Floorplanning with Abutment Constraints and
L-shaped/T-shaped Blocks based on Corner Block List

Yuchun Ma, Xianlong Hong,
Sheqin Dong, Yici Cai
Department of Computer Science and
Technology, Tsinghua University,
Beijing, China
{hxl-dcs}{dongsq}@tsinghua.edu.cn

ABSTRACT

The abutment constraint problem is one of the common constraints
in practice to favor the transmission of data between blocks. Based
on Corner Block List(CBL), a new algorithm to deal with
abutment constraints is developed in this paper. We can obtain the
abutment information by scanning the intermediate solutions
represented by CBL in linear time during the simulated annealing
process and fix the CBL in case the constraints are violated. Based
on this algorithm, a new method to deal with L-shaped/T-shaped
blocks is proposed. The shape flexibility of the soft blocks and the
rotation and reflection of L-shaped/T-shaped blocks are exploited
to obtain a tight packing. The experiment results are demonstrated
by some benchmark data and the performance shows effectiveness
of the proposed method.

1. INTRODUCTION

A good floorplanner must not only provide a good rectangle
packing functionality but also the flexibility to handle a large
variety of specific constraints For general floorplan including both
slicing and non-slicing, several encoding schemes were recently
proposed, namely, Sequence-Pair(SP)!", Bound-Sliceline-
Grid(BSG)®?, O-treel®, B*-tree! and Corner Block List(CBL)"..
All of them except O-tree and B*-tree employ topological
representations of placement configurations, where cell positions
are specified based on encoded topological relations. Different
from other topological representations, CBL needs a smaller
amount of encoding storage and linear time computation effort to
generate each placement configuration. These advantages are good
for handling placement constraints in general.

The abutment constraint problem is one of the common
constraints in practice for the designer may want to have the logic
blocks in a pipeline of a circuit to abut one after another to favor
the transmission of data between them. But in most stochastic
floorplanning algorithms, the relative position between two blocks
is not known until the exact dimensions of blocks are taken into
account. Recently, F.Y.Young ! has proposed the algorithm to
handle abutment constraints based on slicing structure. We

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

DAC 2001, June 18-22, 2001, Las Vegas,Nevada, USA.

Copyright 2001 ACM 1-58113-297-2/01/0006...$5.00.

Chung-Kuan Cheng
Department of Computer Science and Department of Computer Science,
Engineering,
University of California,San Diego
La Jolla,CA 92093-0114,USA

Jun Gu

Science & Technology University of
HongKong

propose a new abutment constraint algorithm based on CBL which
can handle the abutment constraints for both slicing and non-
slicing. In our algorithm, we check the abutment constraints by
scanning the intermediate solutions represented by CBL in linear
time during the simulated annealing process and fix the corner
block list by heuristic method in case the constraints are violated.

With the recent advent of deep submicron technology and new
packing schemes such as multichip modules, the L/T-shaped
blocks have been specifiable and /or permissible for it is motivated
by enforced colocation of a data path block with related control, or
the shape of particular types of data path blocks. To handle L/T-
shaped blocks, we propose a new method based on abutment
constraint algorithm. An L/T-shaped block can be partitioned into
a few of rectangular blocks called sub-blocks which have natural
abutment relations with each other. We transform the L/T-shaped
block problem into abutment constraint problem. The rotation and
reflection of soft blocks and L/T-shaped blocks can be
implemented and non-overlapped packing is guaranteed. Our
algorithm has been implemented in C language and the experiment
results are promising.

The rest of the paper is composed as follows: A formal
definition of abutment constraint and the problem of L/T-shaped
block are described in Section 2. Section 3 is a brief review of the
CBL model. The new algorithm is presented in Section 4 and
Section 5. The experimental results are shown in Section 6.
Finally, conclusion is given.

