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ABSTRACT
In order to meet the high throughput requirements of appli-
cations exhibiting high ILP, VLIW ASIPs may increasingly
include large numbers of functional units(FUs). Unfortu-
nately, `switching' data through register �les shared by large
numbers of FUs quickly becomes a dominant cost/ perfor-
mance factor suggesting that clustering smaller number of
FUs around local register �les may be bene�cial even if data
transfers are required among clusters. With such machines
in mind, we propose a compiler transformation, predicated
switching, which enables aggressive speculation while lever-
aging the penalties associated with inter-cluster communica-
tion to achieve gains in performance. Based on representa-
tive benchmarks, we demonstrate that this novel technique
is particularly suitable for application speci�c clustered ma-
chines aimed at supporting high ILP as compared to state-
of-the-art approaches.

1. INTRODUCTION
Real-time multimedia, graphics, visualization and com-

munications applications often have high throughput require-
ments but fortunately may also exhibit high degrees of in-
struction level parallelism (ILP). In order to meet the perfor-
mance requirements of these demanding applications it is of
essence to use compilation techniques that expose/increase
ILP and develop complementary specialized processor ar-
chitectures that can e�ciently support such ILP, e.g., Very
Large Instruction Word (VLIW) Application Speci�c In-
struction Processors (ASIPs) [12]. E�ciency might mean
high throughput, reduced code size in the case of embed-
ded applications, reduced energy consumption for portable
devices, or simply relate to architectures that spend their
silicon area wisely, so as to decrease power dissipation and
cost. In this paper we focus on processors specialized to meet
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the throughput requirements of computationally intensive
applications.
Since the time-critical loops of such applications often in-

clude conditional constructs/branches, predication combined
with compiler-directed speculation is an e�ective approach
to achieve increased ILP [3]. Predication allows one to con-
currently schedule alternative paths of execution, with only
the paths corresponding to the realized ow of control ac-
tually being allowed to modify the state of the processor.
However, on its own, this technique may not lead to sig-
ni�cant performance gains [3]. Speculation via predicate
promotion enables one to execute operations on alternative
control paths, prior to knowing which branches are to be
taken, and later commit correct values. Performance gains
are more signi�cant when these two techniques are combined
[3].
In order to maximize throughput, compiler transforma-

tions should be used to extract signi�cant amounts of ILP.
In turn, to take advantage of such ILP, datapaths with a
large number of processing resources, e.g., VLIW proces-
sors, are required. A basic VLIW datapath might be based
on a single register �le shared by all of its functional units
(FUs). In this case, the central register �le provides inter-
nal storage/switching of data among FUs, while a typically
slower interconnect provides access to/from the memory sys-
tem. Unfortunately, this simple organization does not scale
well when a large number of FUs are required. Indeed, when
N FUs are connected to a register �le, the area of the reg-
ister �le, delay and power dissipation can grow by up to
N3 [8]. In short, as the number of FUs increases, internal
storage and communication quickly become a dominant, if
not prohibitive, cost factor. This poor scaling can be over-
come by restricting the connectivity between FUs and regis-
ters, so that each FU can only read/write from/to a limited
subset of registers [8]. In particular clustered VLIW proces-
sors can reap these bene�ts by including multiple clusters of
FUs connected to local storage (the cluster's register �le).
Although the move from a centralized to a distributed reg-
ister �le organization can achieve signi�cant delay, power
and area savings, there is a potential downside. Indeed,
one may have to transfer/copy data among register �les
(i.e., datapath clusters), possibly resulting in increased la-
tency, i.e., requiring additional scheduling steps. From the
point of view of throughput, the tradeo�s are as follows. A
datapath including several small (in number of FUs) clus-
ters could operate at a higher clock rate, but might incur
higher latency penalties due to additional switching oper-
ations among clusters. Of course, the potential downside



associated with switching costs on clustered machines may
not adversely impact throughput, since higher clock rates
may permit faster execution.
The central and novel idea in this paper is predicated

