
Input Space Adaptive Design: A High-level Methodology
for Energy and Performance Optimization �

W. Wangy, A. Raghunathanz, G. Lakshminarayanaz, N. K. Jhay

y Dept. of Electrical Eng., Princeton University, NJ 08544
z NEC, C&C Research Labs, Princeton, NJ 08540

Abstract
This paper presents a high-level design methodology, called
input space adaptive design, and new design automation
algorithms for optimizing energy consumption and perfor-
mance. An input space adaptive design exploits the well-
known fact that the quality of hardware circuits and soft-
ware programs can be signi�cantly optimized by employing
algorithms and implementation architectures that adapt to
the input statistics. We propose a methodology for such
designs which includes identifying parts of the behavior to
be optimized, selecting appropriate input sub-spaces, trans-
forming the behavior, and verifying the equivalence of the
original and optimized designs. Experimental results indi-
cate that such designs can reduce energy consumption by
up to 70.6% (average of 55.4%), and simultaneously improve
performance by up to 85.1% (average of 58.1%), leading to
a reduction in the energy-delay product by up to 95.6% (av-
erage of 80.7%), compared to well-optimized designs that do
not employ such techniques.

1. Introduction
In this paper, we present a high-level design methodology

and new design automation algorithms for optimizing energy
consumption and performance through input space adaptive
design. Our techniques can be applied to behavioral descrip-
tions, RTL circuits, or in the context of traditional high-
level design methodologies. Such designs suitably adapt to
changing input statistics, resulting in signi�cant energy and
performance improvements for a wide class of designs.
Starting with a high-level behavioral description of the

circuit to be optimized, and typical input traces that are
used to pro�le the behavior and generate various statistics,
we present techniques to perform the key steps involved
in the design of input space adaptive circuits, which con-
sist of the following steps: (i) identi�cation of parts of the
behavior that hold the highest potential for optimization,
(ii) selection of input sub-spaces whose occurrence can lead

�

This work was supported in part by Alternative System Con-
cepts under an SBIR contract from Army CECOM and in part
by DARPA under contract no. DAAB07-00-C-L516.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2001,June 18-22, 2001, Las Vegas, Nevada, USA.
Copyright 2001 ACM 1-58113-297-2/01/0006 ...$5.00.

to signi�cant reductions in the implementation complexity,
(iii) transformation of the behavior to realize performance
and/or energy savings, and (iv) veri�cation of the equiva-
lence of the original and optimized designs.
The concept of input space adaptive design has been ex-

ploited in various related areas of research. Custom ICs,
such as high-end microprocessors, often use information de-
rived from data statistics to speed up program execution [1].
Branch prediction and control and data speculation are some
common examples. Recent work in embedded system design
has focused on adaptation of the memory hierarchy based
on program execution statistics [2, 3]. Architectures that
adaptively exploit input statistics have also been shown to
improve performance and power consumption in the con-
text of signal processing applications [4, 5, 6, 7]. Com-
piler optimizations such as constant propagation and fold-
ing, strength reduction, value range based optimizations,
etc., exploit information about values of program variables
to eliminate or simplify operations in the program [8]. These
techniques have also been employed in many high-level syn-
thesis tools prior to scheduling and resource sharing [9]. The
success of the above techniques, together with the need to
bridge the quality gap between hand-crafted circuits and
those generated by automatic tool ows, has fueled inter-
est in exploring the use of data statistics in ASIC designs
and design methodologies [10, 11, 12, 13]. The technique
presented in [10] performs power optimization at the logic
level by adding signi�cantly simpler circuits (called predic-
tor circuits) to compute the output, and disabling the orig-
inal circuit, for a subset of input conditions. In high level
synthesis, the individual components used to construct a
circuit's architecture may be locally optimized to be in-
put space adaptive (e.g., through the use of variable-latency
components [12]), however, such techniques do not exploit
the global, larger scale potential for input space adaptive
design.

2. Motivation and Design Issues
In this section, we illustrate the basic ideas, and detail the

tradeo�s and issues involved in input space adaptive design,
through illustrative examples.

