
Timing Analysis with Crosstalk
as Fixpoints on Complete Lattice

Hai Zhou, Narendra Shenoy, and William Nicholls
Advanced Technology Group

Synopsys, Inc.
Mountain View, 94043

ABSTRACT
Increasing delay variation due to crosstalk has a dramatic
impact on deep sub-micron technologies. It is now necessary
to include crosstalk in timing analysis. But timing analysis
with crosstalk is a chicken-and-egg problem since crosstalk
e�ect in turn depends on timing behavior of a circuit. In
this paper, we establish a theoretical foundation for timing
analysis with crosstalk. We show that solutions to the prob-
lem are �xpoints on a complete lattice. Base on that, we
prove in general the convergence of any iterative approach.
We also show that, starting from di�erent initial solution-
s, an iterative approach will reach di�erent �xpoints. The
current prevailing practice, which starts from the worst case
solution, will always reach the greatest �xpoint (which is
the loosest solution). In order to reach the least �xpoint, we
need to start from the best case solution. Base on chaotic
iteration and heterogeneous structures of coupled circuits,
we also design techniques to speed up iterations.

1. INTRODUCTION
With the progress of deep sub-micron technologies, shrink-

ing geometries have led to a reduction in self-capacitance of
wires. Meanwhile coupling capacitances have increased as
wires have a larger aspect ratio and are brought closer to-
gether. For present day processes, the coupling capacitance
can be as high as the sum of the area capacitance and the
fringing capacitance, and trends indicate that the role of
coupling capacitance will be even more dominant in the fu-
ture as feature sizes shrink [2]. This makes crosstalk a major
problem in IC design. Crosstalk can a�ect the behavior of
a circuit in two ways:

� introducing noise between adjacent wires;

� altering the delay of a switching transition.

When coupling capacitance is dominant, fast switching in
aggressor gates can induce a large amount of noise on a vic-
tim line. If an aggressor and a victim switch simultaneously
in the same direction, the victim will speed up. Likewise, if

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2001,June 18-22, 2001, Las Vegas, Nevada, USA.
Copyright 2001 ACM 1-58113-297-2/01/0006 ...$5.00.

an aggressor and a victim switch in opposite directions, the
victim will slow down.
Assuming that coupling capacitances dominate all other

capacitances on a wire, failure to take crosstalk e�ect into
timing analysis may produce results far o� from the reality.
However, timing and crosstalk e�ect are mutually dependen-
t. This makes timing analysis with crosstalk a chicken-and-
egg problem. For example, consider the two coupled nets in
Figure 1(a). The switching time on net a is dependent on
the switching time on net b. But the switching time on net b
is not �xed, it is dependent on the switching time on net a.
One way to solve the mutual dependence problem is by it-
eration. First, a switching time on a is computed based on
a �xed initial switching time on b. Then the switching time
on a is �xed and used to compute a new switching time on b.
This two steps are iterated until we �nd a converged solu-
tion. By treating nets a and b simultaneously in one system,
the relative window method of Sasaki and De Micheli [13]
generates the switching time on a and b directly from the
switching time on ia and ib. But it is hard to say that their
method avoids iterations since the simulation they use may
implicitly use iterations. Even though we can directly gen-
erate switching time on a and b from switching time on ia
and ib, we still cannot avoid the chicken-and-egg problem.
This is because there are two kinds of chicken-and-egg prob-
lems in timing analysis with crosstalk. We call the problem
in Figure 1(a), that is, the mutual dependence of a set of di-
rectly coupled nets local chicken-and-egg problem. Besides
that, a circuit structure may introduce cycling dependences
which form a global chicken-and-egg problem. For example,
even though we can generate switching time on a and b di-
rectly from those at ia and c, the time on c (together with
the time on d) is not available until we know the time on a.

a

b

ia

ib

a

bc

d

(a) (b)

ia

ic

Figure 1: Timing analysis with crosstalk is a
chicken-and-egg problem: (a) local problem; (b)
global problem

