Fast Bit-True Simulation

Holger Keding, Martin Coors, Olaf Luthje, Heinrich Meyr
Integrated Signal Processing Systems
Aachen University of Technology
Aachen, Germany

{keding,coors,luethje,meyr}@iss.rwth-aachen.de

ABSTRACT

This paper presents a design environment which enables fast
simulation of fixed-point signal processing algorithms. In
contrast to existing approaches which use C/C++ libraries
for the emulation of generic fixed-point data types, this novel
approach additionally permits a code transformation to in-
tegral data types for fast simulation of the bit-true behavior.
A speedup by a factor of 20 to 400 can be achieved compared
to library based simulation.

1. INTRODUCTION

Algorithm design for digital signal processing systems typ-
ically starts in the floating-point domain to abstract from all
implementation effects. On the other hand most implemen-
tations use fixed-point arithmetic due to the distinct advan-
tage of fixed-point systems in terms of power consumption,
chip size, and price per device.

Prior to the actual system implementation, a transfor-
mation from the floating-point to a fixed-point system is
necessary, i.e an exploration of the fixed-point design space.
Due to the non-linear nature of the quantization process, an
exploration of the fixed-point design space with respect to
quantization noise, performance, and operand word lengths
can not be done without extensive system simulation. Thus
slow fixed-point simulation would be a major bottleneck in
the design flow.

The simulation of fixed-point systems is frequently done
on a PC or a workstation utilizing a C/C++-based system-
level design environment. For efficient modeling of finite
word length effects language extensions implementing generic
fixed-point data types are necessary. ANSI-C does not offer
such data types and hence fixed-point modeling using pure
ANSI-C becomes a very tedious and error prone task.

The language extensions implemented as libraries in C++
[1, 2, 3] offer a high modeling efficiency. They supply generic
fixed-point data types and various casting modes for over-
flow and quantization handling. The simulation speed of
these libraries on the other hand is rather poor.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on serversor to redistribute to lists, requires prior specific
permission and/or afee.

DAC 2001, June 18-22, 2001, Las Vegas, Nevada, USA

Copyright 2001 ACM 1-58113-297-2/01/0006 ...$5.00.

Most C-based fixed-point libraries like the ETSI basic
arithmetic operations [4] offer a set of two or three fixed-
point data types and some data path' elements like they
are frequently encountered on programmable DSPs. While
this lack of flexibility restricts the applicability to a limited
number of implementation platforms, the simulation speed
is acceptable compared with the C++ based libraries. Still,
there is a considerable overhead compared to an equivalent
floating-point implementation.

Existing C4+-based simulation libraries model the fixed-
point operands as objects. In order to offer generic fixed-
point data types without word length restrictions, data con-
tainer types are used as an internal representation. Bit-true
operations are performed by operator overloading. Range
checking, the choice of cast modes and many other decisions
necessary for correct bit-true behavior are done at simula-
tion time. The price for this flexibility and ease of modeling
is slow execution speed as the generic fixed-point data types
modeled by extensive C++ constructs cannot be efficiently
mapped to the architecture of the host machine by today’s
C++ compilers.

A simulation speedup can be achieved by mapping the
fixed-point operands to the mantissa of the floating-point
hardware of the host machine and bit level manipulations
to maintain bit-true behavior. This restricts the maximum
word length of the fixed-point operands to the word length
of the mantissa. This approach has been described in by
Kim [5] and it is also implemented in the SystemC library [3].

Another means of speeding up fixed-point simulations is
the use of a hardware accelerator, e.g. an FPGA to perform
computationally expensive operations. The acceleration can
either be achieved by utilizing configurable logic or by com-
bining configurable logic with a processor. This approach
has been described by DeCoster [6]. The mapping of the al-
gorithm to the different hardware units and the data trans-
fer between the units make additional transformation steps
necessary

The work described in this paper proposes a mapping of
fixed-point algorithm in SystemC to an integer based ANSI
C algorithm that directly addresses the built-in integer ALU
of the host machine. An efficient mapping includes an em-
bedding of all fixed-point operands into the host machine
registers, a cast mode optimization and many other aspects,
and require a detailed control and data flow analysis of
the algorithm. Independently from the authors’ work De-
Coster [6] proposed a similar method, using DFL [7] as input

'A data path denotes the arithmetic units of a device, e.g.
adders, multipliers, shifters.

language and targeting directly a Motorola DSP65000.