2. PROBLEM DEFINITION

Each rectangular block M;is defined by a tuple(h,,w;), where 4; and
w; are the height and the width of the block M, respectively. The
aspect ratio of M; is defined as A/w; There are two kinds of
rectangular blocks: soft blocks and hard blocks. The soft blocks
have fixed area with variable aspect ratio within a given range.
The hard blocks have fixed area and aspect ratio.

hanIB

A and B abut horizontally A and B abut vertically
iff x>=min(h,,hp) iff x>=min(w,,Wp)

Figure.1 The definition of abutment

Wp
h B

A W,

Definition 1: If a vertical boundary 4, of block A and a vertical
boundary 4, of block B superpose each other and the shorter one
of h, and h; is covered completely by the longer one, block A and
block B are said to be abutted with each other horizontally. The
block abutment in the vertical direction is defined similarly.

Definition 2: An L-shaped block is the rectilinear block which
can be partitioned into two abutted rectangular sub-blocks L1 and
L2, where one boundary of L1 and one boundary of L2 are aligned
horizontally(vertically) (Fig.2.). A T-shaped block is the
rectilinear block which can be partitioned into three abutted
rectangular sub-blocks T1, T2 and T3, where three boundaries of
T1, T2 and T3 respectively are aligned horizontally(vertically) and
the height(width) of the middle sub-block is the greatest among
the three blocks. (Fig.3).

L, L T, T;
T,

Figure.2. L-shaped block ~ Figure3. T-shaped block

Definition 3: A feasible packing is a non-overlapping
placement of both rectangular blocks and L /T-shaped blocks such
that all the abutment constraints are satisfied and all L/T-shaped
blocks are in their original shapes.

3. CORNER BLOCK LIST

A floorplan divides the chip into rectangular rooms with horizontal
and vertical segments. Each room is assigned to no more than one
block. Each pair of intersected segments forms a T-junction. A T-
junction is composed of two segments: a non-crossing segment and
a crossing segment. The non-crossing segment has one end
touching point in the interval of the crossing segment. CBL is
derived from a simplified version of general floorplan called
mosaic floorplan. A floorplan belongs to the class of mosaic
floorplan if and only if it observes the following three properties.

1. Floorplan of No Empty Space;

2. Topological Equivalence on Segment Sliding: The topology
is defined to be equivalent before and after the non-crossing
segment of the T-junction slides;

3. Non-Degenerate Topology: There is no degenerate case
where two distinct T-junctions meet at the same point. If a
degenerate situation happens, we separate two T-junctions by
sliding a non-crossing segment of a T-junction by a small distance.

e o 17

p— (S
a
c g c d b
s t

(a) corner block d is vertical (b) corner block a is horizontal
Figure 4. The orientation of the corner block.

The Corner Block is the block packed in the upper right corner
room of the floorplan. In the floorplan, the joint of the left and
bottom segments of the corner block is contained in a T-junction
named corner T-junction and the corner block’s orientation is
defined by the orientation of the corner T-junction(Fig.4). The T-
junction has only two kinds of orientations: T rotated by 90
degrees (Fig 4(a)) and by 180 degrees(Fig 4(b)) counterclockwise
respectively. If T is rotated by 90 degrees counterclockwise, we
define the corner block to be vertical oriented, and denote it by a
“0”. Otherwise, the corner block is horizontal oriented, and denote
it by a “1”. The corner block list is constructed from the record of a
recursive corner block deletion. In fig.5, the corner block d is
deleted and the attached T-junctions, whose crossing segments are
the non-crossing segment of corner T-junction, are pulled up to the
top boundary of the chip. The insertion of corner block is the

inverse of the deletion. We use a binary list 7; to record the number
of the attached T-junctions of the deleted corner block M, The
number of successive 1s, which is ended by a ‘0’, corresponds to
the number of attached T-junctions.