2.1 Fundamentals
Figures 1 (a), (b) and (c) illustrate the concept of in-

put space adaptive design. Figure 1(a) shows a behav-
ioral description, B, with inputs i1 ; i2 ; : : : ; in , and outputs
o1 ; o2 ; : : : ; om . The input-output space of a behavior is de-
�ned as a plot of all valid input-output values. In general, for

a behavior with n inputs and m outputs, the input-output
space is n+m dimensional. However, it is possible to exam-
ine sub-spaces of fewer dimensions if necessary. Figure 1(b)
depicts a portion of the input-output space of behavior B in
three dimensions. The shaded region shown in Figure 1(b)
represents the sub-space, S, targeted for further simpli�ca-
tion. The equation i2 > i1 represents this sub-space. Fig-
ure 1(c) illustrates how behavior B is modi�ed to perform an
optimized computation for the sub-behavior when sub-space
S is encountered.

i1

i2

i3

(i2 > i1)

. . .

. . .

i1
i2 i3

in

. .

. .

o1 o2
o3 om

optimized
program part

. . .

. . .

i1
i2 i3

in

. .

. .

o1 o2
o3 om

i2 > i1

original
program
part

input
sub-space
condition

(a) (b) (c)

f(i1,i2)
f(i1,i2)

Figure 1: Illustrating input space adaptive design:
(a) original behavior, (b) chosen input sub-space,
and (c) optimized behavior

<1

A1,A2,A5

>>5, >>6

 +3

>>4, - 4

A8

M8, +1

S0

S1

S2

S3

S22

S23

S24

T

T

F

F

reset

22 cycles
per iteration

.......
#define ADR(x,y) (x | (y << SHIFT));
.......
wavelet(unsigned char *org, *trnsd) {
.......
j = 0; i = 0;
while (j < SIZE) { //
 while (i < SIZE) { //
 adr = ADR(i,j); //
 A = org[adr]; //
 adr = ADR(i+1,j); //
 B = org[adr] //
 adr = ADR(i, j+1); //
 C = org[adr]; //
 adr = ADR(i+1, j+1); //
 D = org[adr]; //

 S1 = A + B; //
 S2 = C + D; //
 C1 = A - B; //
 C2 = C - D; //
 P = S1 + S2; //
 Q = C1 + C2; //
 R = S1 - S2; //
 S = C1 - C2; //

 x = i >> 1; //
 y = j >> 1; //

 LL = P >> 2; //
 LH = Q >> 2; //
 HL = R >> 2; //
 HH = S >> 2; //

 adr = ADR(x, y); //
 trnsd[adr] = LL; //
 adr = ADR(x + H_SIZE, y); //
 trnsd[adr] = LH; //
 adr = ADR(x, y + H_SIZE); //
 trnsd[adr] = HL; //
 adr = ADR(x+H_SIZE, y+H_SIZE); //
 trnsd[adr] = HH; //
 j += 2; //
 }
 i += 2; //
 }
.......

A1

M 1
A2

M 2

A3

M 3

A4

M 4

+
3

- 1

+
4

+
3

+
4

+
5

+
6

+
7

+
8

- 2

- 3

- 4

+
10

+
9

+
9
+

10

>>5

>>6

>>1
>>2
>>3
>>4

A5

A6

A7

A8

M 5

M 6

M 7

< 1

< 2

+
1

+
2

M 8

(a)

(b)

(c)

<

<
+1

1

+2

2

+4
+3

A 1

M 1

-1 -2+5 +6

A 2 A 3 A 4

M 2 M 3 M 4

-3 -4+7 +8

>>
1

>>
3

>>
2

>>
4

>>
6

>>
5

+9

+10

H_SIZE

A 5

A 7

A 8

A 6

M 5 M 7 M 6 M 8

E-

+
-

A B C D

LL HL LH HH

j(0)

i(0)

x

y

+
+
+

Figure 2: Discrete wavelet transformation: (a) be-
havioral description, (b) CDFG, and (c) schedule
STG

We now illustrate the input space adaptive design using
an illustrative example.
Example 1: Consider the behavior shown in Figure 2(a)
that implements the discrete wavelet transformation, com-

monly used for compression of digital images. The control-
data ow graph (CDFG) representation of the behavior is
shown in Figure 2(b). The behavior reads the pixels of the
input image from array org [] and outputs the transformed
image data into array transd []. Statements in the behavior
are annotated with the names of the corresponding opera-
tions in the CDFG. For example, statement S1 = A + B
corresponds to operation +5 in the CDFG. Solid (dotted)
lines are used in Figure 2(b) to represent data (control) de-
pendencies.
The �rst step in input space adaptive design is to identify

a sub-behavior for further optimization. For the Wavelet ex-
ample, based on the techniques described later in Section 3,
the shaded sub-behavior in Figure 2(b) is chosen for fur-
ther optimization. The next step is to determine the target
sub-space. Based on our analysis procedure, described in
detail in Section 3, the target sub-space is described by the
following equation

