
Coupling-Driven Bus Design for Low-Power
Application-Specific Systems

Youngsoo Shin and Takayasu Sakurai
Center for Collaborative Research and Institute of Industrial Science

University of Tokyo, Tokyo 153-8505, Japan

fysshin, tsakuraig@iis.u-tokyo.ac.jp

ABSTRACT
In modern embedded systems including communication and mul-
timedia applications, large fraction of power is consumed during
memory access and data transfer. Thus, buses should be designed
and optimized to consume reasonable power while delivering suf-
ficient performance. In this paper, we address a bus ordering prob-
lem for low-power application-specific systems. A heuristic algo-
rithm is proposed to determine the order in a way that effective
lateral component of capacitance is reduced, thereby reducing the
power consumed by buses. Experimental results for various ex-
amples indicate that the average power saving from 30% to 46.7%
depending on capacitance components can be obtained without any
circuit overhead.

1. INTRODUCTION
As the scale of process technologies steadily shrinks and the size

of designs increases, interconnects have increasing impact on the
area, delay, and power consumption of circuits [1]. Specifically,
reduction in scale causes the lateral component of capacitance to
dominate the total capacitance of interconnects. This is because
wire-to-wire spacing is shrinking for higher densities and the as-
pect ratios of interconnects have to be increased to compensate for
increasing interconnect resistance, which in turn is due to shrink-
ing wire widths. For example of metal 3 layer in typical 0.35 µm
CMOS process, the lateral component of capacitance reaches 5
times the sum of fringing and vertical components when the sub-
strate serves as a bottom plane.

In the domain of embedded systems, an increasing fraction of
implementations make use of core processors as basic computa-
tional units. In these systems, especially in communication and
multimedia applications, large fraction of power is consumed dur-
ing memory access and data transfer. Thus, system bus, which is
an essential system component to interconnect subsystems for data
transfer, should be designed and optimized to consume reasonable
power while providing sufficient performance. Although there has
been significant work devoted to reduce power consumption of off-
chip buses with coding techniques [2], [3], [4], [5], [6], [7], the
overhead of coding logic in terms of delay, area, and power can-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC2001, June 18-22, 2001, Las Vegas, Nevada, USA.
Copyright 2001 ACM 1-58113-297-2/01/0006 ...$5.00.

not be tolerated if the same techniques are to be used for on-chip
buses [8]. Furthermore, the effects from lateral component of ca-
pacitance should be taken into account when on-chip buses in deep
submicron technologies are of concern.

In this paper, we propose a low-power on-chip bus design tech-
nique for embedded application-specific systems, which takes the
lateral as well as vertical and fringing components of capacitance
into consideration. Specifically, we are given a processor core and
the embedded application that runs on it. We assume that capaci-
tance components of buses are available from the layout of the pro-
cessor core and the address streams from typical runs of the appli-
cation code. The sequence of the address patterns can be available
a priori after the algorithm of an application is specified such as in
signal and image processing applications. Based on the capacitance
components and the address streams, we determine the optimal or-
der of the bus in such a way that power consumption of the bus is
minimized. The rationale for ordering is that the effective lateral
capacitance is reduced if bus lines, with high probability of switch-
ing in the same direction, are located adjacent to each other. The
obtained order can be used to modify the processor layout without
any circuit overhead.

We present the power model, which incorporates all the capac-
itance components, and define a bus ordering problem. Then, we
propose a heuristic algorithm to determine the bus order. Note that
the optimal order can be obtained only if the bus is narrow and the
length of address streams is small, which are not the case for most
of embedded applications. We also evaluate the proposed heuristic
algorithm by comparing it with the simulated annealing algorithm.

The remainder of the paper is organized as follows. In the next
section, we present a power model and the definition of a problem
followed by a heuristic algorithm. In Section 3, we present results
of experiments for several examples, and in Section 4 we draw con-
clusions.