---.----a---% g

C g delete d > C
I = Pl °
T.={10}
Figure 5 Corner block d is deleted/inserted
For each block deletion, we keep a record of block name, corner
block orientation, and the sequence of 7;. At the end of deletion
iterations, we can obtain three list: block name list {B,,B,_;,...B;},
orientation list{L,,L,_;,...L,}, T-junction list{T,,T,.;, ...,T>}(n is
the number of the blocks). We reverse the data of these three items
respectively. Thus, we have a sequence S of block names, a list L
of orientations, and a list of {7,73, ...,T,} which is combined into
a binary sequence T. The three element triple (S, L, T) is called a
corner block list. The insertion process of corner block based on
given (S,L,T) can construct the corresponding floorplan. Fig. 6 is
an example of a non-slicing floorplan and its corresponding CBL.
In some cases, the number of successive 1s in list 7; is greater
than the number of available T-junctions when A; is inserted, it
will be an infeasible CBL. However, since the blocks along the left
and bottom boundaries cover all the T-junctions available, the
ending ‘0’ in 7; list is not necessary. When corner block A; along
the left or bottom boundary is deleted, we omit the ending ‘0’ in T;
to construct T’. Thus during the construction process, when the
number of successive 1s in list T’ is greater than or equal to the
number of the available T-junctions, we just place the corner block
M; along the boundary covering all the available T-junctions and
count ‘1’s for M; as many as the number of available T-junctions.
Therefore, an arbitrary CBL is feasible which corresponds to a
mosaic floorplan.

e d Corner Block List:
S=(fcegbad)
g a L=(001100)
¢ T=(001010010)
¢ b T°=(101010)

Figure 6. a non-slicing floorplan and its corresponding CBL list

The transformation from corner block list to floorplan can be
achieved by scanning the CBL in linear time of O(n). The number
of combinations of CBL is Om/2*3/n’”) and CBL takes only
n(3+/lg nj)bit to describe.

4. ABUTMENT CONSTRAINTS OVER CBL

Abutment information is embodied in the blocks beside the
segments, which divides the chip into rectangular rooms: the
blocks beside a horizontal segment abut vertically; the blocks
beside a vertical segment abut horizontally. Each block has four
boundaries to abut with other blocks.

Definition 4: HSEG is one horizontal segment and thus T ysic
and By denote the sets of blocks lying above and below
segment HSEG respectively; VSEG is one vertical segment and
thus L'ysze and R'yspq denote the sets of blocks lying at the left
and right of segment VSEG respectively.

Definition 5: L_abut[M;], R_abut[M;], T abut[M;], B_abut[M]
denote the set of blocks’ rooms lying along the left side, right side,

top side and bottom side of the room of block Mi. And block M; is
called master block for all of its abutted blocks have relative
abutment relation to M;.

4.1 Finding the Abutment Information in CBL

In the mosaic floorplan, we can obtain all the affirmatory abutment

information following lemma 1.

Lemma 1: HSEG is one horizontal segment.
B'yseg={B’,, B,B’,} denotes that m blocks below HSEG are
arranged from left to right and 7"5e6=¢{B%, BB",} denotes
that n blocks above HSEG are arranged from left to right. The
abutment information is as following:

. If n=1, then the corresponding rooms of {BbI,B" Py ...AB”m} are
lying immediately below the room of B“;; If m=1, then the
corresponding room of B’; is lying immediately below the
rooms of {B“;,B*,,....B",}

. If m=2 and n =2, then the corresponding rooms of B?; lies
immediately below the room of B“;; the room of Bbm lies
immediately below the room of B?, (Fig.7b).

It is similar if L is vertical.
HSEG
1 N 2 3

- =

2 3 4 4 5 6

(b) B_abut[1]={4}, B_abut[3]={6}.
, T_abut[4]={1}, T_abut[6]~{3}

(a)Room 1 is the only block
lying above HSEG
T _abut[2]=T abut[3]=T abut[4]={1
B abut[1]={2,3,4},
Figure.7 The abutment information embodied in segments.

In the floorplan, each segment is the line whose ends are on the
boundaries of chip or on its intersection perpendicular. Suppose
that all the horizontal segments are directed from left to right and
all the vertical segments are directed from bottom to top.