The current practice to solve these chicken-and-egg prob-
lems relies on iterative approaches. Usually such approaches
�rst assume a situation of crosstalk coupling (often a worst

case situation). Then they compute the timing information
and use it to modify the crosstalk coupling situation. They
generally do each pass on the whole circuit and iterate till
the solution converges.
In this paper, we establish a theoretical foundation for

timing analysis with crosstalk. We show that solutions to
the problem are �xpoints on a complete lattice. Base on
that, we prove in general the convergence of any iterative
approach. We also show that, starting from di�erent initial
solutions, an iterative approach will reach di�erent �xpoints.
The current prevailing practice, which starts from the worst
case solution, will always reach the greatest �xpoint (which
is the loosest solution). In order to reach the least �xpoint,
we need to start from the best case solution. Base on chaotic
iteration and heterogeneous structures of coupled circuits,
we also design techniques to speed up iterations.
The rest of the paper is organized as follows. In Sec-

tion 2 we formulate general timing analysis (either dynamic
timing simulation or static timing analysis) as computing a
�xpoint of a mathematical transformation. We then study
in Section 3 Sapatnekar's approach [12] to show that multi-
ple �xpoints exist in the system. Section 4 establishes the
fact that the solution space forms a complete lattice, proves
the convergence of any iterative approach, and character-
izes the relation between initial solution and �nal �xpoint.
Section 5 designs speeding up techniques based on chaotic
iteration and heterogeneous circuit structures.

2. TIMING ANALYSIS AS FIXPOINTS
In this section, we will formulate general timing analysis

(be it static timing analysis or dynamic timing simulation)
as a �xpoint computation. Here we are given a combina-
tional circuit which is composed of a set of gates and their
interconnections. We select a set of points on the circuit
as our interest points where timing information needs to
be computed. They include the primary inputs, primary
outputs, and the inputs and outputs of all the gates. De-
pending on the purpose of the timing analysis, the timing
information on each of these points might be the delay, slew,
switching window, the whole waveform, or any combination
of them. Mathematically this means it may be a scalar val-
ue, a vector, or even a function of time (representing the
whole waveform). We use a variable xi to represent each
timing information on a point i. Furthermore we use X
to represent the vector (x1; x2; : : : ; xn), that is, the timing
information for the whole circuit.
Actually, the timing information on point i is only directly

dependent on a subset of other points i1; i2; : : : ; ik. This
means we can compute xi by

xi = ti(xi1 ; : : : ; xik);

where ti is any delay model used to derive the timing infor-
mation on a point from that on its dependent points. Put all
these local transformation together, we get a transformation
for the whole system which can be written as

X = T (X) (1)

A solution to the timing analysis is an X which satis�es the
above equation, that is, a �xpoint of T .
When crosstalk e�ects are included in timing analysis,

besides the fanins, the timing information on point i also
depends on the timing information on coupled points. For

the simplest coupling case shown in Figure 1(a), we have

xa = ta(xia ; xb);

xb = tb(xib ; xa):

As we can see, a cycle is formed here because of the mutual
dependence of xa and xb. Because of this, the transforma-
tion T becomes very complex in the presence of crosstalk.
For a complex transformation T , iterative method may

be the only possible way to �nd its �xpoint. It works as
follows. First an initial solution X0 is guessed, then new
solutions are iteratively computed from previous solution-
s X1 = T (X0); X2 = T (X1); : : : until we �nd a �xpoint
Xn = Xn�1. To the best of our acknowledgment, all pre-
vious work in the literature uses iterative methods to solve
timing analysis with crosstalk. Most of them [6, 10, 13, 12,
14, 3] deal with the local chicken-and-egg problem, that is,
they consider how to compute the delays of a set of coupled
nets given their input time. Speci�cally, Dartu and Pileg-
gi [6] propose to use an e�ective capacitance gate delay mod-
el to model the gates with dominant coupling capacitance.
After that, a set of equations need to be solved to get the
parameters, which then involve an iterative approach. Gross
et al. [10] design a waveform iteration approach to explicitly
solve the equations in [6]. Sasaki and co-workers [13, 14]
propose a relative window method which relates the delays
of two coupled nets to their input time. But their process to
compute such relations by simulation may include iterations
implicitly. Iterative method is also used in [3] to compute
the Miller factor. Other work [15, 1, 4] analyzes the whole
circuit and thus consider the global chicken-and-egg prob-
lem.
In order to use iterative methods to �nd a �xpoint of a

transformation T , two basic questions need to be asked:

1. Is T a convergent transformation (at least on a subset
A of the domain)? that is, whether there exist a �nite
n such that Tn�1(x) = Tn(x) 8x 2 A.