2. COUPLING-DRIVEN BUS DESIGN

2.1 Power Model and Problem Definition
We are given a bus B=(b0;b1; : : : ;bn�1), which transfers a se-

quence of patterns Bi = (bi
0;b

i
1; : : : ;b

i
n�1), where i is the time in-

dex, n is the bus width, and bi
j is the value of a bus line bj at time

i. We shuffle bus lines in B such that effective load capacitances
seen from driving ends are minimized. Note that if load capaci-
tances are constant, which is the case when there are only vertical
capacitance components, the shuffling has no effects with respect to
dynamic power consumption, which is a dominant source of power
dissipation in a digital CMOS circuit. However, because of lateral
capacitance components, the load capacitances are not constant but
depend on signal transitions of neighboring wires.

CcCc

CaCf Cf

Bottom plane

Figure 1: Parasitic capacitances with adjacent lines.

Figure 1 shows parasitic capacitances involved with adjacent bus
lines. Cc denotes a lateral component between electromagnetically
coupled lines. Ca and Cf denote the vertical and fringing compo-
nents, respectively, between a metal line and a bottom plane. We
denote the sum of Ca and 2Cf as Cl . The ratio between Cc and Cl
is denoted by

η =
Cc

Cl
: (1)

The effect of lateral capacitance (Cc) is that total load capacitance
seen by a gate is no longer a constant value, but depends on signal
activities of neighboring lines due to the Miller effect [9]. Assume
that the physical lateral capacitance between two neighboring lines,
bi and bi+1, is Cc. The Miller effect states that if two lines switch in
opposite directions, the effective lateral capacitance between them
is 2Cc because the effective voltage swing between them is doubled.
On the contrary, the effective lateral capacitance becomes 0 if both
lines switch in the same direction.

In a digital CMOS circuit, the dynamic power is proportional to
load capacitance and switching activity. Thus, if load capacitance
is constant, power consumption is proportional to the number of
transitions. In other words, if we have two sets of patterns with
the same width and length to be transferred on the same bus, we
can compare the power consumption of the bus from each set by
comparing the number of transitions. In order to take a similar
approach when we incorporate the effect of Cc as well as Cl , we
first define the switching encoding for j-th bus line as

si
j =

8><
>:

1; if bi�1
j = 0 and bi

j = 1

�1; if bi�1
j = 1 and bi

j = 0
0; otherwise.

(2)

If η = 0, we can readily obtain the total number of bus transitions
by summing jsi

jj over j and i. However, if η 6= 0, we should take
switching polarities of adjacent lines into account to include the
effect of Cc. For this purpose, we define the switching similarity
between adjacent lines (j-th and k-th) at time i, denoted by ζi(j;k),
as the amount of effects from Cc seen from j-th line (thus, ζi(k; j) is
different from ζi(j;k)). For example, if two lines make transitions
in opposite directions at time i, ζi(j;k) = 2. Then, it can be readily
shown that ζi(j;k) is given by

ζi(j;k) = jsi
jj(2�jsi

j + si
kj): (3)

Now, we define the effective bus transition of bj at time i, denoted
by αi

j, as the measure of effective transitions induced both from Cl
and Cc, which is normalized to transitions considering only Cl . It
can be expressed by

αi
j =

8><
>:

jsi
jj(1+ηζ i(j; j+1)); if j = 0

jsi
jj(1+ηζ i(j; j�1)); if j = n�1

jsi
jj(1+η (ζi(j; j�1)+ ζi(j; j+1))); otherwise.

(4)
Based on the effective bus transitions, our problem of bus ordering
can be defined as follows:

Ordering bus lines

Compute transition probability (pj) of each line;

Compute switching correlation (ρ jk) of each pair of lines;

Find a set of shielding lines S fbj jpj < ξg;
R fb0;b1; : : : ;bn�1g�S;

Ψ build-clusters(R; pj ; ρ jk);

f g arrange-clusters(Ψ, S);

Figure 2: Heuristic algorithm for bus ordering.

� Given η and a bus B=(b0;b1; : : : ;bn�1), which transfers a
sequence of patterns Bi = (bi

0;b
i
1; : : : ;b

i
n�1),

� Find the shuffled bus B̃ that minimizes the sum of αi
j over j

and i.