Definition 6: SEG is one segment in floorplan. If the starting
point of SEG is on SEG,, SEG, is called the starting segment of
SEG. If the ending point of SEG is on SEG,, SEG, is called the
ending segment of SEG(Fig.8).

g .
SEGs a ISEG,
C
b
f

Figure 8. The starting segment and ending segment

The blocks beside a segment can be determined by the blocks
between the starting segment and the ending segment. If the
segment is ended, the blocks beside the segment are fixed and the
abutment information can be obtained according to Lemma 1.

M; is the iy, blocks in block list S. L; is the orientation of M; and
TN; is the number of T-junctions to be covered by block M;
recorded in list T. Suppose that the p blocks along the top
boundary of the floorplan {B;,B,,....B',} are arranged from right
to left, which are separated by the p-/ vertical segments
{VSEGVSEG,,....VSEG,.;}, and p =TN; +1(which is guaranteed
by the validity of CBL). The ¢ blocks along the right boundary of
the floorplan {B";,B,,....B",} are arranged from top to bottom,
which are separated by the ¢-/ horizontal segments
{HSEGHSEG,, ... HSEG, ;} and ¢ =TN; +1.

Lemma 2: when M, is inserted as the corner block:

. If Li=0, then the first TN; vertical segments {VSEG,
VSEG,,...VSEGry;} are ended by M;’s bottom boundary

which is a new horizontal segment HSEG,,,.
BhHSEGnew:{ BtTNiHthZrBtI:}’ T HSEGnew= 1M}
R'ysec.anier =R'ysegovier YU {M;},

. If Li=1, then the first 7N; horizontal segments

{HSEGHSEG,,.... HSEGpyjare ended by Mi’s left
boundary which is a new vertical segment VSEG.
LvVSEGnewz{BrTNHI ~--B}‘2:Br1’}’ RVVSEGnew:{Mi}

HSEG-TNi+1~— ThHSEG-TNiH U {M};

The function of Abutment is devised to find out the abutment
relationships by scanning the given CBL from left to right. We use
two stacks of H-segment and V-segment to record the unended
segment during the scanning. Each element in H-segment contains
two sets 7" ysee and B e denoting the sets of blocks lying above
and below segment HSEG respectively. Each element in V-
segment contains two sets L'yszc and R'ygrq denoting the sets of
blocks lying at the left and right of segment VSEG respectively.

VSEG, VSEG,
HSEG, .,
clgFa M...d.&l
insert d g a
—> C
< b N b ended
f f segment

(b)B"[HSEGew]={g.a}, T'[HSEGpey]=1{d}
R'[VSEG:]={g} U {d},
R'[VSEG,]={g} R_abut[f]={b}, L_abut[b]={f},
{B',B% BY}={a,g.e}, R_abut[g]={a}, L_abut[a]={g}
Figure.9. The confirmation of Lemma 2

Algorithm Abutment()
block_covered: the set of the blocks covered by new corner block;
V-segment_top: the top element in stack V-segment,
H-segment_top: the top element in stack H-segment;

for each block M; do

{block_covered=null;

(a) L'[VSEG]={f'g},
R[VSEG,]={b,a},

If L=0:
TN=the number of the T-junctions covered;
for k=1to TN:
{

L¥yspg=V-segment_top.L'ysec
RVVSEG: V-segment_top. RVVSEG,'
Pop V-segment_top,
Find out all the horizontal abutment relations in L'ysgc and
R'ysgc according to lemmal;
block_covered=block_covered Uthe last block in L'ysgc U the
last block in R ysig,
}
Reverse the blocks sequence in block covered;
Push a new element (BhHSEGnew=block_covered, ThHSE(;,,W;{M,-}) into
stack H-segment according to lemma 2;
If the buffer of V-segment is not null:
RVV-segmeanp :R‘,V-.regmentitap U{M} 5