A = B = C = D (1)

To qualify as an optimization target, the candidate sub-
behavior and sub-space should have the following two prop-
erties: the behavior should be frequently executed and ex-
hibit signi�cantly reduced complexity when the inputs be-
longing to the target sub-space are encountered, and the
chosen input sub-space should occur with a high frequency.
The chosen sub-behavior in this case occurs with a very
high frequency of 99.8%, since it is within the inner loop
of the behavior. The sub-space described in Equation (1)
occurs in the input trace with a frequency of 95.2%. The
sub-behavior shaded in Figure 2(b) is now further optimized
under the conditions imposed by the optimization condition
described in Equation (1), in the following manner:

LL = A;LH = 0; HL = 0; HH = 0 (2)

Thus, the original sub-behavior consisting of four addi-
tions, four subtractions, and four shift operations is replaced
by the assignments to 0 or A, as given in the above equation.
Since the chosen sub-behavior displays highly reduced com-
plexity under the chosen input sub-space, signi�cant perfor-
mance enhancements and energy savings can be obtained.
Figure 3(a) shows the Wavelet behavior, modi�ed by input
space adaptation, and Figure 3(b) shows the corresponding
CDFG.
The shaded portions of Figure 3(b) indicate (i) the oper-

ations that are added to the behavior to test for the occur-
rence of input vectors belonging to the sub-space, and (ii)
the optimized sub-behavior that is executed when the input
sub-space condition is satis�ed.
Figures 2(c) and 3(c) show the schedules generated for the

original and optimized versions of the Wavelet example, re-
spectively, as state-transition graphs (STGs). As indicated
in Figure 3(c), the schedule for the input space adaptive
design requires 11 cycles/iteration of the inner loop when
the optimized input sub-space is encountered, and 22 cy-
cles/iteration otherwise. In contrast, the original design al-
ways requires 22 cycles/iteration for the inner loop. This
results in a performance improvement of 1.95X and a simul-
taneous energy reduction of 1.70X. These savings come at
a modest area overhead (increase in grid count from 13624
to 16005), due to an increase in multiplexers, registers, and
control logic.

A1,A2,A5

>>5, >>6

 +3

M8, +1

S3

S13

S24

M8, +1

T

T F

F

11 cycles
per iteration

<1

S0

S1

S2

T

F

reset

 x = i >> 1; //
 y = j >> 1; //
 if ((A==B)&&(B==C) //
 &&(C==D)) { //
 adr = ADR(x, y); //
 trnsd[adr] = A; //
 adr = ADR(x+H_SIZE, y); //
 trnsd[adr] = 0; //
 adr = ADR(x, y+H_SIZE); //
 trnsd[adr] = 0; //
 adr = ADR(x+H_SIZE, y+H_SIZE); //
 trnsd[adr] = 0; } //
 else {
 S1 = A + B; //
 S2 = C + D; //
 C1 = A - B; //
 C2 = C - D; //
 P = S1 + S2; //
 Q = C1 + C2; //
 R = S1 - S2; //
 S = C1 - C2; //

 LL = P >> 2; //
 LH = Q >> 2; //
 HL = R >> 2; //
 HH = S >> 2; //

 adr = ADR(x, y); //
 trnsd[adr] = LL; //
 adr = ADR(x + H_SIZE, y); //
 trnsd[adr] = LH; //
 adr = ADR(x, y + H_SIZE); //
 trnsd[adr] = HL; //
 adr = ADR(x+H_SIZE, y+H_SIZE); //
 trnsd[adr] = HH; //
 }

- 1

+
5

+
6

+
7+
8

- 2

- 3

- 4

>>5

>>6

>>1
>>2
>>3
>>4

+
10

+
9

+
9
+

10

A5

A6

A7

A8

M 5

M 6

M 7

M 8

+
9

+
10

+
9
+

10

A5

A6

A7

A8

M 5

M 6

M 7

M 8

==
1 ==

2
==

3

&&1
&&2

T 1

T 2

T 3

T 4

T 1

T 2

T 3

T 4

(a)