2. Does T have a unique �xpoint?

Most previous work provides convergence proofs for the
approaches. Gross et al. [10] show the convergence based
on the approach's similarity to waveform relaxation [11].
Both Sapatnekar [12] and Arunachalam et al. [1] base their
convergence arguments on the monotonic shrinking of the
switching windows. However, none of them study the u-
niqueness of their solutions. As we will show in the next
section, uniqueness is not guaranteed by convergence and
simply �nding one �xpoint is not enough.

3. MULTIPLE FIXPOINTS
Since it is not possible to study an abstract transforma-

tion T , we will use Sapatnekar's model [12], which is the
simplest among existing work, as our study case.
Sapatnekar [12] considered the delay computation in the

presence of crosstalk for a set of wires within a routing chan-
nel. For each driver, a switching window [Tmin; Tmax] signi-
fying the range of switching time at the input of the driver,
and a source resistance, Rd, are speci�ed. The intrinsic
and coupling capacitances of a wire are computed from the
routing. Then coupling capacitances are modeled by e�ec-
tive capacitances to the ground and delays are computed
by Elmore delays. The value of an e�ective capacitance is

dependent on the switching time of the two coupling wires.
Given a coupling capacitance Cc between two wires, if they
switch at the same time and in the opposite direction, then
an e�ective capacitance of 2Cc is used; if they switch at the
same time and in the same direction, then an e�ective ca-
pacitance of 0 is used; if they do not switch at the same time,
then an e�ective capacitance of Cc is used. However, in stat-
ic timing analysis, a range of switching time is computed.
Thus, the worst case analysis is used, which assumes that
any switching within the range is possible. The algorithm
to compute the wire delays works as follows. First, initialize
a switching window on each wire such that the minimum
and maximum time are computed by using 0 and Cc as ef-
fective capacitances, respectively. Then the maximum time
for each wire is updated using e�ective capacitance of Cc or
2Cc based on whether switching windows are overlapping.
Similarly, the minimum time for each wire is updated using
0 or Cc. These two updates are repeated in an alternative
fashion until there is no further change.
We now use an example to show that multiple �xpoints

exist for this transformation. In the example, we have only
two nets a and b as shown in Figure 1(a). They couple
with each other with a capacitance of 10 units. The nets
are identical with the same driver of resistance of 10 units
and the same load of capacitance of 1 unit. Suppose the
minimum and maximum arrive time for signal ia, that is
Tmin(ia) and Tmax(ia), be 0 unit and 1 unit, respectively.
Similarly, let Tmin(ib) = 10 units and Tmax(ib) = 11 units.
Elmore delay is used to compute the delays.
According to the algorithm, the initial switching windows

of wires are computed by using e�ective capacitance of 0 for
minimum time and that of Cc for maximum time. That
is, [Tmin(a); Tmax(a)] = [10; 111] and [Tmin(b); Tmax(b) =
[20; 121]. Now their switching windows overlap, thus up-
dates are needed. We get [Tmin(a); Tmax(a)] = [10; 211] and
[Tmin(b); Tmax(b) = [20; 221]. Since there is no update need-
ed, the approach converges to this solution.
But if we assume that there is no switching window over-

lap at the beginning, we can use Cc as e�ective capacitance
both for the minimum and maximum time. In this case, we
have [Tmin(a); Tmax(a)] = [110; 111] and [Tmin(b); Tmax(b)] =
[120; 121] as initial solution. Then we �nd that there is no
update needed, thus it is also a converged solution.
This example shows that there are more than one �xpoints

in Sapatnekar's model, and starting from di�erent initial
solution, we may get di�erent �xpoints. A similar argument
can be made to prove the existence of multiple �xpoints in
other models.

4. OPTIMAL FIXPOINT
As we have already seen from the previous section, there

may be multiple �xpoints for a timing transformation T . A
natural question from that is: which one should be used?
Since complete information is not used (functionality is

not used), uncertainty is unavoidable in static timing anal-
ysis. This means that the timing information we compute
on each point is a set representing the possible switchings,
in stead of a single switching. The result assures the user-
s that \the real (physical) switching is one in this set of
switchings but which one is not known." A set of switchings
can be represented by a switching window and a range of
slew rates such that any switching falling within the win-
dow and having a slew in the range is in the set. But other

representations are also possible.
Now consider the family of all sets of switchings on a point.