IfL=1:
TN=the number of the T-junctions covered;
for k=1to TN:
{

T nsec=H-segment _top. T HSEG

BhHSEG:H-SEngnl_tOp. BhHSEG,'

Pop H-segment _top;

Find out all the horizontal abutment relations in T'ysgg and
Busec according to lemmal;

block _covered=block covered Uthe last block in ThHSEG Uthe
last block in BhuSEg,‘

}

Reverse the blocks sequence in block_covered;
Push a new element (L'yspnew=block covered, R'yspcnew={M,}) into
stack V-segment according to lemma 2;
If the buffer of H-segment is not null:

Tthsegmem_tap :ThH—segmem_tap U{Mi}f

Pop all the elements left in stacks and find out all the abutment relations.

Fig 10 is an example of the result of Abutment. We can use this
information to check and fix the abutment constraints.

L abut R_abut T_abut B_abut

e d a g X il b
b f X a X
c X g e f

¢ g a d e X X g.a
e X d X c
£ b f X b c.g X
g c a d f

Figure.10.abutment information obtained by Abutment (X means null)

4.2. Heuristic Method of Fixing the Abutment

Constraint

We combine some heuristic method into the process of annealing
process. Since the abutment information can be obtained before
packing, we can fix the CBL to satisfy the constraints as much as
possible. One effective operation is swapping the blocks in list S.
An example is shown in Fig. 11. The abutment constraint is
violated in Fig. 11(a) for block ‘e’ and block 7" do not abut with
each other horizontally, as required. By the procedure of
Abutment, the abutment information can be obtained as listed in
fig 10. We can find that T abut[f]={c,g} and B_abut[f]=null. We
exchange block ‘e’ with block ‘c’ to fix the violated constraint.
The complexity of this procedure is O(u) where u is the number of
the violated constraints of the floorplan. However, the number of
blocks which violate their constraints decreases rapidly during the
annealing process. Therefore, the time taken in this process is
actually very little in practice.

® d C d
a

f b f b

(a) (b)
Figure 11.An example of fixing the violated constraints

4.3 Penalty Term

Some constraints may be still violated after all the possible
shuffles. In some cases, one block B, in the constrained pair(B¢,,
B%) is fixed because of the other constraints and there are no
available neighbors of B¢, to be exchanged with B, the constraint
will remain violated after the process of fixing the constraint.
Therefore, we include a term in the cost function to penalize the
remaining violated constraints.

Suppose that block A(ha,wa) and block B(hb,wb),where (ha,wa)
and (hb,wb) are the height and width of block A and B
respectively, are constrained to abut horizontally and the top-right
positions of block A and block B are (xa,ya) and (xb,yb)
respectively(Fig.12). The penalty term is

P=|| xa-wa/2-(xb-wb/2)|-wa/2-wb/2|+
max(0, (va-yb) *(va-ha-(vb-hb)))
Lemma 3: If penalty term P=0, the constraints are satisfied.

| Ixa-wa/2-(xb-wb/2)l-wa/2-wb/2|
(= S

<
e

<
S

(ya-ha-(yb-hb))

Figure 12. The penalty term of A and B

Proof: If | xb-wa/2-(xb-wb/2)|-wa/2-wb/2 =0, the distance in
horizontal orientation between block A and block B is 0. The
difference between the top boundaries of block A and block B is
va-yb. And the difference between the bottom boundaries of block
A and block B is ya-ha-(vb-hb). If block A and block B superpose
and the shorter one in vertical orientation is covered by the longer
one, (ya-yb)*(ya-ha-(yb-hb)) should be negative. Thus max(0,(va-
yb)*(ya-ha-(yb-hb)))=0. 1
5. L /T-SHAPED BLOCK FLOORPLAN

An L-shaped/T-shaped block is partitioned into abutted sub-blocks
with edges aligned. Each sub-block is handled as an individual
block. After partitioning, we have transformed the L-shaped/T-
shaped block problem into abutment constraint problem.