Our work presented here represents a continuation of the
research results published by Keding et al. [8] and Willems [9]
and introduces improved concepts for the mapping process,
that result in a considerable simulation acceleration.

The paper is organized as follows: section 2 will briefly in-
troduce the FRIDGE fixed-point design environment which
forms the basis for the fast simulation techniques. In the
main section 3 the transformation process is presented. In
section 4 comparative benchmarking data for various signal
processing kernel functions is provided. Section 5 concludes
the paper.

2. FRIDGE DESIGN ENVIRONMENT

The work presented in this paper is based on the Fixed-
Point PRogrammIng and Design Environment (FRIDGE)
which supports the designer in the floating-point to fixed-
point transformation process. FRIDGE is based on data
flow analysis and information propagation which has been
described in previous publications[10, 8]. The goal is to
transform a signal processing algorithm into an entirely bit-
true representation. The transformation is based on analyt-
ical range propagation of fixed-point operands and on sim-
ulation results. Fig. 1 highlights the design flow. Starting
point is a floating-point

local P
annotation -
floating- . . q
Boint —— hybrid |——| simulation [~
)

ANSI-C ystemC

global —— interpolation
annotation

simulation [

SystemC

Figure 1: Fixed-Point system design flow with

FRIDGE

description of the algorithm in ANSI-C. First the designer
adds so called local annotations to the algorithm, specifying
the fixed-point format for inputs and key operands. The
local annotations are specified using the fixed-point data
types of SystemC. The result is a hybrid description, i.e.
parts are specified in fixed-point whereas the majority of
the operands still remains floating-point. In a first step the
FRIDGE front end parses in the hybrid description into a
C++-based intermediate representation (IR). Then range
propagation is performed to determine the bit-true format
for all the operands. During this process, control- and data
flow analysis is also carried out. The information gained
is stored in the IR. The advanced algorithms used for the
analysis have been described by Liithje [11].

After this process the IR holds a bit-true description of
the algorithm with additional control- and data flow infor-
mation. These data structures form the basis for additional
transformation steps performed in the FRIDGE back ends
that target different languages and platforms. The SystemC
back end transfers the IR into a fully quantized algorithm

using the SystemC fixed-point data types This is beneficial
for algorithm exploration since the desiger can easily reiew
the results of the quantization. The methodology described
here is also incorporated in the CoCentric Fixed-Point De-
signer tool [12].

For fast bit-true simulation, additional transformation steps
are necessary. For the fast simulation back end we assume
that fixed-point attributes are assigned to every operation.
The back end also requires the information collected during
the control- and data flow analysis stored in the TR. After
a number of IR refinements, an ANSI-C representation of
the algorithm using only integral data types can be derived
from the IR. It is important to note that the transformation
in the back end, in contrast to the float-to-fixed transfor-
mation in the IR, does not change the behavior of the algo-
rithm. The fully quantized algorithm coded in SystemC and
the integer-only ANSI-C algorithm yield bit-by-bit identical
results, making the fast simulation back end output ideally
suited for fast bit-true simulation on a workstation or PC.

3. TRANSFORMATION TO ANSI C

3.1 LBPAlignment
A fixed-point operand is specified by a triple (wl,iwl,sign)
where wl is the word length of the operand, iwl the integer
word length and sign the sign encodingused. For the embed-
ding of this fixed-point operand into a register of the host
machine with the machine word length mw! the minimum
requirement is .
mwl > wl = iwl + fwl (1)
Fig. 2 illustrates different options for embedding an operand
with a word length of 5 bit into a given machine word length
muwl of 8. Obviously for mwl > wl a degree of freedom for
choosing the location of binary point lbp exists:

mwl — 1wl > lbp > wl — 1wl = fwl (2)
+> mwl : machine word length
- Iw o wl : word length
W 5> iwl :integer word length

: fractional word length

fwl
Ibp :location of binary point

s : sign encodin
ibp [¢] [¢]

IIJTITN ST ST S T

Figure 2: Embedding a 5-bit word into an 8-bit reg-
ister

Besides this degree of freedom there are also a number of
limitations for the selection of the Ibp:

e Interface constraints: for interface elements, e.g.
function parameters or global variables the lbp must
be defined identically for a function and all calls to
this function. Otherwise the data written to or read
from these data elements will be misinterpreted.

o Operation constraints: each operation has an lbp
syntax. This lbp syntax may include constraints on
the Ibp of the operand(s) of the operation and/or rules
for the calculation of the lbp of the result. E.g. the
operands and the result of and addition must have the
same [bp.