The inclusion relation (that is �) forms a partial order on
the family, that is, it is

� re
exive: A � A

� antisymmetric: A � B ^B � A! A = B

� transitive: A � B ^B � C ! A � B

Actually, the sets of switchings on a point are subsets of the
whole switching set which consists of all possible switchings.
According to the lattice theory [7], a partially ordered set
forms a complete lattice if any subset has a least upper bound
and a greatest lower bound for its elements. In fact, the
family of all subsets of a given set with inclusion relation
forms a complete lattice. Given a set S = fa; b; cg, the
partial order of inclusion on its subsets can be represented
by a Hasse diagram shown in Figure 2. Here, two sets with
inclusion relation are connected by an edge, and the lower set
is included in the higher set. Timing information of a circuit

Ø

{a} {b}

{a, b} {a, c} {b, c}

{a, b, c}

{c}

Figure 2: Subsets of a given set form a complete
lattice

is a vector of timing information on all points. The partial
order on each point can be extended point-wisely to get a
partial order on vectors: two vectors A = (A1; A2; : : : ; An)
and B = (B1; B2; : : : ; Bn) satisfy A � B if and only if
Ai � Bi for all 1 � i � n. It can be shown that the vectors
with such a partial order also forms a complete lattice.
Now consider a transformation T . In static timing anal-

ysis, it works on a complete lattice we de�ned above, that
is, it transforms a vector of sets of switchings to a vector of
sets of switchings. We say that T is a monotonic(or order-
preserving) transformation when, for any vector of subsetsX
and Y , if X � Y then T (X) � T (Y). The monotonicity of
transformation T is based on the monotonicities of its mem-
ber transformations t1; t2; : : : ; tn, which must be true for
any reasonable static timing analysis. Otherwise, it means
that we can have fewer possible switchings at a point while
there are more possible switchings at its fanins and coupling
points.
Given a subset S of elements in a complete lattice L, we

use
W
S and

V
S to represent the least upper bound and

the greatest lower bound of elements in S, respectively. The
existence of a �xpoint in our system is guaranteed by the
following theorem due to Knaster and Tarski [7].

Theorem 1 (Knaster-Tarski). Let L be a complete
lattice and T : L! L an order-preserving map. Then

_
fx 2 Ljx � T (x)g 2 �x(T);

where �x(T) is the set of �xpoints of T .

But it is not feasible to use the above theorem to com-
pute a �xpoint since it is not feasible to compute the set
fx 2 Ljx � T (x)g. Instead, people usually use iterative
method (also called successive approximation) to �nd a �x-
point. That is, they �rst select an initial solution X0 and
iteratively compute X1 = T (X0); X2 = T (X0); : : : in the
hope of �nding an Xn such that Xn = T (Xn). But the
hope can not be ful�lled by starting from any initial point.
Fortunately the bottom and the top elements are good can-
didates for that.
Following a tradition in lattice theory, we use ? and > to

represent the bottom and the top elements of our complete
lattice, respectively. That is, we have ? = f;; ;; : : : ; ;g
and > = fP1; P2; : : : ; Png where Pi is the set of all possi-
ble switchings on point i. Since T (>) � >, based on the
monotonicity of T , we have

T (>) � >

T
2(>) � T (>)

T
3(>) � T

2(>)

� � �

Therefore we have a descending chain > � T (>) � T 2(>) �
� � � . Similarly, starting with ?, we have an ascending chain
? � T (?) � T 2(?) � � � � . If the chain has only �nite ele-
ments, which is true on any �nite solution space, the process
will �nally reach a �xpoint. Actually, the only properties
we used about > and ? are T (>) � > and ? � T (?).
Therefore, any solution X0 such that either X0 � T (X0)
or X0 � T (X0) can be used as an initial solution to reach
a �xpoint. If X0 � T (X0), we get an ascending chain; if
X0 � T (X0), we get a descending chain.
The case with in�nite chains is more complex. When

chains are in�nite, stronger requirements are needed on T
for them to converge to �xpoints.

Definition 1. A function T : L ! L is or-continuous if
for any chain C, T (

W
C) =

W
fT (c)jc 2 Cg, or equivalently

T (
W
C) =

W
T (C). If T (

V
C) =

V
T (C), T is called and-

continuous.

It is easy to check that an or-continuous (or and-continuous)
function is order-reserving.

Theorem 2. If T is or-continuous, then the least �xpoint
of T is

W
n�0 T

n(?); if T is and-continuous, then the great-

est �xpoint is
V

n�0 T
n(>).