5.1 Align-abutment

Definition 7: If block A and block B abut with each other and
one boundary /, of A and one boundary /, of B are aligned in the
same segment, block A and block B are said to have align-
abutment relation with each other (Fig.13(a)).

—— 5 L | |
T I:A |

A Iy

la Iy

| A

B

Lo~ b)A and B arc abutted, (c)A and B are aligned,
(a)A and B are align-abutted (h])n e e e abutted

Figure13. The definition of align-abutment:
A and B are align-abutted in (a),but not in (b) or (c)

Each block has eight positions for align-abutment (Fig 14).
Note that V1,V2,V3 and V4 are the positions for the blocks abut
upon block M; vertically; H1,H2, H3 and H4 are the positions for
the blocks abut upon M; horizontally.

- —
vi! rvz '
r |
I_HI | H2 |
r— M. p——
_LH4 Lo
V4 | : V3

Figure 14. The pOSitiOIll of align abutment

Lemma 4:

1. The first one in the L_abut[M] is at position H1; the last one in
the L_abut[A/}] is at position H4;
2. The first one in the R_abut[M] is at position H2; the last one in
the R_abut[A/] is at position H3;
3. The first one in the T abut[A/;] is at position V1; the last one in
the T abut[A/] is at position V2;
4. The first one in the B_abut[Mi] is at position V4; the last one in
the B_abut[A/] is at position V3;

The problem of align-abutment constraint is a subset of the
problem of abutment constraint and it can be handled similarly to

the problem of abutment constraint while lemma 4 can be used to
limit the constraints.

5.2 Partition of L-shaped/T-shaped Block

A L-shaped/T-shaped block can be partitioned into a set of sub-
blocks with horizontal or vertical lines and the partitioned sub-
blocks have align-abutment relations defined in Definition 7.
There are eight ways in which the two sub-blocks can form an L-
shaped block. And each pair of them has its specific align-
abutment relation(Fig.15). It is similar to partition the T-shaped
block. In fig.16, we take the middle one of sub-blocks as the
master block. In fig 15 and fig 16, M is the master block and the
positions of align-abutment relation are shown in the figures.

] b i oy

VzI—MEj‘—I
- V3| 4

Figure.15. The partition of L-shaped blocks

IV
V1

&‘Mlel M | ™M
[;l V3 \Z)

Figure.16. The partition of T-shaped blocks

5.3 The Alignment of L/T-shaped Block

The sub-blocks can be aligned to form the original shape of L-
shaped/T-shaped blocks if their rooms have similar align-abutment
relations. All the alignment operations are within the rooms of the
sub-blocks and the positions of the other blocks are not affected.
The aligned boundaries of the rooms simplify the alignment of the
sub-blocks.

Lemma 5: Suppose that sub-blocks L1 and L2 have been
packed with the align-abutment relation that L2 abut with L1 at
the position H1 as required. The top-right positions of block L1
and block L2 are (x1,yl) and (x2,y2) respectively. And (h1l,wl)
and (h2,w2) are the height and width of L1 and L2 respectively.
The coordinate alignments should be done as following and non-
overlapping is guaranteed:

if h1>h2:

yvl=max(yl,y2);
If h1<h2:
yl=max(yl,y2); y2=max(yl,y2); x1=x2+w2;
It is similar to L-shaped blocks of other directions.

r———r-----7 [———r1-----: —— e —— — [Col=— ——

> InlmlBNNUEIE
L2 2|] >
I L1 | i L1f: . T2 ! T2

I | 1

gr

i

S}

y2=max(yl,y2); x2=x1-wl;

_______ ' —_———

F igu_re.17. The alignment of L-shaped/T-shaped block

Lemma 6: Suppose that sub-blocks T1,T2 and T3 have been
packed with the align-abutment relation that T1 and T3 abut with
T2 at the positions HI and H2 respectively. The top-right
positions of block T1, block T2 and block T3 are (x1,yl), (x2,y2)
and (x3,y3) respectively. And the(hl,w1), (h2,w2) and (h3,w3) are
the height and width of T1, T2 and T3 respectively. The
coordinate alignments should be done as following and non-
overlapping is guaranteed:

vi=max(y1,y2,y3);y2=max(yl,y2,y3); y3=max(vl,y2,y3)

xI=x2-w2; x2=x2; x3=x2+w3;

It is similar to T-shaped blocks of other directions.