(b)

(c)

<

<
+1

1

+2

2

+4
+3

A 1

M 1

-1 -2+5 +6

A 2 A 3 A 4

M 2 M 3 M 4

-3 -4+7 +8

>>
1

>>
3

>>
2

>>
4

>>
6

>>
5

+9

+10

H_SIZE

A 5

A 7

A 8

A

M 5 M 7 M 6 M 8

E-

+
-

A
B C D

LL HL LH HH

j(0)

i(0)

D

==
3

==
1

==
2

A B C

&&
1

&&
2

C0

T1 T 3 T 2 T 4

A
0 0 0

Input sub-space
condition

Optimized
sub-behavior

+
+
+

x

y

Figure 3: The Wavelet example optimized through
input space adaptive design: (a) optimized behav-
ioral description, (b) optimized CDFG, and (c) op-
timized STG

2.2 Issues and tradeoffs involved in input space
adaptive design

This sub-section illustrates the tradeo�s involved in se-
lecting the right sub-behaviors and input sub-spaces, un-
derlining the need for a systematic design methodology to
identify and exploit input space adaptive design opportuni-
ties. In general, the following factors are involved in this
process: (i) Sub-behaviors that account for a larger por-
tion of the total execution time and energy consumption
of the design are better targets for optimization. (ii) For
a given sub-behavior, input sub-spaces that occur with a
higher probability may yield larger savings. (iii) Di�erent
input sub-spaces lead to di�erent reductions in the complex-
ity of the chosen sub-behavior. Use of the �rst two metrics
alone is incomplete since it does not consider the potential
for complexity reduction. (iv) Di�erent input sub-spaces
translate into di�ering hardware requirements for the cir-
cuitry that implements the input sub-space condition.
The tradeo�s caused by the above-mentioned factors and

their inter-dependencies are illustrated through the next ex-
ample.
Example 2: Consider again the Wavelet example presented
in Figure 2. The input space adaptive design shown in
Figure 3 was the result of choosing a speci�c sub-behavior
and a speci�c input sub-space for optimization. In order
to illustrate the issues involved in choosing the right sub-
behavior and input sub-space, we performed the following
experiment. We synthesized input space adaptive designs
for the Wavelet example for di�erent sub-behaviors ranging
in size from 1 operation to 24 operations (in order to expose

a suÆcient number of operations to study this tradeo�, the
inner loop in the behavior was unrolled to the necessary ex-
tent). We also considered 10 di�erent input sub-spaces that
occur with varying frequency. For each of the 24 � 10 = 240
combinations of input sub-spaces and sub-behavior sizes, we
derived input space adaptive designs. All 240 designs were
subject to high-level synthesis and logic synthesis using a
commercial design ow [14], mapped to a 0:35 micron cell-
based array technology, and evaluated for energy consump-
tion.
The results of our experiment, plotted as a 3-D surface,

are shown in Figure 4. In this �gure, the x axis denotes the
number of operations in the chosen sub-behavior, and the y
axis denotes the input sub-space chosen as the optimization
condition. The z axis shows the energy consumption of the
corresponding input space adaptive design. The curves plot-
ted in the z = 0 plane indicate iso-energy contours, i.e., all
points on a curve correspond to designs with similar energy
consumption. The minimum energy design corresponds to a
sub-behavior of size 12, and the condition A = B = C = D.
The variation in energy between the best design and the
worst design represented in Figure 4 is 40.2%. Signi�cant
variations are present along both the x and y dimensions.