¢ Control and data flow constraints: generally a
read access to a storage element must use the same lbp
as the preceding write access to the storage element.
This implies that if a write operation to a memory lo-
cation occurs in alternative control-flow branches, the
lbp must be at the same position in both write op-
erations, as no run time information about the lbp is
available in a following read operation. The same ap-
plies to ambiguous write operations to arrays and write
operations via pointers.

3.1.1 TheLBP Alignment Algorithm

The lbp alignment algorithm implemented in the fast sim-
ulation back end is designed to take advantage of the degree
of freedom described by equation 2, while meeting the con-
straints specified above. For meeting these constraints and
maintaining the consistency of the lbps one requires precise
information about the control and data flow of the algo-
rithm. To obtain this information we used the data flow
analysis method described by Liithje [11]. The data flow in-
formation is represented basically as define-use (du) chains
and use-define (ud) chains [13, 14], but with additional and
more accurate information about ambiguous control flow.

Initially for all operands Ibp=fwlis chosen. Thus all operands

are right aligned. In a first step we set the lbps of all interface
elements according to the interface constraints.

Then, in an iterative process, the data flow information
is used to adjust the lbps by insertion of shift operations
to meet the operation constraints and the control- and data
flow constraints. The algorithm terminates when all condi-
tions are fulfilled and the lbps did not change during the last
iteration.

The operation constraint lbp alignment algorithm basi-
cally consists of an iteration over all operations and an ad-
justment of the operand and result lbps according to the
operation’s lbp syntaz.

The control- and data flow constraint /bp alignment algo-
rithm searches for all read accesses from a data element the
associated previous write accesses to the same data element.
Using ud-chains this boils down to finding all defines for a
use of a data element. According to the control and data
flow constraints the lbp of operands linked by such ud-chains
are set to the same value.

Finally, the embedding of constants can be done in a way
that the required shift operations when using the constant
are minimized.

Unlike described by Kum et al [15] we do not use a shift
operation minimizing approach here. But using the degree
of freedom in choosing a suited lbp (eq. 2) and the accurate
data flow information we found that there is not sufficient
potential for this optimization to justify the effort. An upper
bound for a simulation speedup using shift minimization is
given in section 4.

3.2 Datatype Selection

The next step in the transformation process is the selec-
tion of suitable integral data types for fixed-point variables.
The internal bit-true specification of the algorithm features
arbitrary word lengths. With the SystemC back end this is
no problem, since the SystemC data types are generic and
may be of any bit length that is required. With the fast-
simulation back end on the other hand one only has the
limited pool of the built-in data types of the host machine,

i.e. integral data types like char, short, int, long.

3.2.1 Basic congtraintsfor any data element

A matching data type for every fixed-point variable has
to be chosen. The minimum requirement for the data type
chosen is that it can be embedded into the host machine
data type with word length mwl at the correct location (see
Fig. 2 for illustration):

1wl + lbp < mwl (3)

3.2.2 Sructural constraints

Additionally the requirements introduced by data struc-
tures that force each of their elements to be of the same
data type have to be met An example for this behavior are
arrays. The target data type for the N elements of an array
must fulfill the following condition:

MAXY T (iwlarray[i] 4 bparray[i]) < mwl (4)
3.2.3 Semantical constraints

Another constraint becomes important if aliasing of data
elements, e.g. by pointers occurs: a pointer may point to
different data elements. For syntax and semantics reasons
all aliased data elements and the base type of the pointer
must be identical [16]. This only causes a problem if data
types are changed like it is done in fixed-point optimizations
or the floating-point to fixed-point transformation process
described in section 2: initially most numerical data types
are floating-point types but after the transformation there
are various different fixed-point data formats. Hence special
care must be taken during the code generation process that
the types are consistent.