5.4 Rotation and Reflection of L/T-shaped
Block

Rotation and reflection of L-shaped/T-shaped block need take the
shape information into consideration. Since our algorithm is based
on topology of the packing, rotation and reflection of L-shaped/T-
shaped block can be solved by changing the corresponding
constraints generated by partitioning. We take T-shaped blocks as
example to explain the operation of L-shaped/T-shaped
blocks(fig.18). The corresponding changes of align-abutted

position are listed in table 1.
1] 2 3 | 3 1
2 | 2
M 3 2 1 3
(3) 180° rotated (4)270° rotated

(1) original (2 90° rotated
3|2 1]

23 2
e L E

®) Eeﬂected by (6) reflected by~ (7) reflected by (gyreflected by
0° line o 1; 0 1; t
45° line 90° line 135° line
Figure 18. Rotation and reflection of T-shaped blocks
Table 1: the corresponding positions after rotation and reflection

o
90° [180° | 270° [0° 45° 90° 135°
H1 va | {3 V2 H4 V3 H2 Vi
H2 V1 H4 V3 H3 V2 Hl V4

6. EXPERIMENTAL RESULTS

The floorplan algorithm with abutment constraints and L/T-shaped
blocks has been implemented in the C programming language, and
all experiments are performed on a SUN spark20 workstation.
Some MCNC benchmarks are used for the examples. All the
blocks in the experiments have shape flexibility that their aspect
ratios distribute between 0.2 and 5 discretely. To test the abutment
constraint algorithm, several blocks are required to abut
horizontally or vertically. The average results for benchmark with
different constraints are listed in Table 2. We can see from the
result that our method can handle the abutment constraints
efficiently. Compared with the abutment algorithm based on
slicing floorplans'” with the same experiment instances and the
similar constraints, the results of run times and the deadspaces in
our algorithm are as good as or even better than the results in [7],
while our algorithm has a great diversity of floorplan structure
including both non-slicing and slicing. Since the penalty terms
devised in this paper evaluate the violations of the constraints
accurately, we can ensure all the abutment constraints are satisfied
in our experiment results. But the results in [7] shows that the
constraints can not be satisfied even after a long-time annealing
process. Especially with the large-scaled instances, our algorithm
is much faster and more effective than the algorithm in [7]. The
algorithm in [7] handles the packing of 62 modules in 453 seconds
with the deadspace of 2.93% and two out of twelve abutment
constraints are violated. While in our algorithm, we pack 99
modules in 199 seconds with the deadspace of 4.07% and all the

twelve abutment constraints are satisfied.

To test the L-shaped/T-shaped block algorithm, we expand
several blocks to L-shaped/T-shaped block. The results are list in
Table 3 and Fig.21 show the results of some randomly generated
examples. We can see from the results of the experiments that the
performance is quite good.

7. SUMMARY AND CONCLUSIONS

This paper proposes a new algorithm to handle the abutment
constraints not only with slicing structure, but also with non-
slicing structure. Based on the abutment constraint algorithm, we
design a new method to handle L-shaped/T-shaped block. The L-
shaped/T-shaped block is partitioned into a collection of rectangle
blocks with additional abutment constraints. The alignment is
taken to maintain the original shapes of L-shaped/T-shaped blocks
and non-overlapped packing is guaranteed. The rotation and
reflection of L-shaped/T-shaped block are also fulfilled in our
algorithm. The penalty term help to ensure all the constraints are
satisfied by the end of the annealing process The experiment
results demonstrate that our algorithm is quite promising.