0

5

10

15

20

251000

1100

1200

1300

1400

1500

1600

1700

B=DA=CC=D
A=BA=B=CA=B&C=D

A=B=C=D
A=B=C=D&A1=B1=C1=D1

A=B=C=D&A1=B1=C1

Size of sub-behaviorsInput sub-spaces

E
ne

rg
y

co
ns

um
pt

io
n(

nJ
)

A=B=C=D&A1=B1

Figure 4: Energy consumption of input space adap-
tive designs for the Wavelet example with di�erent
sub-behaviors sizes and input sub-spaces

The following key observations can be made from the
above example. (i) We can conclude that the energy con-
sumption of input space adaptive designs strongly depends
on the choice of the sub-behavior and input sub-space. (ii)
The largest improvement in energy consumption does not
necessarily occur at the largest or smallest sub-behavior size.
(iii) The energy consumption initially improves with increas-
ingly complex input sub-space conditions, but starts deteri-
orating after a point.
The above observations point to the need for a suÆciently

accurate metric that can be used to identify the most promis-
ing candidate sub-behaviors and input sub-spaces. We have
developed an entropy-based metric for identifying optimiza-
tion opportunities. Our metric, which we term optimization
potential, accounts for the impact of the factors mentioned
above on the energy consumption of an input space adaptive
design.
The entropy, E, of a variable, which can take one of N

values, is described by the following equation

E = ��N
i=1pilog(pi) (3)

In this equation, pi is the probability that the variable takes
the ith value. A random variable that is distributed uni-
formly in the range [0; 2n�1 � 1] will have an entropy of n.

A variable that can take on two values with a probability
of 0:5 each would have an entropy of 1, and a variable that
has a constant value would have an entropy of 0. The above
results suggest that entropy correlates well with a variable's
information content.
Entropy is, in fact, used as a measure of information con-

tent of communication channels, and a signi�cant body of
work is devoted to the study of entropy and its implications
on the design of several communication protocols, channel
capacities, coding schemes, etc. [15]. The rationale behind
this body of work derives from the fact that, for a given set of
inputs, a lower output entropy implies that the outputs have
lower information content, and can hence be realized by a
simpler (more energy-eÆcient) circuit. This assumption has
been tested and validated for a wide range of designs [16,
17]. Our work adapts the use of entropy-based metrics to
identify optimization opportunities in our context.

0 1 2 3 4 5 6
900

1000

1100

1200

1300

1400

1500

1600

E
ne

rg
y

co
ns

um
pt

io
n

(n
J)

Optimization potential
5

10

15

20

25

2

3

4

5

6

Size of sub-behaviorsInput sub-spaces

O
pt

im
iz

at
io

n
po

te
nt

ia
l

0B=D
A=CC=D

A=B
A=B=C

A=B&C=D
A=B=C=D

A=B=C=D&A1=B1=C1=D1
A=B=C=D&A1=B1=C1

A=B=C=D&A1=B1

(a) (b)

Figure 5: Plots of (a) optimization potential for dif-
ferent sub-behaviors and input sub-spaces, and (b)
energy consumption vs. optimization potential

Example 3: Consider again the graph shown in Figure 4.
We employed the entropy-based metric (presented later in
Section 3) to evaluate each of the 240 designs represented
in Figure 4. Figure 5(a) shows the optimization potential
for di�erent choices of sub-behaviors and input sub-spaces.
Note that the optimization potential is highest in Figure 5(a)
for exactly the same design point where energy consumption
is lowest in Figure 4. The correlation between the opti-
mization potential and energy consumption of the synthe-
sized implementation is shown in Figure 5(b). From Fig-
ures 4 and 5, it is evident that design points with a larger
optimization potential synthesize into lower-energy designs
than those with a lower optimization potential. This exam-
ple illustrates that our entropy-based metric (optimization
potential) is able to easily identify promising optimization
opportunities that correlates well with energy consumption
savings.

3. Methodology and Algorithms
In this section, we present the overall methodology and

algorithm details for our input space adaptive techniques.
The inputs to the input space adaptive design algorithm are
a CDFG representing the behavior to be optimized, typical
input traces, and designer-speci�ed values for a set of opti-
mization parameters. Parameters k and m control the num-
ber of candidate sub-behaviors, and the complexity of their
input sub-space conditions. The output of our algorithm is
the optimized input space adaptive behavior, which can be
synthesized using conventional high-level and logic synthesis
tools.
Figure 6 presents an overview of our algorithm and the