Definition 1. All data elements that may be aliased by a
pointer and all pointers that may alias these data elements
form an alias DAG 2. The data elements form the leaves
of the DAG while the pointers form the non-leaf nodes of
the DAG. If there is one pointer that can be an alias for
every data element this pointer represents the root node of

an alias TREFE.

The following code is an example for such an alias DAG:

float *p,*q,al3],b[7]1,c[10];

if (condition) {p = a; q = b}
else {p=b; q=c}

*p = *q = 1.75;

The pointer p is an alias for the elements of the arrays a and
b while the pointer q is an alias for the arrays b and c. The
resulting DAG is depicted in Fig. 3.

Figure 3: Alias DAG: p and q are aliases for the
arrays a, b, and ¢

The correct data type for the elements of an alias DAG is
then selected by a recursive maximum-data-type search over

2A DAG is a directed acyclic graph

the nodes of the DAG: First we pick an arbitrary node and
we supply the size of the smallest data type available on the
host machine to this node. The node marks itself as visited
and determines the maximum of the supplied data type size
and its own data type size. Then it supplies the result to
all neighboring nodes that are not visited yet. This way the
entire DAG is traversed and one receives the correct data
type.

Alternatively one could imagine an algorithm for pointer
splitting or de-aliasing, i.e. to modify the code and to intro-
duce additional pointers so one ends up with pointers that
do not point to multiple data elements any longer. Never-
theless in the field of DSP oriented algorithms we have not
seen any significant improvements with this technique.

3.2.4 Multiple-Precision Arithmetic

SystemC features data types of arbitrary bit width - which
is rather uncommon for the registers of a processor. Most
general purpose processors contain 32-bit or 64-bit integer
units. We denote the largest C-addressable word as fullword
with a bit width of length mwl,,q5. So, of course, the ques-
tion arises what happens if we need to transform a SystemC
algorithm containing operands with lbp+i1wl > mwlnaz into
ANSI C.

There are a couple of multiple precision arithmetic li-
braries available that represent a viable solution to this prob-
lem - one of the best best suited we encountered is the GNU
multiple precision arithmetic library (GMP) [17]. On the
other hand even the fastest of those libraries are also de-
signed for ease of use and hence maintain generic types and
functions, which also comes with a certain run-time penalty.

Our primary goal on the other hand is to optimize for
speed, i.e. to skip any generic element in the generated
code if it slows down the simulation. Hence we analyze at
code-generation-time what precision and which fixed-point
operations are needed and produce the code only containing
the very necessary elements. For multiple precision we use
a container based multiple-precision arithmetic, where one
operand is stored in two or more fullwords and with accord-
ingly modified operations. A good description of the princi-
ples of multi precision arithmetic is provided by Knuth [18].

3.3 Cast Mode Transformation

Cast operations can reduce or limit the wordlength on the
MSB side of a word (overflow handling) or at the LSB side
of a word (quantization handling). They are used either to
prevent indeterministic behavior of fixed-point systems ° or
to model a data path that is different from the host machine.
This is often the case when algorithms for DSP systems
are developed. Fixed-point libraries like in SystemC offer
various generic overflow and quantization handling modes
which make them an efficient means of modeling fixed-point
systems. For fast fixed-point simulation on the other hand
the use of these generic casting modes are simply ruled out
for performance reasons.

3.3.1 Overflow Handling

Overflow handling is required if it is necessary to reduce
the wl at the MSB side of the word or if the carry bit is
set for the MSB. Examples for frequently used overflow han-

?In many cases the ANSI-C standard [16] does not specify
the bit-true behavior of integral data types in case of over-
flow, quantization, etc.

dling modes in digital signal processing algorithms are wrap-
around and saturation [19].

Saturation: In SystemC a cast of an expression expr
to a wkbit two’s complement (fc) data type with integer
word length twl applying saturation as overflow mode can
be modeled as follows:

result = sc_fix(expr,wl,iwl,...,SC_SAT);

The fast simulation code generation on the other hand trans-
lates this into plain C code that first tests if the range of data
type is exceeded, and if so it sets the resulting value to the
minimum or maximum of this type, which is:

AlAleﬂ'wlylbpytc — 2iwl+lbp—1 _ 2lbl—fwl (5)
MINuintiopie = _giwlHibp=1 | olbl—ful _q ©6)
with wl = iwl+ fwl (7)

Thus the fast simulation code construct generated is *

int tmp;
result = ((tmp=expr)>MAX)7MAX: (tmp<MIN) ?MIN:tmp;

Introducing an additional temporary variable avoids multi-
ple evaluations of expression.