switching and its application in the context of clustered
VLIW machines. As will be seen, predicated switching is
analogous to standard predication in that it converts a pro-
gram's control ow into data ow. However, in contrast
to standard predication, in predicated switching the ow of
control is realized through predicated switching operations
whereby predicated moves select which among a set of re-
sults/values from alternative execution paths to place at a
prespeci�ed destination, correctly modifying the processor
state. We formalize this conversion by proposing a compiler
transformation to generate predicated switched code. The
proposed transformation has the potential to e�ciently ex-
ploit the hierarchical storage/switching resources in a clus-
tered datapath. In particular, it enables aggressive specu-
lative execution, while leveraging the penalties associated
with transferring data across clusters to realize the code's
ow of control.
In summary with increased ILP we expect to need (1)

datapaths with large numbers of functional units, and (2)
large register �les to hold the associated increased number
of live variables. Both of these suggest the need to par-
tition register space across clustered functional units, i.e.,
include hierarchies of storage/switching resources, and the
need for compiler techniques that are suitable for such dat-
apaths { this is the focus of this paper. In Section 2, we
briey discuss standard predication and speculation tech-
niques. In Sections 3 and 4 we present predicated switching,
by introducing a novel compiler transformation, SSA-PS,
that generates predicated switched code, and discussing its
suitability in the context of clustered machines. In Section
5 we contrast our work with recent work on both predica-
tion and speculation for VLIW EPIC machines. In Section
6 we include experimental results validating the advantages
of predicated switching on clustered machines. Conclusions
are presented in Section 7.

2. BACKGROUND ON STANDARD PREDI-
CATION

Predication is an ILP enhancing technique that exposes
the hardware resources to multiple execution paths. Specif-
ically, the basis for standard predication, if-conversion [5],
transforms conditional branches into (1) operations that de-
�ne predicates, and (2) guarded operations corresponding to
alternative control paths. A guarded operation has a pred-
icate associated with it, and is committed only if the pred-
icate is true. In this sense, if-conversion is said to convert
control dependences into data dependences (on predicate
values), generating what is called a hyperblock [3]. Figure
1.a shows a sample code segment including a conditional
statement, to be discussed below. The basic blocks associ-
ated with this code segment have been labeled A-D and the
associated control ow graph is shown in Figure 1.b. Fig-
ure 1.d presents the scheduled standard predicated code for
our example.1 Throughout this paper, we shall assume that
all operations take one cycle, except for reads from memory
which take two cycles. Predicated operations are indicated

1Note that a compiler breaks a complex expression such as
final = x+ y � 2 using temporary variables such as t4.

by appending < p > to represent the associated guards.
Flexible predicate assignment types are used in this code,
including the ut and uf , unconditional true and false types.
For e.g., in Figure 1, p1

�
ut = (cond > 5) sets p1 to true if

(cond > 5) and false otherwise, while p2
�
uf does the oppo-

site. (See [3] for details on more types of predicate de�ne
operations.) Note that once the predicate p1 (and its com-
plement p2) are computed, they can serve as guards for the
operations in basic blocks B and C. More complex ow of
control can similarly be replaced by a sequence of predicated
code.
Predicate promotion refers to speculation performed by

changing a micro-instruction's predicate to a predicate whose
expression subsumes that of the original predicate [3]. Specif-
ically, if a predicated operation does not modify the pro-
cessor state (i.e., does not change a value of a program
variable), then it can be moved up to the point where its
operand(s) are uniquely de�ned. In this case the predicate of
the operation becomes that of the region where its operands
are de�ned. When the new predicate di�ers from the orig-
inal it is said to have been promoted, and the operation is
speculatively executed. Predicate promotion is thus a form
of compiler-directed speculation.
Note that, for the example in Figure 1, no predicate pro-

motion was performed on the operations in Blocks B and
C. Indeed the operations in each block directly modify the
program variables x and y, or compute the variable final

based on x and y, and thus must be executed after their def-
inition. Accordingly, the resulting code has no speculated
operations { see Figure 1.d. In practice, however, opportu-
nities for speculation (predicate promotion) occur quite fre-
quently (e.g., in the Mediabench benchmark). In fact, this
form of speculation has been shown to be e�ective, while
avoiding the code explosion problems associated with other
compiler-directed speculation techniques, see e.g., [10, 13,
15]. Space precludes us from discussing generic criteria used
in selecting the code segments to be predicated. For details
we refer the reader to [3]. In the sequel we will refer to if-
conversion based predication and speculation techniques as
standard predication.

