) 1==∀ Μ∈ λλ f . 
 

3.2 Constraint Chain Representation 
In general it is not possible to create feasible assignments by checking 
each constraint individually. This is illustrated by the example in Figure 
1. Figure 1 shows such a case with 2 constraints: 1λ  and 

2λ where },{ 211 vvc =λ and },{ 322 vvc =λ , 221 =bλ and 232 =bλ . If we 
consider 1λ separately, we would conclude that the original assignment, 

crv 41 ∈ and crv 72 ∈  is feasible. With crv 41 ∈ at (20,30), the area shaded 
with the horizontal hashes shows the feasible locations for 2v . 
 

Similarly considering only 2λ , we would conclude that the original 
assignment, crv 72 ∈  and crv 83 ∈ is feasible. With crv 83 ∈ at (40, 
30), the feasible locations for 2v are shown by the area shaded with 
the vertical hashes. In fact, these assignments are not feasible as 
there is no location of crv 72 ∈ for which both 1λ and 2λ  are feasible. 
These two net constraints contain a common cell, 2v and must be 
solved together which will result in the reassignment of 2v from 

cr7 to cr6 . The feasible area for 2v is the area in which the hashes 
overlap. We say that 1λ and 2λ are connected by 2v . The connected 
property is transitive. We define a chain as a set of net constraints in 
which every pair of net constraints is connected. A chain is feasible 
if all of the net constraints in the chain are feasible. 
 
For a netlist, H, with net constraints, M, a maximal chain, MC, is a 
chain for which there is no constrained net in M connected to a net 
in MC that is not in MC. It is easy to show that if all MC are 
feasible for )(HP , then )(HP is feasible. Furthermore each of the 
chain feasibility problems can be solved separately. We make use of 
these properties to efficiently solve the net constraint problem. 
  

4. MODELING AS LINEAR PROGRAM 
We have implemented our net constraint algorithm as a linear 
program. This section describes the modeling. 
 

4.1 Modeling for Single Net Constraint 
In this section we describe the linear programming model for a single 
net constraint. As mentioned earlier, a net constraint, λ , has m cells 

},...,,{ 21 pmpp
c vvv=λ . These cells must be placed so that the sum of 

the height, hλ , and width, wλ , of their bounding box is less than the 
net constraint, bwh λλλ ≤+ . Unlike other RBP 
techniques[1][5][6][10][11] our problem requires that we solve for 
the x and y coordinates of each instance simultaneously as the 
constraint problem is not separable in x and y since 

bwh λλλ ≤+ depends on both the x and y values.  
 
We introduce 2 variables, x

iv and y
iv , representing the location of 

each cell. We compute hλ and wλ  through the introduction of 4 
bounding box variables, lxλ , uxλ , lyλ , and uyλ  which form the 
bounding rectangle of cλ . Figure 2 illustrates the use of the each of 
the four constraint variables. In our LP model we introduce a 
constraint for each bounding variable and cell in cλ . This will result 
in cλ*4  inequality constraints in our LP for each net constraint.  
 

As shown in Figure 2, we add a constraint for each cell and bounding 

line pair for a total of 16 constraints. The first 4 establish lxλ as the 

left boundary of cv λ∈ , the next 4 establish uxλ as the right 

boundary of λ∈v , and so on.  
 
Once we have the bounding lines, it is easy to compute the height 
and width of the bounding box: lyuyh λλλ −= and lxuxw λλλ −= . 
We constrain cλ to be within its bound bλ with the constraint: 

blyuylxux λλλλλ ≤−+− )()( . 
 

4.1 Modeling for Cell Assignments 
We now describe our model of the cell assignments and region 
constraints. As mentioned earlier, the partitioner cuts each parent 
region into two children and assigns each cell in the parent region to 
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one of the children. The object of this assignment is to minimize the 
overall total wirelength.  
 
We have 3 goals in our modeling of the physical locations of a cell. First 
we must ensure that the cell remains in one of the 2 child regions. This is 
a requirement of the RBP problem. Our second goal is to bias the 
assignment of the cell to the child suggested by the partitioner. We 
impose this bias to minimize the perturbation from the original 
partitioning assignment. We will allow cell reassignments only when 
there is no other way to meet the constraint. Our third goal is to not 
violate the capacity constraints of either child.  
 
Referring to Figure 3, we explain the modeling for the cell movement and 
reassignment. We see a parent region bounded on the left by a

lxr , on the 
right by a

uxr , on the bottom by a
lyr  and the top by a

yur ′ . The parent was 
cut horizontally at a

uyr resulting in upper and lower regions. The cell, 1v , 
was assigned to the lower region by the original partitioning. Since 1v  is 
not allowed to move out of the parent region, the location of 1v  is 

bounded on the left, right and bottom resulting in the following 3 
constraints: xa

lx vr 1≤ , xa
ux vr 1≥ , and ya

ly vr 1≤  respectively. 
 
The remaining constraints concern the child region assignment of 1v . If 

a
uy

y rv ≤1  then no reassignment has occurred. If a
yu

ya
uy rvr ′≤< 1  then the 

cell has been reassigned. We model this cell reassignment with an 
additional variable 1v∆ , which we call the reassignment variable. If 

01 =∆v then the cell has been assigned to the same region suggested by 
the partitioner. If 01 >∆v then the cell has been reassigned to the other 
child. We introduce 2 new constraints into the model to reflect the 
limitation of the movement of the cell within its two child regions: 

( )a
uy

a
yu

a
uy

y rrvrv −∆+≤ ′11 , and 10 1 ≤∆≤ v . 
 
These two constraints together represent the constraint on the 
maximum value of yv1 . We will minimize 1v∆ in our objective 
function to bias against reassignments. 
 