When a set of switchings is represented by a switching win-
dow, the continuity on the order coincides with the tradi-
tional continuity on real functions. That is, a continuous
transformation will map a small change in input windows
to a small change in output windows. This is also generally
true for common transformations.
The following theorem shows that if we �nd �xpoints by

the above method, they must be the least and the greatest
�xpoints.

Theorem 3. Let L be a complete lattice, let T : L ! L
be an order-preserving map and de�ne � :=

W
n�0 T

n(?)

and � :=
V

n�0 T
n(>).

1. If � 2 �x(T), then � is the least �xpoint;

2. If � 2 �x(T), then � is the greatest �xpoint.

Furthermore, the �xpoints of T have a very good structure.

Theorem 4. If L is a complete lattice, and T : L! L is
an order-preserving map. Then �x(T) is a complete lattice.

These theorems show that the �xpoint found by successive
approximation from the top element is the union of all �x-
points and the one found from the bottom is the intersection
of them. In terms of switching window, that means you will
get a solution with the largest switching windows if starting
from an initial assumption that all switching windows over-
lap with each other, and you will get a solution with the
smallest windows if starting from an initial assumption that
no window overlap with the other. Therefore, our conclu-
sion is that, in order to �nd a solution with the minimum
uncertainty, you should start with the no-window-overlap as-
sumption.
In practice, people sometimes like to change timing mod-

el during the iterations: starting with a coarse estimation
and gradually changing into more and more accurate mod-
els. We must be very careful with this practice, since the
transformation is now changing with iterations and the con-
vergence may not be guaranteed. Now suppose the transfor-
mation in the ith iteration is Ti. If we start with ?, we have
? � T1(?); T2(?) � T2(T1(?)); : : : , but this only gives us a
chain if we also have Ti(X) � Ti+1(X), which means a later
model should not be more accurate than a previous model.
So the practice of using �ner and �ner model can not be
used in any iterative approach with increasing windows, or
you take the risk of looping in�nitely. On the other hand, it
can be safely used in approaches with decreasing windows
since we always have a chain

> � T1(>) � T2(>) � T2(T1(>)) � : : :

But this does not imply that an approach with decreas-
ing windows are more eÆcient than that with increasing
windows. Let �1 and �1 to be the least and greatest �x-
points of T1 respectively. Similarly, let �n and �n to be
the least and greatest �xpoints of Tn. For any x 2 �x(T1)
we have x = T1(x) � Tn(x) which means a �xpoint of Tn
can be found if we start with x. Using a diamond to rep-
resent a complete lattice, the relation between �x(T1) and
�x(Tn) can be shown in Figure 3. Depending on whether
�1 = Tn(�1), we have two cases. If �1 = Tn(�1) then we
can prove that �n = T1(�n). This is shown in (a) where
the �xpoint sets of T1 and Tn overlap. In this case, using
�ner and �ner models from > will �nd �n, but keeping with
the coarse model from ? will give us a better solution �1.
In the case shown in (b), �1 is not a �xpoint of Tn, but
since �1 � Tn(�1), we can iterate using Tn from �1 to get
�n. That means we can keep using the coarse model until
we �nd a �xpoint, then change to a �ner model. Further-
more, in order to �nd the best �xpoint �n, the only way is
to use Tn from ?, which means that the solution using the
coarse model has to be discarded.

5. SPEEDING UP TECHNIQUES
Strictly speaking, applying the transformation T to a so-

lution Xi, that is, computing Xi+1 = T (Xi), uses all the
previous values to compute the new values even when some
of the new ones are available. This is similar to Jacobi's
method in solving matrix equations [9]. In practice, people
already deviate from this strict sense: they usually do the

fix(T1)fix(T1)

fix(Tn)
fix(Tn)

α1

α1

β1β1

αn
αn

βn

βn

(a) (b)

Figure 3: Structures of �xpoints

process in a topological order of a circuit and always use
a new value if one is available. This is much like Seidel's
method to solve matrix equations. Many useless updates
are thus trimmed o�. But we �nd that without further
exploiting both circuit and coupling structures and their in-
teraction, many updates are still wasted. For example, in
Figure 4, if we process each iteration according to a topolog-
ical order of the circuit, any update at d may be propagated
to e; f; g and h. But if the update at d is not permanent,
those propagations will be overwritten later.

a

bc

dia

ic

e

f

g

h

cluster A cluster B

Figure 4: Exploit circuit structure by clustering

Before we design a good iterative order for updates, we
need to establish its theoretical validity. That is, no matter
what order is used, the process will always converge to the
same �xpoint. This is called the scheme of chaotic itera-
tion [5]. Here, a transformation T is composed of a set of
partial transformations t1; t2; : : : ; tn. In each step, one or
more partial transformations are applied to update timing
information on one or more points. All timing information
on other points is kept the same. We will use TS to repre-
sent such a partial transformation done in one step, where S
represents the set of points where timing information is up-
dated.