3. PREDICATED SWITCHING TRANSFOR-
MATION – SSA-PS

The proposed Static Single Assignment - Predicated Switch-

ing (SSA-PS) transformation is based on the well known
SSA conversion, see e.g., [7]. We begin by briey reviewing
SSA using the code segment shown in Figure 1.a.

3.1 SSA transformation
The de�ning characteristic of a program in SSA form is

that each variable is the target of exactly one assignment
statement. Transforming a program into SSA form keeps the
same ow of control but includes: (1) functions to reconcile
multiple assignments that reach a join point in the control
ow; and (2) variable renaming to ensure that the single
assignment property is satis�ed.
Thus, the SSA transformation involves two steps: identi-

fying the placement of the � functions in the code and re-
naming variables appropriately. This is a relatively straight-
forward process. For example, consider the variable final in
our sample code. Assignments to final are made in Blocks
B and C, thus a � function is inserted at the join point
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cond = a[i] + b[i];
if (cond > 5 )
{
      x = x+1;
      y = y << 3;
      final = x + y * 2;
}
else 
{
      x = x + 10;
      final = x + y *3;
}
f[i] = final;

cond = a[i] + b[i];
if (cond > 5 )
{
      x2 = x1+1;
      y2 = y1 << 3;
      final1 = x2 + y2 * 2;
}
else 
{
      x3 = x1 + 10;
      final2 = x3 + y1 * 3;
}
final3 =    (final1,final2)
f[i] = final3;

(d)      Schedule for standard predicated code − latency 
       of 8 clock cycles.

      Schedule for switched predicated code − latency
       of 6 clock cycles.(c)     Pruned SSA  form.

(a)         Idealized code segment.

(b)     Control flow graph.

(e)

1.  t1=a[i] ;  t2= b[i];
2.
3.  cond = t1+t2;
4.  p1_ut,p2_uf = (cond>5) ;
5.  x=x+1 <p1>;  y = y << 3 <p1>;  x=x+10 <p2>;  t4=y*3 <p2>;
6.  t3=y*2 <p1>;  final=x+t4 <p2>;
7.  final=x+t3 <p1>;
8.  f[i]=final

1.  t1=a[i] ;  t2=b[i]; x2=x1+1;  y2=y1<<3;  x3=x1+10;  t4=y1*3; 
2.  t3=y2*2;  final2=x3+t4; 
3.  cond = t1+t2;  final1=x2+t3;
4.  p1_ut,p2_uf = (cond>5) ;
5.  mv final1 final3 <p1>; mv final2 final3 <p2>;
6.  f[i]=final3;

Figure 1: Sample code segment(a), its control ow
graph(b), its pruned SSA form(c), standard pred-
icated code schedule(d) and switched predicated
code schedule(e).

prior to Block D.2 The renaming process involves giving
distinct names to each assignment made to a variable, in-
cluding those made by the � functions. We denote renamed
versions of a variable, say final, by final1; final2; etc: For
the example at hand, final is renamed final1 in Block B,
final2 in Block C and final3 = �(final1; final2) for the
� function at the join point. If the variable final were not
subsequently used, i.e., written to memory, then ensuring
a unique assignment from the point of view of subsequent
basic blocks is unnecessary. Thus, as shown in Figure 1.c,
the � functions associated with the variables x and y can
be pruned { such code is said to be in the pruned SSA form
[4]. The role of the � functions is to realize conditional as-
signments, depending on which control path is followed to
the renamed variable. From a compilation point of view,
the SSA form eliminates \false data dependences" by intro-
ducing additional variable names. Indeed, for our example,
operations in basic Blocks B and C can now be speculated,
and scheduled concurrently, as long as the � function is re-
alized thereafter, to guarantee that a correct assignment is
eventually made to final3:

3.2 SSA-PS transformation
The idea underlying the SSA-PS transformation is to real-

ize the conditional assignments corresponding to � functions
via predicated switching operations, in particular predicated
move operations. Figure 1.e shows how this would be done
for our example { the � function resulting from converting
our sample code into its pruned SSA form, i.e., final3 =
�(final1; final2) is realized through two conditional moves
mv final1 final3 < p1 > and mv final2 final3 < p2 > :

Alternatively, a more `e�cient' realization can be obtained

2E�cient algorithms for determining a minimal number of
locations for � functions are discussed in [7].

by optimizing the variable renaming process, but violating
SSA's requirements. For example, the register associated
with final3 could be the same as that of final1. In this
case, upon exiting the conditional branch we would have
final1 = �(final1; final2) which can be realized by a sin-
gle predicated movemv final2 final1 < p2 >. This reduces
both the number of moves and variables in the code. A sim-
ple post-processing step can be carried out to perform this
optimization.
For our example, predicated switched code takes 6 steps

to complete (Figure 1.e) while standard predication takes 8
steps (Figure 1.d), i.e., a 25% improvement in performance.
The proposed conversion to predicated switched code not
only transforms control ow into data ow but, through
variable renaming, enables additional speculative execution,
which, in this case, leads to a performance advantage.
Predicated switching code execution on clustered machines

requires an instruction set supporting three types of predi-
cated moves: internal, external, and logical moves. A pred-
icated internal move operation, speci�ed by mvI src dst <

p > copies the value in the source register src into the des-
tination register dst, if the predicate p is TRUE. Both regis-
ter locations belong to the same local register �le associated
with a given cluster. External moves, mvE src dst < p >,
have the same functionality except that the registers src

and dst belong to register �les on di�erent clusters. In addi-
tion, in some cases it can be advantageous to support logi-
cal moves (mvL), whereby a value res computed by a given
operation is conditionally placed in a second location dst

(on the same register �le) depending on a predicate p, e.g.,
op o1 o2 res,mvL res dst < p >. In such cases, we can real-
ize the same functionality by collapsing both operations into
a predicated operation op o1 o2 dst < p >. (Note however
that such a logical move can only be inserted on the same
step as the operation op if the predicate p is available prior
to execution.) For a concrete example see the operations in
bold in Figures 2.e, 2.f and 2.g.
We shall briey present the main steps of an algorithm

that generates SSA-PS code. We focus on how predicated
move operations are inserted to realize the � functions re-
sulting from the pruned SSA transformation. The code seg-
ment in Figure 2.a is used to illustrate the process.

Step 1 Obtain the pruned SSA form for the code. Generate
the required predicate de�ne operations and generic
predicated moves realizing � functions, see Figure 2.b.

Step 2 Remove the program's ow of control and insert
the predicate de�ne and predicatedmv operations, see
Figure 2.c.

Step 3 Using data dependence analysis, generate a DAG
for the code's operations, see Figure 2.d.

Step 4 Bind operations to clusters and annotate the DAG
with the cluster IDs. Transform generic moves to ei-
ther internal or external, as appropriate. Perform an
ASAP (as soon as possible) scheduling of the DAG to
determine which internal moves might be realized as
logical moves, see Figure 2.e.

Step 5 Transform all mvI operations whose predicates are
de�ned (or available) prior to the completion of the
operation de�ning the value (to be moved) into logical



(a) Original code.

a = v[i] * 3;
if (a  > 0 )
     a = a + 255; 
else 
     a = a − 255;
m = d[i] * a;
if ( flag > 0)
     m++;
else
     m−−;
b  = m*7;

(b)  Step 1.

a0=v[i]*3;
p1ut,p2uf=(a0>0);
a1=a0+255
a2=a0−255
mv a1 a3 <p1>;  mv a2 a3 <p2>;
m0=a3*d[i];
p3ut,p4uf=(flag>0);
m1=m0+1;
m2=m0−1;
mv m1 m3 <p3>; mv m2 m3 <p4>;
b0 = m3*7;

(c)  Step 2.