2.2 Coupling-Driven Bus Ordering Algorithm
Because of the exponential number of alternatives for B̃ (n! al-

ternatives for n-b wide bus), the optimal one can be obtained only
when the width of bus is narrow and the number of patterns is small,
which are not the case for most of embedded applications. In this
subsection, we propose a heuristic algorithm based on both switch-
ing correlation and transition probability. The switching correla-
tion coefficient or simply switching correlation for two bus lines
(j-th and k-th) is defined by

ρ jk =
Kjk

σ jσk
; (5)

where σ j is the standard deviation of sj , defined in (2), over time i.
Kjk is the covariance of s j and sk and defined by

Kjk = Efs jskg�m jmk; (6)

where Efxg is the expected value of x and mj is the mean of s j .
Now, if the switching correlation between two lines is close to 1,
that means that they have high possibility to have transitions in the
same direction. However, switching correlation does not give all
the information we need. For example, if the switching activities
of two lines are very low, it does not have much effect to make
them adjacent even though their switching correlation is close to 1.
Thus, we consider transition probability of each line together with
switching correlation.

The overall algorithm is outlined in Figure 2. Initially, we group
bus lines with relatively low transition probability (below some
threshold1, ξ). These lines serve as shielding lines between clus-
ters. The remaining bus lines are subdivided into a group of ordered
sets, called clusters. The clusters and a set of shielding lines are or-
dered to result in the final order. Note that orders of lines in each
cluster is fixed once each cluster is built, except for the possibility
of conditional reverse.

The heuristic algorithm to group bus lines into a set of clusters
is shown in Figure 3. For each cluster, we first select the line with
the highest transition probability among lines not selected and then
build a new cluster. At each iteration of inner while loop, we select
a line (bk) that maximizes the switching correlation between the
line and the first or the last element of the cluster (recall that cluster
is an ordered set) under consideration. This continues until there
are no candidate lines having positive switching correlation with
the first or the last element of the cluster. In this way, each cluster

1The threshold can be selected in various ways. The selection is
obvious if there is a jump in the distribution of transition proba-
bilities. If a boundary is not clear, we can iterate the alogirthm
outlined in Figure 2 while we vary the threshold, and then select
the best case.

build-clusters(R; pj ; ρ jk)

while R not empty do

Select bj 2 R s.t. p j is maximum, and R R�fb jg;

Form a new cluster Ψi fbjg;

while true do

Find bk 2 R maximizing ρkl > 0, where bl is the first or

the last element of Ψi;

If bk is not found then exit loop; end if

If bl is the first element of Ψi then Ψi fbkg[Ψi;

else Ψi Ψi [fbkg; end if

R R�fbkg;

end do

Ψ Ψ[Ψi;

end do

return Ψ;

Figure 3: Heuristic algorithm for clustering.

is formed in such a way that lines with high transition probabilities
and high switching correlations are more likely to be grouped to-
gether, thereby reducing the effective lateral capacitances. Further-
more, lines located at both ends of each cluster have relatively low
transition probabilities that also contributes toward reducing the ef-
fective lateral capacitances, which is to be clarified in Figure 4.

arrange-clusters(Ψ, S)

Select Ψl 2Ψ s.t. p(Ψl) is maximum, and Ψ Ψ�Ψl ;

Select Ψr 2Ψ s.t. p(Ψr) is maximum, and Ψ Ψ�Ψr ;

if the first element of Ψl has p(Ψl) then F Ψl ;

else F reverse(Ψl); end if

foreach Ψi 2Ψ do

Ψ Ψ�Ψi , and F F [Ψi;

Select bi 2 S, S S�fbig, and F F [fbig;

end do

if S is not empty then F F [S; end if

if the last element of Ψr has p(Ψr) then F F [Ψr ;

else F F [reverse(Ψr); end if

return F;

Figure 4: Heuristic algorithm to find the final order. p(Ψi)
is the maximum of transition probabilities of the first and the
last element of Ψi. reverse(Ψi) reverses the partial order of ele-
ments of Ψi.