steps involved. We �rst simulate the behavior with the given

Identify promising
sub-behaviors for
input space adaptive
design

Inputs:
1. CDFG
2. k, m
3.Typical input traces

Simulate CDFG
with input traces

Choose sub-behaviors
and input sub-spaces
with maximum energy
savings

output:
input space
adaptive design

Transform behavior by
adding sub-space
condition and optimized
sub-behavior

Verify equivalence
of original and
optimized
behaviors

Evaluate
energy
savings

1
2

Choose the input
sub-spaces that
maximize optimization
potential 3

4 5 6

7

For each selected sub-behavior

Figure 6: The input space adaptive optimization al-
gorithm

input traces and extract various statistics that are used to
drive the algorithm (Step 1). In addition to pro�ling statis-
tics such as the execution counts of each operation, we also
compute the entropy for each variable in the behavior, using
Equation (3).
Step 2 identi�es and ranks the k most promising sub-

behaviors as candidates for optimization. We employ a
bottom-up method. To form a candidate sub-behavior,
we start with a single operation, and we continue to incor-
porate neighboring operations until no further bene�t can
be achieved. The sub-behaviors are evaluated by the Gain
function. This function measures the desirability of a sub-
behavior, �, with input I and output O to be optimized by
our input space adaptive technique.

Gain(�) =
trace coverage(�)

min(avg entropy(O); avg entropy(O
I
))
(4)

=
C(�)

min(Q�(O); Q�(
O
I
))

(5)

Trace coverage is de�ned as the fraction of operations from
the complete dynamic execution trace of the behavior that
belong to sub-behavior �. Let Num be the number of all
the operations in the original behavior, and Num(�) be the
number of operations in �. We then have:

trace coverage(�) = C(�) =
Num(�)

Num
(6)

For a given sub-behavior, �, we evaluate the average entropy
value under the whole input space:

avg entropy(O) = Q�(O) = �
1

N
�N
i=1pilog(pi) (7)

Each time we group a neighboring operation, we evaluate
the Gain value. We stop the growing process when Gain
is maximized. We then start with an operation outside the
generated sub-behaviors and repeat the above process until
all the operations are in one of the sub-behaviors. The iden-
ti�ed candidate sub-behaviors are further explored in Steps
3-7. For a given sub-behavior, Step 3 identi�es the input
sub-spaces that would lead to maximum energy reductions.
We start from the two-term optimization conditions (sub-
spaces, in our terminology): Ii = (6=;<;>;�;�)Ij ; i; j =
1; 2; : : : ; N: Ii and Ij are two of the N inputs of the sub-
behavior. The relationship can be =; 6=; <;>;�;�. It is
computationally too expensive to try all these conditions.
Therefore, we employ an entropy-based metric, optimization
potential (OP), to evaluate the sub-space, �, for the given

sub-behavior, �.

OP(�; �) = Gain(�)� Prob(�) (8)

=
C(�)

min(Q�(O); Q�(
O
I
))
� Prob(�) (9)

The validity of optimization potential as the metric to select
sub-spaces under the given sub-behaviors has been veri�ed
in Figure 5(b). For each sub-behavior, we select m condi-
tions (two-term) that result in the biggest optimization po-
tential. For the selected m conditions, we try all their com-
binations and retain those with correct simulation results.
For example, in Wavelet, the sub-space A = B = C = D is
the combination of A = B, B = C, and C = D.
Step 4 applies optimizing transformations to simplify the

chosen sub-behavior under the restrictions imposed by the
selected input sub-space. Optimizing transformations have
been extensively studied in the literature in the context of
compilers [8] as well as high-level power optimization [18,
19].
Step 5 veri�es the correctness of the optimization by ver-

ifying the equivalence of the original and optimized behav-
iors. We formulate this problem as one of justifying a 1 at
the output of a veri�cation circuit shown in Figure 7.

Original
sub-CDFG

Optimized
sub-CDFG

 sub-space
 condition

Input: I1, I2, .., IN

!= != !=

O1 O2

On O’1
O’2 O’n

Correct

Figure 7: The circuit used to verify equivalence of
the original and input space adaptive behaviors

Step 6 evaluates the energy savings obtained. This is
performed by adapting behavioral power models that have
been proposed in the literature [20, 21]. Step 7 selects the
optimizations that result in the highest energy savings.