a1 = a0+255 a2 = a0−255

m0=d[i]*a3

m1=m0+1 m2=m0−1

b0=m3*7

a0=v[i]*3

p1ut,p2uf=(a0>0)

mv a1 a3 <p1> mv a2 a3 <p2>

     
p3ut,p4uf=(flag>0)

mv m1 m3 <p3> mv m2 m3 <p4>

a0=v[i]*3

a1 = a0+255

m0=d[i]*a3

m1=m0+1

b0=m3*7

a0>0

flag>0

T F

FT
     

a3 =    (a1,a2)φ

φ

p1ut,p2uf=(a0>0)

mv a1 a3 <p1>
mv a2 a3 <p2>

p3ut,p4uf=(flag>0)

mv m1 m3 <p3>
mv m2 m3 <p4>m3=   (m1,m2)

a2 = a0−255

m2=m0−1

a1 = a0+255 a2 = a0−255

m0=d[i]*a3

m1=m0+1 m2=m0−1

b0=m3*7

p1ut,p2uf=(a0>0)
CL1 CL1CL1

CL2

a0=v[i]*3
     

p3ut,p4uf=(flag>0)CL1 CL2

CL2CL2

CL2

mvE a1 a3 <p1> mvE a2 a3 <p2>

mvI m1 m3 <p3> mvI m2 m3 <p4>

1

2

3

4

5

6

7

8

(f)  Step 5:  Insertion of logical moves.

(e)  Step 4: Binding and ASAP scheduling
(d)  Step 3: Generate DAG.

a1 = a0+255 a2 = a0−255

m0=d[i]*a3

m1=m0+1 m2=m0−1

b0=m3*7

p1ut,p2uf=(a0>0)
CL1 CL1CL1

CL2

a0=v[i]*3
     

p3ut,p4uf=(flag>0)CL1 CL2

CL2

CL2

CL2

mvE a1 a3 <p1> mvE a2 a3 <p2>

1

2

3

4

5

6

7

mvL m1 m3 <p3> mvL m2 m3 <p4>

a1 = a0+255 a2 = a0−255

m0=d[i]*a3

b0=m3*7

p1ut,p2uf=(a0>0)
CL1 CL1CL1

CL2

a0=v[i]*3
     

p3ut,p4uf=(flag>0)CL1 CL2

CL2

CL2 CL2

mvE a1 a3 <p1> mvE a2 a3 <p2>

1

2

3

4

5

6

7

 m3 = m0+1 <p3>  m3=m0−1 <p4>

logical 
  move (g)  Step 6: Resulting predicated switching code.

Figure 2: Algorithm to obtain SSA-PS code.

moves, mvL, and generate corresponding predicated
operations, see Figures 2.f and 2.g.

The resulting predicated switching code is shown in Figure
2.g.
The proposed SSA-PS transformation generates code with

predicated switching operations, while all other operations
are speculatively executed. Due to their high energy con-
sumption, speculating read/writes from/to memory may be
undesirable. When required, the compiler can perform a
simple pre-processing step to identify such operations, iso-
late them via partial replication of conditional constructs,
and then mark the selected conditionals to be preserved
during the SSA-PS transformation. Possible conditional
jumps (exiting a hyperblock) are treated similarly. Micro-
architectural support for predicated switching code is identi-
cal to that required by standard predicated code(for details
on the IMPACT EPIC architecture, see [3]).

4. PREDICATED SWITCHING AND CLUS-
TERED MACHINES

It can be shown that the initiation interval (throughput)
of loops implemented as predicated switching code can never
be worse than that of standard predicated and speculated
code on unbounded datapaths.

Fact 1. Consider a (clustered) datapath with unbounded

resources (FUs and register �les) such that predicate de�ne

and internal move operations both take the same amount

of time to execute, say 1 step. Suppose the standard and
switched predicated code for a hyperblock are generated such
that functionally equivalent operations (with possibly renamed
variables) are bound to the same clusters. Then the latency
for switched predicated code will never exceed that of stan-
dard predicated code combined with predicate promotion.

See [12] for a formal proof of Fact 1. The question re-
mains as to how frequently predicated switching is better,
and by how much.

Code for Cluster 1 Code for  Cluster 2.

Code for Cluster 1 Code for  Cluster 2.