Wrap-Around: The SystemC way of casting an expres-
sion ezpr to a whbit two’s complement (fc) data type with
integer word length ‘w! applying wrap-around as overflow
mode is shown here:

result = sc_fix(expr,wl,iwl,...,SC_WRAP);

For the bit-true ANSI-C equivalent of this operation several
options exist. An example for a code construct for wrap
around assuming two’s complement arithmetic and a ma-
chine wordlength of mwl is:

result = (expr << SHIFT) >> SHIFT;

The amount of shifts computes to SHIFT = mwl—1wl—Ipb.
The shift left eliminates the MSBs whereas the arithmetic
shift right provides a sign extension for the new MSB.

3.3.2 Quantization Handling

If the word length of an operand is reduced at the LLSB side
one can apply different quantization handling modes. The
most frequently encountered are rounding and truncation.

Rounding: In SystemC the method for casting an ex-
pression ezpr to a whkbit two’s complement data type with
integer word length iw! applying rounding as quantization
mode is:

result = sc_fix(expr,wl,iwl,SC_RND,...);

Rounding is defined by adding DELT'A = LSB/2 to the
operand and eliminating the LLSBs, e.g. by shifting it right
SHIFT bits. With

DELTA
SHIFT

2lbp—fwl—1 (8)
lbp — fwl (9)

Thus the rounding operation can be realized in the fast sim-
ulation code by:

result = ((expr + DELTA)>>SHIFT)<<SHIFT;

*Note that for the code generation we also take the bit-true
properties of the processor and compiler into account

Truncation: The truncation operation, given in Sys-
temC by

result = sc_fix(expr,wl,iwl,SC_TRN,...);
can be implemented efficiently by a bit mask operation:
result = expr & ("MASK);

Where MASK is given by 2/P?=/wi=1

For several combinations of cast modes, e.g. wrap-around
combined with rounding or truncation, efficient joint fast
simulation C-code constructs are generated. The shift oper-
ations introduced by the cast code constructs are also uti-
lized to adjust the lbp of the expression, eliminating the need
for additional scaling shifts.

4. EXPERIMENTAL RESULTS
The code generated by the FRIDGE fast simulation back

end has been benchmarked against the fixed-point simula-
tion classes which are part of the System(C language. The
Systermn Cimplementation of the generic fixed-point data types
is based on C++. The simulation classes offer two simula-
tion modes: a mode supporting unlimited fixed-point word
lengths based on concatenated data containers and a mode
supporting limited precision up to 53 bits based on float-
arithmetic and bit manipulations.

The benchmarks have been performed on a SUN Ultra
10 workstation running SOLARIS using the GCC compiler
version 2.95.2 with the -03 option. The SysternC library
version 1.0 was utilized for the bit-true simulations. The
benchmark is based on typical signal processing kernels:

¢ FIR 17-tap FIR filter

¢ DCT 8x8 JPEG DCT algorithm

e Autocorr 25 elements 5th order autocorrelation
e IIR 3rd order IIR filter

¢ FFT complex FFT of length 8

o Matrix 4x4 matrix multiplication

Four different versions of the kernel functions have been
benchmarked:

¢ Floating-Point The execution speed of the floating-
point implementation of the algorithms serve as refer-
ence for the benchmarks

o SystemC The quantized bit-true version of the al-
gorithms utilizing the SystemC fixed-point data types.
The algorithms have been quantized using the FRIDGE
design environment.

e SystemC limited precision The quantized bit-true
code has been compiled with the limited precision op-
tion to speed up SystemnC fixed-point operations.

e Fast Simulation Code The fast fixed-point simula-
tion code based on integral data types has been gener-
ated by the FRIDGE back end applying the transfor-
mation techniques described in the previous sections.
The code yields bit-by-bit the same results as the code
utilizing the SystemC data types.