4. Experimental Results
We applied our input space adaptive technique to sev-

eral behavioral benchmarks. Typical input traces were as-
sumed to be available for all the behaviors. The original
CDFGs were modi�ed by applying our technique. The orig-
inal and optimized behaviors were subject to high-level syn-
thesis and logic synthesis using state-of-the-art commercial
tools [14], and mapped to NEC's 0:35 micron cell-based
array library [14]. The resulting gate-level circuits were
compared with respect to the following metrics: area, per-
formance, and energy. These metrics were extracted from
the technology-mapped circuits and designer provided test-
benches using a commercial design ow [14]. The results
obtained are summarized in Tables 1 and 2. Of our bench-
marks, Wavelet, which implements the discrete wavelet trans-
form, was discussed in Section 2. The Poly example per-

forms the multiplication of two polynomials. Matrix repre-
sents the multiplication of two matrices. Mergesort imple-
ments the merge-sort algorithm. Finite impulse response
(FIR) �lter and discrete cosine transform (DCT) are well-
known signal processing benchmarks.
In Table 1, major columns Circuit, Area, # cycles, and Ex-

ecution time represent the name of the behavior, area (cell
array grid count), number of clock cycles per input trace,
and execution time, respectively. Minor columns original
and optimized represent, respectively, the original and in-
put space adaptive designs. Column A.O. represents the
area overhead incurred by our technique, and column P.I.
represents the improvement in performance. The average
area overhead is 6.0%, whereas the average performance im-
provement is 58.1% (the averages were calculated based on
comparing the sum of the values in the respective columns).
Table 2 presents the results for energy consumption of the

original and optimized designs. If Vdd -scaling is performed,
the optimized design is assumed to take the same time as
the original design. This enables us to use the following
equation [22] to scale the supply voltage

Vdd initial

(Vdd initial � Vt)2
� Torig =

Vddnew

(Vddnew � Vt)2
� Topt

where Vdd initial is the initial supply voltage, Vddnew is the
new supply voltage, and Vt is the threshold voltage of the
implementation.
In Table 2, columns energy (non-Vdd -scaled), and energy

(Vdd -scaled) represent, respectively, the energy consump-
tion, without and with Vdd -scaling, over the entire duration
of the input trace. The energy savings are shown under
minor column E.S.. The average energy reduction before
supply voltage scaling is 55.4%. The average energy re-
duction after using supply voltage scaling is 83.5%. The
energy-delay product for the non-Vdd -scaled designs (prod-
uct of the Execution time column from Table 1 and energy
(non-Vdd -scaled) column from Table 2) is reduced by up to
95.6% (average of 80.7%).

5. Conclusions
In this paper, we presented a design methodology for opti-

mizing performance and energy consumption through input
space adaptive design. We presented algorithms to perform
the important steps in input space adaptive deign, including
selection of sub-behaviors to be optimized and the targeted
input sub-spaces. Experimental results on several bench-
marks using a commercial design ow demonstrated that
input space adaptive designs perform signi�cantly faster and
consume signi�cantly lower energy than the original designs,
leading to over an order-of-magnitude improvement in the
energy-delay product.

References
[1] D. A. Patterson and J. L. Hennessy, Computer Archi-

tecture: A Quantitative Approach. Morgan Kaufman
Publishers, San Mateo, CA, 1989.

[2] D. Chiou, P. Jain, L. Rudolph, and S. Devadas,
\Application-speci�c memory management for embed-
ded systems using software-controlled caches," in Proc.
Design Automation Conf., pp. 416{419, June 2000.

[3] R. K. Gupta and A. Chien, \Architectural adaptation
in MORPH," in Proc. SPIE Workshop on Con�gurable

Table 1: Area and performance results

Circuit Area (grid cnt) # cycles Execution time(�s)

original optimized A.O.(%) original optimized original optimized P.I. (%)

Wavelet 13,624 16,005 17.5 22,564 11,762 642.2 329.6 48.7

Poly 27,866 28,952 3.9 4195 625 102.6 15.3 85.1

Matrix 44,426 49,620 11.7 404 142 4.6 1.9 58.4

Mergesort 12,283 13,871 12.9 2,311 1,033 15.3 6.9 55.0

FIR 33,169 34,989 5.5 13,116 5,483 341.8 135.8 60.2

DCT 50,039 42,357 -15.4 4,840 2,740 136.6 80.3 41.3

Table 2: Energy results

Circuit Energy (nJ) (non-Vdd -scaled) Energy (nJ) (Vdd -scaled)

original optimized E.S. (%) optimized E.S. (%)

Wavelet 1641.3 967.0 41.0 437.2 73.4

Poly 133.4 39.2 70.6 6.0 95.5

Matrix 40.2 16.7 58.3 5.1 87.4

Mergesort 170.3 97.8 42.5 37.6 77.9

FIR 743.0 349.7 52.9 125.3 83.1

DCT 731.4 242.7 66.8 120.2 83.6

Computing, Oct. 1998.