Assigned to Cluster 2.Assigned to Cluster 1

ite
ra

tio
n

 i

ite
ra

tio
n

 i−
1

1.  t=v[i];
2. 
3.  a1=t*3;
4.  p1_ut,p2_uf=(a1>0); a2=a1+255; a3=a1−255;
5.  mvE a2 a0_(CL2) <p1> ;  mvE a3  a0_(CL2) <p2>;

1.  t=v[i];
2. 
3.  a=t*3;
4.  p1_ut,p2_uf=(a>0); 
5.  a=a+255 <p1> ; a=a−255 <p2>;
6.  mvE a a_(CL2);

 Standard predicated code − initiation interval  6 clock cycles.

 Switched predicated code − initiation interval  5 clock cycles.

 Retimed version of code with 2 pipe stages.

       Original code.(a)

(b)

(c)

(d)

a = 3* v[i] ;
if (a  > 0 )
     a = a + 255; 
else 
     a = a − 255;
m = a * d[i];
if ( m > 0)
     r[i]=m;
else
     r[i]=a;

m(i−1)=a(i−1)*d[i−1];
if (m(i−1) >0);
     r[i−1]=m(i−1);
else
     r[i−1]=a(i−1);

a(i)=v[i]*3;
if (a(i) >0);
     a(i)=a(i)+255;
else
     a(i)=a(i)−255;

1.  t=d[i−1];
2. 
3.  m0 = a0 *t;
4.  p1_ut,p2_uf=(m0>0); 
5.  r[i−1]=m0  <p1>; r[i−1]=a0 <p2>;
    

1.  t=d[i−1];
2. 
3.  m = a *t;
4.  p1_ut,p2_uf=(m>0); 
5.  r[i−1]=m  <p1>; r[i−1]=a <p2>;
6.  

Figure 3: Example switched and standard predi-
cated code on a clustered datapath.

As seen in the example in Figure 1, predicated switching
can lead to performance improvements over standard pred-
ication for centralized machines. It is however on clustered
VLIWmachines that SSA-PS proves to provide more aggres-
sive and consistent performance gains. Consider the illus-
trative code shown in Figure 3.a and the software pipelined
(retimed) version, with increased ILP, shown in Figure 3.b.
(The retiming function was selected to cut the initiation
interval by about a half.) Assuming each pipe stage is as-
signed to a di�erent cluster of the machine, Figures 3.c and
3.d show the resulting optimal schedules (and correspond-
ing initiation intervals) achieved by switching and standard
predicated code. The standard predicated code incurs a
20 % performance penalty when compared to predicated
switching code. Below we discuss why this is the case, and
why one might expect such gains to be consistent.
For this example, the predicated switched code speculates

the two conditional updates to the renamed variable a on
Step 4, and then moves the correct value to Cluster 2 on
Step 5, see Figure 3.c. The predicated external move op-
erations thus realize both the required � function and the
required data transfer from Cluster 1 to 2.3 By contrast, for
the standard predicated code shown in Figure 3.d, predicate
promotion cannot be applied to the conditional updates of
a alluded to above. Accordingly, the predicated updates of
a can only be scheduled after the predicates p1; p2 are de-
�ned. Moreover, after these are carried out, the external

3Note that in this example the write operations on Step 5
of Cluster 2 are not speculated in the predicated switching
code. This is done by using the pre-processing step alluded
to in Section 3.2.



move from Cluster 1 to 2 must be appended to the code,
which delays the schedule.
In summary the main advantage of switched over stan-

dard predicated code on clustered machines is the leveraging
of required data transfer (move) operations across clusters to
realize the ow of control (i.e., � functions). Thus we ar-
gue that SSA-PS is more `cluster friendly' than if-conversion.
The test cases considered in Section 6 demonstrate that such
opportunities occur frequently in real application's code, en-
abling predicated switching to achieve (usually quite signif-
icant) performance gains on clustered machines.