The experimental results are presented in Table 1. As
the floating-point code has been used as a reference, the
experimental data has been scaled relative to the execution
speed of the floating-point code. The bit-true SystemC code
consumes by a factor of 325...1103 more runtime than the
original floating-point code, making bit-true simulation a
major bottleneck in the fixed-point design flow. By utilizing
the limited precision mode of the SystemC library, a speedup
by a factor of 3.1...5.2 can be achieved, but the fixed-point
code is still by a factor of 67...234 slower than the floating-
point reference.

The speedup gained by running the fast simulation code
generated by the FRIDGE fast simulation back end com-
pared to the SystemC code is illustrated in Figure 4. The
fast simulation code runs by a factor of 18.8...90.9 faster
compared to the SystemC fixed-point code utilizing the lim-
ited precisionoption. For the unlimited precision the speedup
is 91.0...454.2 respectively.

Compared to the floating-point reference code, the fast
simulation code is by a factor of 2.5...6.9 slower. This is due
to the host system’s architecture and additional shift and
bit mask operations necessary to perform Ilbp-alignment and
cast operations to maintain bit-by-bit consistency with the
quantized code.

The quantized DCT algorithm contains many sc_fiz oper-
ations to reduce fixed-point word lengths introduced by the
quantization process. As these operations can be modeled
efficiently by bit mask operations in the fast simulation code,
the highest speedup was achieved for this kernel function.

Floating- SystemC Fast
Point SystemC| Limited | Simulation

ANSI-C Precision Code
FIR 1.0 386.5 102.7 2.8
DCT 1.0 1103.1 233.9 2.5
Autocorr 1.0 694.6 130.6 6.9
IIR 1.0 371.0 120.2 3.1
FFT 1.0 354.7 67.7 2.6
Matrix 1.0 325.9 71.2 3.6

Table 1: Relative Execution Speed

Speedup by Fast Simulation Code

Matrix

c FFT
S

g IR

I

75' Autocorr

@

x DCT 14542

F'R&‘:Im.z ‘ ‘ ‘

0 100 200 300 400 500
Speedup Factor: Fast Simulation Code / SystemC Code

‘DSystemC W SystemC Limited Precision ‘

Figure 4: Speedup by Fast Simulation Code

For an estimate of the upper bound of speedup achiev-
able by shift and cast optimization, we have benchmarked
different derivate of the fast simulation code:

As laid out Willems [9], it is possible to model the Ilbp
alignment by an ILP (Integer Linear Programming) prob-
lem. A commercial ILP solver package can be used to find

optimal solutions for the embedding of the operands uti-
lizing a minimum number of shift operations to align lbps
. Unfortunately solving ILP problems requires exponential
effort with growing problem size which yields very long run
times for the solver package. An upper bound on the effi-
ciency of shift optimization is given by a solution requiring
no scaling shifts at all. In order to get quantitative data for
this upper bound we have removed all scaling shifts from the
fast simulation code for the benchmarking kernels. (Which
then of course yields incorrect numerical results)

Similar considerations apply for the number of cast op-
erations in the fixed-point code. An upper bound for the
efficiency of cast minimization is given by the performance
of a fixed-point code which contains no cast operations at
all. Thus we have benchmarked fast simulation code for the
kernels which had all scaling shifts and all cast operations
removed.

The experimental results are presented in Table 2. 1t is
noteworthy that on the SUN Ultra 10 workstation utilized
for the benchmarks the integer-only fast simulation code
containing no scaling shifts and no casts runs by a factor of
1.39...2.76 slower than the original floating-point reference
code. For the algorithms benchmarked, the potential of shift
optimization is limited to 3%...13% . Similarly the potential
of cast minimization is limited to 15%...35%

Fast Fast
Floating- Fast . . Simulation
. . . Simulation

Point Simulation Code Code

ANSI-C Code . no shift

no shift

no cast
FIR 1.0 2.79 2.71 2.45
DCT 1.0 2.46 2.15 1.39
IIR 1.0 3.13 3.09 2.76
FFT 1.0 2.61 2.58 2.21

Table 2: Integer Code Performance
5. CONCLUSIONS

In this paper we have presented a novel approach to ac-
celerate bit-true simulation by directly mapping fixed-point
operands to the built-in integral data types of the host ma-
chine. The concept and the necessary code transformation
steps have been presented. As a proof of concept we have
implemented the algorithms described in a software tool and
we have benchmarked the generated ANSI-C code against
the floating-point reference code and the SystemC fixed-
point simulation classes. A speedup by a factor of 20 to 400
compared to the SystemC code while maintaining bit-by-bit
equivalence was achieved. The fast simulation code gener-
ation benefits directly from the advanced control- and data
flow analysis performed in the FRIDGE design environment
during the interpolative transformation.