Lemma 1. Given S a subset of points, if X � T (X), then
X � TS(X) � T (X); if X � T (X), then X � TS(X) �
T (X).

The above lemma states that no matter what evaluation
order is used, the generated sequence is monotonic in the
same direction and it will not over-shoot the �xpoint gen-
erated by T . Furthermore, if the evaluation order is fair,
that is, a partial transformation will always be applied if
its inputs and outputs are not consistent, then the chaotic
iteration will always reach the same �xpoint as T .
A circuit structure forms a partial order relation on the

set of points which can be represented by a DAG (Direct A-
cyclic Graph). Let each coupling capacitor introduce a bidi-

rectional edge on the pair of points. Then we have a general
directed graph on the nets. Identify each of the strongly
connected components and call it a cluster. Then do the
timing analysis on each of the clusters until it converges, in
a topological order of the clusters. In Figure 4, we have two
clusters A and B. Not processing cluster B until having
a stable cluster A means that previous mentioned useless
updates will be trimmed o�. Notice that clusters A and B
have di�erent structures. Actually, cluster B is simpler and
corresponding to the local chicken-and-egg problem, so we
call it local cluster. Cluster A includes some interacted local
cluster and is corresponding to the global chicken-and-egg
problem, so we call it global cluster. Solving a problem of
timing analysis with crosstalk now is reduced to solving that
problem on a set of local and global clusters. Since a global
cluster includes at least one local cluster, we will focus on
how to solve the problem in a global cluster.
There are many di�erent ways to arrange iterations in a

global cluster. If we always compute local clusters together,
as implicitly suggested by [10, 1], the structure of a glob-
al cluster can be viewed as in Figure 5, where each block
represents a local cluster. To facilitate iterations, a set of
gate inputs are selected as feedback edges whose removal
makes the structure acyclic. Given initial values on feed-
back edges, timing analysis can be done in the acyclic part
(perhaps with a complicated computation on each local clus-
ter) to give new values on feedback edges. If these values
become stable (i.e. new values are the same as old values),
then a �xpoint is reached. Otherwise, next iteration will s-
tart with the new values. Given feedback edges, iterations in
each global cluster can be processed in two ways. The �rst
approach, called iterative approach, re-computes the whole
cluster based on new values and repeats this until all values
become stable. The second approach, called recursive ap-
proach, only re-computes the points on the outer cycle after
all inner cycles become stable. Although there is no direct
relation between the number of iterations and the number
of feedback edges, fewer feedback edges may give fewer pos-
sible value changes. However, �nding the smallest number
of feedbacks is NP-hard on a general graph [8].

feedback edges

Figure 5: Use gate fan-ins as feedback edges

One drawback of the above approach is that, since all the
feedbacks are gate inputs, changed values on them always
need to be propagated. Studying the interactions in our
system, we �nd that our system is a heterogeneous system.
That is, there are two kinds of interaction relations: fanin
relation is simple but strong; coupling relation is complex
but weak. Fanin relation is simple because it is unidirec-
tional, and it is strong because switching on input always
in
uences switching on output. On the other hand, cou-

pling relation is complex because it is bidirectional, and it is
weak because switching on one net may not always in
uence
the switching on the other. Based on these observations, we
adopt the following principle in our iterations: always using
coupling edges as feedback edges. Our procedure works as
follows. Initially, assume all switching windows are empty,
that is, no coupling net switches at the same time. Thus the
�rst iteration is just a traditional timing analysis. After this
iteration, a switching window is given on each point. Then
for each pair of coupling points a and b, we can de�ne their
timing proximity as

P (a; b) = min(Tmax(a); Tmax(b))�max(Tmin(a); Tmin(b)):