[4] S. R. Park and W. Burleson, \Recon�guration for
power saving in real-time motion estimation," in Proc.
Int. Conf. Acoustics, Speech, and Signal Processing,
pp. 3037{3040, May 1998.

[5] S. Kim and M. C. Papaefthymiou, \Recon�gurable low
energy multiplier for multimedia system design," in
Proc. IEEE Annual Wkshp. VLSI, Apr. 2000.

[6] K. Lengwehasatit and A. Ortega, \DCT Computation
with minimal average number of operations," in Proc.
Visual Communications and Image Proc. Conf, Feb.
1997.

[7] P. Fernandez and A. Ortega, \An input dependent al-
gorithm for the inverse discrete wavelet transform," in
Proc. Asilomar Conf. Signals, Systems, and Comput-
ers, Nov. 1998.

[8] A. Aho, R. Sethi, and J. D. Ullman, Compilers: Prin-
ciples, Techniques, and Tools. Addison-Wesley Publish-
ing Company, 1985.

[9] G. De Micheli, Synthesis and Optimization of Digital
Circuits. McGraw-Hill, New York, NY, 1994.

[10] M. Aldina, J. Monteiro, S. Devadas, A. Ghosh, and
M. Papaefthymiou, \Precomputation-based sequential
logic optimization for low power," IEEE Trans. VLSI
Systems, vol. 2, pp. 426{436, Dec. 1994.

[11] L. Benini, E. Macii, M. Poncino, and G. De Micheli,
\Telescopic units: A new paradigm for performance
optimization of VLSI designs," IEEE Trans. Computer-
Aided Design, vol. 17, pp. 220{232, Mar. 1998.

[12] V. Raghunathan, S. Ravi, and G. Lakshminarayana,
\Integrating variable-latency components into high-
level synthesis," IEEE Trans. Computer-Aided Design,
vol. 19, pp. 1105{1117, Oct. 2000.

[13] G. Lakshminarayana, A. Raghunathan, K. S. Khouri,
N. K. Jha, and S. Dey, \Common case computation:
A high-level power optimization technique," in Proc.
Design Automation Conf., pp. 56{61, June 1999.

[14] OpenCAD V 5 Users Manual. NEC Electronics, Inc.,
Sept. 1997.

[15] R. B. Wells, Applied Coding and Information Theory
for Engineers. Prentice Hall, Englewood Cli�s, NJ,
1998.

[16] D. Marculescu, R. Marculescu, and M. Pedram, \In-
formation theoretic measures for energy consumption
at the register-transfer level," in Proc. Int. Symp. Low
Power Design, pp. 81{86, Apr. 1995.

[17] F. N. Najm, \Towards a high-level power estimation
capability," in Proc. Int. Symp. Low Power Design,
pp. 87{92, Apr. 1995.

[18] A. P. Chandrakasan, M. Potkonjak, R. Mehra,
J. Rabaey, and R. Brodersen, \Optimizing power using
transformations," IEEE Trans. Computer-Aided De-
sign, vol. 14, pp. 12{31, Jan. 1995.

[19] G. Lakshminarayana and N. K. Jha, \FACT: A frame-
work for applying throughput and power optimizing
transformations to control-ow intensive behavioral
descriptions," IEEE Trans. Computer-Aided Design,
vol. 18, pp. 1577{1594, Nov. 1999.

[20] R. Mehra and J. Rabaey, \Behavioral level power es-
timation and exploration," in Proc. Int. Wkshp. Low
Power Design, pp. 197{202, Apr. 1994.

[21] K. S. Khouri, G. Lakshminarayana, and N. K. Jha,
\High-level synthesis of low-power control-ow inten-
sive circuits," IEEE Trans. Computer-Aided Design,
vol. 18, pp. 1715{1729, Dec. 1999.

[22] A. R. Chandrakasan and R. W. Brodersen, Low Power
Digital CMOS Design. Kluwer Academic Publishers,
Norwell, MA, 1995.

	Main
	DAC01
	Front Matter
	Table of Contents
	Session Index
	Author Index