From a set of clusters and a set of shielding lines, the final order
of bus lines is determined by the heuristic algorithm as shown in
Figure 4. First, we select two clusters (Ψl and Ψr) to be located at
both ends of the final order. Because the lines to be located at both
ends of the final order will have only one lateral capacitances, they
should be lines with high transition probabilities. Then, the remain-
ing clusters are located sequentially with shielding lines in-between
clusters, if there are enough shielding lines to be located. Because
clusters are built in a way that any combination of two clusters re-
sults in negative switching correlation between lines located in the
boundaries of clusters (see Figure 3), locating a shielding line in-
between clusters decreases the effective lateral capacitances. The
above process is illustrated in the following example.

Example 1 Consider the following example of 8-b patterns, where
the left-most column corresponds to a bus line b7 and the right-most
one to b0.

Frame buffer
(256K byte:
64 frames)

Parser
processor

Buffer
(48K byte:
2 frames)

RISC core
processor

FFT
processor

Audio sample
buffer

Figure 5: Block diagram of audio decoder.

00011100

01110011

00110010

01001101

10000101

Assume that b7 and b4 are selected as shielding lines. Among the
remaining lines, we first select b6 because it has most transitions.
Then, we select b0 that has the highest positive switching correla-
tion with b6 (0.9). b3 is selected and become adjacent to b6 because
ρ36 = 0:3 > ρ30 = 0:1. Now, the partial order for the first cluster
is fb0;b6;b3g or the reverse of it. b2 is selected and become adja-
cent to b3 because ρ23 = 0:9 > ρ20 = 0:0. Since there are no more
lines having positive switching correlation with the first or the last
element of the current cluster (b0 and b2), the first cluster becomes
fb0;b6;b3;b2g or the reverse of it. The second cluster consists of
the remaining two lines (b1 and b5).

In the first cluster, b0 has more transitions than b2 meaning that
the partial order (fb0;b6;b3;b2g) is maintained if the cluster is lo-
cated at the left-side of the final order or it is reversed if the cluster
is located at the right-side. Suppose that it is located at the left-side,
while the second cluster is located at the right-side. Then, the final
order from the algorithms is fb0;b6;b3;b2;b4;b7;b1;b5g. 2

3. EXPERIMENTAL RESULTS
To evaluate the efficiency of the proposed algorithm, we perform

experiments for the following set of sample patterns:

� wavelet, linear, laplace, compress, and lowpass: data
address patterns in benchmark examples collected from typ-
ical image or signal processing algorithms [10]. We assume
16-b wide data address buses for all the programs. Patterns
are extracted with the help of Shade [11].

� fft: 7-b wide data address patterns between 128-point com-
plex fft processor of an audio decoder [12], shown in Fig-
ure 5, and memory. Patterns are extracted through VHDL
simulation.

� ac3: 16-b wide data address patterns between memory and
parser processor of the audio decoder, which reads input data
stored in a frame memory. Patterns are extracted through
VHDL simulation.

The threshold for shielding lines (ξ) is set to 0.01. We assume that
Cc and Cl are constants over all bus lines, and perform experiments
with η = 1;2;3;4;5;∞. The resulting percentage saving in power
with the proposed heuristic algorithm is shown in Figure 6. Fig-
ure 7 corresponds to the result after ordering is done using simu-

0

10

20

30

40

50

60

70

80

90

100

wavelet linear laplace compress lowpass fft ac3

%
 s

av
in

g

eta=1
eta=2
eta=3
eta=4
eta=5
eta=infinity

Figure 6: Percentage saving with heuristic algorithm.

0

10

20

30

40

50

60

70

80

90

100

wavelet linear laplace compress lowpass fft ac3

%
 s

av
in

g

eta=1
eta=2
eta=3
eta=4
eta=5
eta=infinity

Figure 7: Percentage saving with simulated annealing algo-
rithm.

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5

%
 s

av
in

g

heuristic
sa

η
∞

Figure 8: Comparison of heuristic algorithm and simulated an-
nealing.

lated annealing (SA)2 [13] instead of the heuristic algorithm, which
gives an idea of how good the solutions obtained by the proposed
heuristic algorithm are. However, SA itself can be used instead
of the proposed heuristic algorithm when the bus width and length
is of reasonable size3. We also obtain the optimal order for fft,
which is 7-b wide and consists of 782 patterns. Interestingly, the
result is the same as that obtained with SA.