Future research work will focus on the generation of opti-
mized C-code for dedicated fixed-point DSPs exploiting the
architecture and the features of the target hardware and of

the DSP C-compiler.

6. REFERENCES
[1] S. Kim, K. Kum, and W. Sung, “Fixed-Point
Optimization Utility for C and C++ Based Digital
Signal Processing Programs,” in Workshop on VLSI
and Signal Processing ’95, (Osaka), pp. 197-206, Nov.
1995.

[2] Frontier Design Inc., 9000 Crow Canyon Rd., Danville,
CA 94506, USA, A|RT Library User’s and Reference
Documentation, 1998.

[3] Synopsys, Inc., CoWare, Inc., Frontier Design Inc.,
SystemC User’s Guide, Version 1.0, 2000.

[4] Recommendation GSM 06.10, GSM Full Rate Speech
Transcoding. ETSI/TC SMG, 1992.

[5] S. Kim, K. Kum, and W. Sung, “Fixed-Point
Optimization Utility for C and C++ Based Digital
Signal Process ing Programs,” [EEE Transactions on
Circuits and Systems 11, Nov. 1998.

[6] Luc De Coster, Bit-True Simulation of Digital Signal
Processing Applications. PhD) thesis, KU Leuven,
1999.

[7] Mentor Graphics, DSP Architect, DFL User’s and
Reference Manual, 1994.

[8] H. Keding, M. Willems, M. Coors, and H. Meyr,
“FRIDGE: A Fixed-Point Design and Simulation
Environment,” in Proceedings of the Furopean
Conference on Design, Automation and Test (DATE),
(Paris), pp. 429-435, Feb. 1998.

[9] M. Willems, A Methodology for the Efficient Design of
Fized-Point Systems. PhD thesis, Aachen University
of Technology, 1998. in German.

[10] M. Willems, V. Biirsgens, H. Keding, I'. Grétker, and
H. Meyr, “System Level Fixed-Point Design Based on
an Interpolative Approach,” in Proceedings of the
Design Automation Conference (DAC), (Anaheim),
pp. 293-298, Jun. 1997.

[11] O. Liithje, H. Keding, and M. Coors, “High
Performance Code Analysis by Abstract Execution,”
in DSP Germany 2000 Proceedings, Munich, Oct.
2000. in German.

[12] Synopsys, Inc., 700 E. Middlefield Rd., Mountain
View, CA 94043, USA, CoCentric Fized-Point
Designer - User’s Manual.

[13] M. J. Wolfe, High Performance Compilers for Parallel
Computing. Redwood City, CA: Addison-Wesley
Publishing, 1996.

[14] A. Aho, R. Sethi, and J. Ullman, Compilers,
Principles, Techniques and Tools. Addison-Wesley,
1986.

[15] K. Kum, J. Kang, and W. Sung, “A Floating-Point to
Integer C Converter with Shift Reduction for
Fixed-Point Digital Signal Processors,” in Proceedings
of the IEFE International Conference on Acoustics,
Speech and Signal Processing (1ICASSP),
pp. 2163-2166, 1999.

[16] B. W. Kernighan and D. M. Ritchie, The C
Programming Language (second edition). Prentice
Hall, 1988.

[17] Granlund, T., The GNU Multiple Precision Arithmetic
Library. Free Software Foundation, Boston, MA, USA,
3.1 ed.

[18] D. Knuth, The Art of Computer Programming,
Seminumerical Algorithms, vol. 2. Addison-Weseley,
second ed., 1984.

[19] S. K. Mitra, Digital Signal Processing: A
Computer-Based Approach. New-York: McGraw-Hill,
1998.

	Main
	DAC01
	Front Matter
	Table of Contents
	Session Index
	Author Index