In fact, it de�nes the overlap length of the two switching
windows; when there is no overlap, it is negative and its
absolute value de�nes the distance between the two win-
dows. Now we will choose a set of coupling edges with the
smallest timing proximities as feedback edges whose removal
makes the circuit acyclic (in the sense of treating each lo-
cal cluster as a block). That is, the circuit will be viewed
in a structure as shown in Figure 6. During the iterations

feedback edges

a

b

Figure 6: Use coupling edges as feedback edges

that follow, the feedback edges are not physically broken up,
but the timing computation on the two points connected by
each of them is separated. For example, when computing
the time on point a in Figure 6, its coupling with point b
is considered but time on point b is assumed to be �xed.
Later, when computing time on point b, its coupling with
point a is considered but time on point a is assumed to be
�xed. Therefore, if the switching windows on a and b do
not overlap during the iterations, time change on one point
does not in
uence the other point. Our selection of feed-
back edges based on timing proximity intends to make this
happen as frequently as possible.
However, it is possible for two points connected by a feed-

back edge to have overlapped switching windows. In this
case, time change on one point will in
uence the time on
the other point, and many iterations may be needed to bring
them up to consistency. Such iterations are very expensive,
since each time the circuit between the two points must be
re-computed. Fortunately, approximation can be used to
reduce the number of iterations. This also shows anoth-
er bene�t of using coupling edges as feedbacks. It works
as follows. When updating the time on point a which is
now in
uenced by time on point b, we simply assume that b
has an in�nite window; then later, when updating time on
point b, we will use the actual window on point a. Doing
this, we can guarantee to get a post �xpoint as our solution.

6. REFERENCES
[1] R. Arunachalam, K. Rajagopal, and L. T. Pilleggi.

Taco: Timing analysis with coupling. In Proc. of the
Design Automation Conf., pages 266{269, Los
Angeles, CA, June 2000.

[2] Semiconductor Industry Association. National
technology roadmap for semiconductors, 1997.

[3] P. Chen, D. A. Kirkpatrick, and K. Keutzer. Miller
factor for gate-level coupling delay calculation. In
Proc. Intl. Conf. on Computer-Aided Design, San
Jose, CA, November 2000.

[4] P. Chen, D. A. Kirkpatrick, and K. Keutzer.
Switching window computation for static timing
analysis in presence of crosstalk noise. In Proc. Intl.
Conf. on Computer-Aided Design, San Jose, CA,
November 2000.

[5] P. Cousot and R. Cousot. Abstract interpretation: A
uni�ed lattice model for static analysis of programs by
construction or approximation of �xpoints. In ACM
Symposium on Principles of Programming Languages,
pages 238{252, Los Angeles, CA, January 1977.

[6] F. Dartu and L. T. Pileggi. Calculating worst-case
gate delays due to dominant capacitance coupling. In
Proc. of the Design Automation Conf., pages 46{51,
Anaheim, CA, June 1997.

[7] B. A. Davey and H. A. Priestley. Introduction to
Lattices and Order. Cambridge, 1990.

[8] M. R. Garey and D. S. Johnson. Computers and
Intractability. W. H. Freeman and Co., 1979.

[9] G. H. Golub and C. F. van Loan. Matrix
Computations. Johns Hopkins, 3rd edition, 1996.

[10] P. D. Gross, R. Arunachalam, K. Rajagopal, and L. T.
Pileggi. Determination of worst-case aggressor
alighment for delay calculation. In Proc. Intl. Conf. on
Computer-Aided Design, pages 212{219, San Jose,
CA, November 1998.

[11] E. Lelarasmee, A. E. Ruehli, and A. L.
Sangiovanni-Vincentelli. The waveform relaxation
method for time-domain analysis of large scale
integrated circuites and systems. IEEE Transactions
on Computer Aided Design, July 1982.

[12] S. S. Sapatnekar. A timing model incorporating the
e�ect of crosstalk on delay and its application to
optimal channel routing. IEEE Transactions on
Computer Aided Design, 2000.

[13] Y. Sasaki and G. De Micheli. Crosstalk delay analysis
using relative window method. In ASIC/SoC
Conference, 1999.

[14] Y. Sasaki and K. Yano. Multi-aggressor relative
window method for timing analysis including crosstalk
delay degradation. In Custom Integrated Circuit
Conference, pages 495{498, 2000.

[15] P. F. Tehrani, S. W. Chyou, and U. Ekambaram. Deep
sub-micron static timing analysis in presence of
crosstalk. In International Symposium on Quality
Electronic Design, pages 505{512, 2000.

	Main
	DAC01
	Front Matter
	Table of Contents
	Session Index
	Author Index