The results of the average percentage saving with the heuristic
algorithm are compared to those of SA in Figure 8. The heuristic
algorithm gives 30% on the average when η = 1 up to 46.7% when
η is infinity. The difference between heuristic algorithm and SA
ranges from 1.9% to 4.4%.

2Two kinds of moves are used. One is one-to-one exchange be-
tween randomly selected two bus lines. Another is group-to-group
exchange between randomly selected two groups of bus lines. The
move itself is chosen randomly.
3Only part of the original patterns are used in the experiments
to obtain results with SA in a reasonable time. For example of
linear, the first 2000 out of 485503 samples are used. Even with
that, it takes about 14 m on Ultra 1 with SA, while it takes less than
1 s with the proposed heuristic algorithm.

4. CONCLUSION
In this paper, we address on-chip bus design technique targeting

low-power application-specific systems. In the proposed scheme,
we shuffle bus lines in order to minimize the number of effective
bus transitions, which includes effects from both lateral and vertical
capacitance components, thereby minimizing the power consumed
by on-chip buses. We present a heuristic algorithm of shuffling
bus lines. The proposed scheme is particularly suitable for address
buses in memory-intensive application-specific systems. Experi-
mental results show that savings are substantial for benchmark ex-
amples and a large example such as an audio decoder. The perfor-
mance of the proposed heuristic algorithm is compared to that of
simulated annealing.

References
[1] M. T. Bohr, “Interconnect scaling – the real limiter to high

performance ULSI,” in Proc. IEEE Int’l Electron Devices
Meeting, pp. 241–244, Dec. 1995.

[2] M. R. Stan and W. P. Burleson, “Bus-invert coding for low-
power I/O,” IEEE Trans. on VLSI Systems, vol. 3, pp. 49–58,
Mar. 1995.

[3] L. Benini, G. D. Micheli, E. Macii, D. Sciuto, and C. Sil-
vano, “Asymptotic zero-transition activity encoding for ad-
dress busses in low-power microprocessor-based systems,” in
Proc. Great Lakes Symposium on VLSI, pp. 77–82, Mar. 1997.

[4] L. Benini, G. D. Micheli, E. Macii, M. Poncino, and S. Quer,
“System-level power optimization of special purpose applica-
tions: The Beach Solution,” in Proc. Int’l Symposium on Low
Power Electronics and Design, pp. 24–29, Aug. 1997.

[5] E. Musoll, T. Lang, and J. Cortadella, “Exploiting the locality
of memory references to reduce the address bus energy,” in
Proc. Int’l Symposium on Low Power Electronics and Design,
pp. 202–207, Aug. 1997.

[6] S. Ramprasad, N. R. Shanbhag, and I. N. Hajj, “A coding
framework for low-power address and data busses,” IEEE
Trans. on VLSI Systems, vol. 7, pp. 212–221, June 1999.

[7] Y. Shin and K. Choi, “Narrow bus encoding for low power
systems,” in Proc. Asia South Pacific Design Automat. Conf.,
pp. 217–220, Jan. 2000.

[8] P. Sotiriadis and A. Chandrakasan, “Low power bus cod-
ing techniques considering inter-wire capacitances,” in Proc.
IEEE Custom Integrated Circuits Conf., pp. 507–510, May
2000.

[9] H. B. Bakoglu, Circuits, Interconnections and Packaging for
VLSI. Addison-Wesley, 1990.

[10] P. Panda and N. Dutt, “1995 high level synthesis design repos-
itory,” in Proc. Int’l Symposium on System Synthesis, 1995.

[11] R. Cmelik and D. Keppel, “Shade: A fast instruction-set sim-
ulator for execution profiling,” Tech. Rep. TR-93-12, Sun Mi-
crosystems Laboratories, 1993.

[12] S. Lee and W. Sung, “A parser processor for MPEG-2 audio
and AC-3 decoding,” in Proc. Int’l Symposium on Circuits
and Systems, pp. 2621–2624, June 1997.

[13] S. Kirkpatrick, J. C. D. Gelatt, and M. P. Vecchi, “Optimiza-
tion by simulated annealing,” Science, vol. 220, pp. 671–680,
May 1983.

	Main
	DAC01
	Front Matter
	Table of Contents
	Session Index
	Author Index