8. ACKNOWLEDGEMENTS

This work was supported by China National Nature Science Funds
under the grants 60076016, China 973 National Fundamental
Funds under the grants No.G1998030403 and NSFC International
Cooperative Major Program.

9. REFERENCES

[1]Hiroshi Murata, Kunihiro Fujiyoshi, S.Nakatake and
Y Kajitani, “VLSI Block Placement Based on Rectangle-
Packing by the Sequence Pair” in IEEE Trans. on CAD,vol.15,
NO. 15, pp 1518-1524,1996.

[2] S.Nakatake, H.Murata, K.Fujiyoshi and Y .Kajitani, ‘“Block

Placement on BSG-structure and IC layout application” in Proc.

of International Conference on Computer Aided Design, pp
484-490,1996.

[3]P.N.Guo,C,K,Cheng,”An O-tree representation of non-slicing
floorplan and its applications”, in ACM/IEEE Design
Automation Conference,1999.

[4] Yun-Chih Chang, Yao-Wen Chang, Guang-Ming Wu, and
Shu-Wei Wu.“B*-Trees: A New Representation for Non-

Figure 19. A result packing of ami33
where (2,22); (3,23); (4,24); (3,25); (6,26);
(7,27) are constrained to abut vertically
respectively.

Figure 20. A result packing of P-99:blocks 12,13,14,15
and 25,26,27,28 are required to compose two

Slicing Floorplans” in ACM/IEEE DAC,pp.458-464, 2000.

[5] Hong Xianlong, Huang Gang et al. “Corner Block List: An
Effective and Efficient Topological Representation of Non-
slicing Floorplan” ICCAD’2000 in press

[6] M.Kang and W.W.M.Dai, “General Floorplanning with L-

shaped, T- shaped and Soft Blocks Based on Bounded Slicing
Grid Structure”, IEEE Asia and South Pacific Design
Automation Conference, pp. 265-270,1997.

[7] F.Y.Young,Hannah H.Yang, D.F.Wong “On extending slicing
floorplans to handle L/T-shaped blocks and abutment
constraints” WCC’2000, pp.269-276,2000.

[8] Kunihiro Fujiyoshi, Hiroshi Murata: " Arbitrary Convex and
Concave Rectilinear Block Packing using Sequence-pair"”, in
International Symposium of Physical Design, pp.103-
110,1999

[9] Yuchun Ma, Sheqin Dong, Xianlong Hong, Yici Cai,
Chung-Kuan Cheng, Jun Gu “ VLSI Floorplanning with
Boundary Constraints Based on Corner Block List”
ASPDAC’2001, pp 509-514.2001

Table 2. Results of testing Abutment algorithm

Data # Resulting Dead space Run time
Ami33 8 1.185 2.58 92.3
Ami49 8 36.29 2.44 168.5

P65 11 2.39 4.01 161.81

P99 12 3.61 4.07 199.14

P147 15 113.7 6.46 370.4

Table 3. Results of testing L-shaped/T-shaped blocks

examples [#M]|#T ||#L | Netarea | Area | Deadspace | time
apte It | 9 [2 | 7 [59.59 | 60.91 2.1 38.5
xerox It [10 [4 [6 [26.07 [27.15 3.6 43.85
hp It (11| 3 [6 11.5 12.04 4.6 47.7
Ami33 1t| 33 4 | 8 | 1.295 [1.368 5.4 169
Ami49 1t| 49| 6 | 11| 3791 | 40.04 5.4 253
P65 1t [65| 5 | 11| 2.433 | 2.528 3.7 306

Figure 21. A result of ami49 It with 11
L-shaped blocks and 6 T-shaped blocks

horizontal chains and blocks 31,32; 33,34 and
44,45,46,47 are required to compose vertical chains.

	Main
	DAC01
	Front Matter
	Table of Contents
	Session Index
	Author Index