4.2 Objective Function 
Section 4.1 discussed the cell modeling and introduces the cell 
reassignment variable v∆ . In our net constraint placer we minimize 
the reassignments to preserve the original partitioning assignment 
unless necessary to meet the net constraints. The objective function 
minimizes the reassignment through the term ∑

∈∈
∆
Mji

i
c
j

v
,

:min
λ

. 
 

5. CONSTRAINT  PLACEMENT 
We now present the overall net constraint placement algorithm. We 
deploy the net constraint solver within each cutting stage of the 
recursive bi-section, immediately after the numerical or min-cut 
algorithm has done its initial assignment of cells to regions. As 
discussed in section 3.2 the problem is separable to a series of 
maximal chain placement problems. For each maximal chain, we form 
the linear program as described in Section 4. We solve this linear 
program using the public domain linear programming solver, 
lp_solve[17].  For any cell iv for which 0>∆ iv we re-assign this cell 
to the other child of its parent. We complete these operations for all 
maximal chains and then proceed to the next level of partitioning.  

 
6. TIMING DRIVEN PLACEMENT 
One of the motivations for this net constraint approach was its 
application in timing driven placement. In this section we describe 
how we utilize our net constraint placer to reduce the longest circuit 
path.  
 

6.1 Determining the Net Constraints  
Our net constraint placement algorithm requires that we identify the 
critical circuit nets and establish the appropriate constraints on these 
nets to reduce the longest circuit path. We employ an iterative 
approach where we place, recompute slacks, and then slowly tighten 
the constraints on critical nets. We then start the cycle again at the 
placement stage.  
 
In each of the timing iterations, we tighten the constraint for critical 
nets. A net is critical if it is on a path with a delay in the longest 5%. 
The constraint for nets on the most critical path is reduced by 25% 
while the constraint on the least critical nets are reduced 5%. The 
remaining critical nets will vary linearly between 25% and 5% 
depending on the delay of the path it is on.  

 
7. RESULTS 
We have implemented our net constraint algorithm in C++ and on 
LINUX and ran all of our experiments on a IBM MPro system with 
dual Intel Pentium™ 800 MHz processors. We use lp_solve[17] to 
solve our linear program. We used the MCNC[18] benchmarks to 
compare our results to Eisenmann [8] and TimberWolf [3]. We take 
the results for both approaches from[8]. As with [8] we have 
assumed a capacitance per unit length of 242 pF/m and a resistance 
per unit length of 25.5 kO/m. Table 1 presents the absolute longest 
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Figure 3. Modeling for Cell Assignments  
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Figure 2. Modeling for Net Constraint  



 

delay path values for each routine in nanoseconds and the improvement 
in worst path delay over the other 2 methods.  
 
Our method produces lower longest path timing results on every circuit 
with the improvements ranging from 2.7% to 11.8% over [8] and 80.5% 
to 90.5% over [3]. The relative timing and CPU run time numbers are 
presented in Table 2 along with the “unloaded” path delay for each 
circuit. The unloaded path delay is computed by setting all of the wire 
parasitic values to 0 and computing the longest path for circuit. In order 
to compare the effectiveness of the timing driven methods we calculate 
the exploitation potential for each circuit and placer. The exploitation 
potential is a measure of how much the density result can be improved 
relative to the unloaded path delay. We calculate the exploitation as the 
percent of the optimization potential that was achieved for the timing 
driven method over its density result. 
 
Our net constraint based timing driven method is significantly better in 
exploiting the optimization potential than previous methods. Our 
exploitation exceeds that of [8] with improvement ranging from 21.5% 
to 110% and an average exploitation improvement of 57%. Comparing 
with [3] our exploitation improvement ranges from 6.6% to 160% and 
averages 97%. 
 

8. CONCLUSION 
We have presented the first recursive bi-section placement method that 
explicitly meets net constraints. At each bi-section step, we use linear 
programming to create an assignment of cells to regions that meets the 
net constraints. The linear program model is constructed to minimize the 
number of reassignments from the original partitioning. We present 
significant timing improvements on every MCNC benchmark in both 
longest path delay and optimization potential exploitation. 
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Circuit Eisenman’98 TimberWolf[7] Our Approach Improvement Improvement 
 without 

timing 
with timing without 

timing 
with timing without timing with timing vs Eisenmann vs TimberWolf 

fract 21.2 19.8 208 131 21.8 18.8 5.1% 85.6% 
struct 92.5 90.1 907 449 93.1 87.7 2.7% 80.5% 
biomed 48.6 35.7 - - 49.2 31.5 11.8%  
avq.small 102 80 1106 798 104 75.6 5.5% 90.5% 
avq.large 113 94 - - 115 85.7 8.8%  

Table 1 Timing Results: Longest Path for Density and Timing Algorithms 

Circuit Eisenmann[13]  TimberWolf[7]  Our Approach  Improvement Improvement 
 lower 

bound 
exploitation rel. CPU lower 

bound 
exploitation rel. CPU lower 

bound 
exploitation rel. 

CPU 
vs Eisenmann vs 

TimberWolf 
fract 18.5 52% 0.33 18.5 41% 55.56 18.5 91% 1 75.3% 123.7% 
struct 84 28% 0.16 84 56% 4.57 84 59% 1 110.2% 6.6% 
biomed 27 60% 0.73 -  27 80% 1 33.5%  
avq.small 69.9 69% 2.27 142 32% 25.97 69.9 83% 1 21.5% 160.7% 
avq.large 79.9 57% 2.08 -  79.9 83% 1 45.4%  
avg  53% 111%  43% 2870%  79% 1 57% 97%

Table 2 Relative Timing Results: Exploitation of Optimization Potential and relative CPU requirements 
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