5. RELATED WORK
This paper proposes the SSA-PS transformation, an ag-

gressive form of compiler-directed speculation targeting clus-
tered machines. In Section 4, we argued that the SSA-
PS transformation is more cluster friendly (i.e., typically
achieves superior performance) than standard predication,
and pinpointed the rationale for this. Experimental evi-
dence in Section 6 supports these claims for a number of
time-critical loops extracted from multimedia benchmarks
[2]. Below we discuss other related work.
There has been some work on the use of conditional moves

to achieve performance enhancements, e.g. see [9, 14, 1].
The contribution most relevant to this paper is [9], where
the authors discuss support for predication on machines that
only support conditional moves. The code for machines that
only support conditional move operations is generated by
�rst performing if-conversion of the original code, and then
by substituting each predicated operation by a sequence of
micro-instructions with equivalent functionality. This trans-
formation is highly ine�cient, in that it may introduce large
chains of extra data dependences. Accordingly, signi�cant
performance degradation is reported with respect to stan-
dard predication [9].
More traditional compiler-directed speculation techniques,

such as [10, 13, 15, 11] can only reliably improve perfor-
mance when there is a signi�cant bias on execution paths,
and typically lead to code explosion.
In [6] the authors propose a predicated single static assign-

ment conversion to enable aggressive speculation on VLIW
machines. Unfortunately, the proposed transformation leads
to code explosion { a problem predication aimed to circum-
vent in the �rst place. In simple terms, they use the SSA
transformation for renaming variables, but rather than rec-
onciling alternative variable values (i.e., implementing the �
function) at join points, the transformation merely replicates
all the code that follows the join point. Speci�cally, replica-
tion occurs as many times as the number of distinct control
paths in the program reaching a particular join point. Then,
the transformation computes and associates predicates with
each replica, so as to determine which execution path would
be committed. It should be clear that such increases in code
size, along with added complexity of predicate de�ne oper-
ations, are highly undesirable. In contrast, the key aspects
of the proposed SSA-PS transformation is a careful realiza-
tion of � functions and the leveraging of external moves on
clustered machines.

6. EXPERIMENTAL RESULTS
In this section we provide experimental evidence that the

SSA-PS transformation can improve on the state-of-the-art

for clustered VLIW machines executing high-throughput ap-
plications. We will consider idealized machines with one,
two and three clusters, denoted C, 2CL, and 3CL respec-
tively, where C corresponds to a centralized machine. In
order to assess the maximum achievable performance, we
assume that an unlimited number of micro-instructions can
be issued at each clock cycle by each cluster. For schedul-
ing purposes, we assume that read operations take 2 cycles,
while arithmetic/logic and write, and move micro-operations
take 1 cycle. We denote machines supporting predicated
switching by PS and those supporting standard predication
by P. Thus, for example, a two cluster machine supporting
predicated switching is denoted by PS/2CL.
Table 1 summarizes our results for a number of time-

critical loops extracted from the Mediabench benchmarks
[2]. As shown in the table, various retiming functions were
applied to the sample code segments - in each case, the goal
was to reduce the initiation interval to a target percentage of
the original (non-pipelined/retimed) code. The predicated
switching and standard predicated code resulting from the
retimed versions of the original source code were then inde-
pendently optimized, so as to maximize performance (i.e.,
minimize initiation interval), and minimize data transfers
among clusters, while balancing the load among clusters.
For each experiment, we report the achieved initiation inter-
val, II, and MI, the maximum number of operations issued
by any cluster on any cycle of the corresponding schedule.
(Note that MI excludes predicate de�ne operations, since
those are performed by distinct FUs.) We also compute
the maximum number of live variables ML on any cluster
for the schedule. The table shows the absolute performance
achieved, and the relative performance/cost degradation in-
curred by standard predication/speculation versus predicate
switching executing the same code segment.
The experiments that were conducted are numbered and

grouped into sets labelled A, B and C. Experiment 1 in
Group A illustrates a case where standard predication re-
sults in a 6.6 % performance degradation as compared to
predicated switching, executing on the same centralized ma-
chine.
The experiments in Group B compare the performance of

standard predication with predicated switching, when exe-
cuting on the same clustered machine. We see a consistent
performance degradation, up to 33 %, with an average of
17.7 %. It is important to note that the code segments for
these cases correspond to retimed code exhibiting high ILP,
where it is expected clustered machines will be of interest.
The experiments in Group C show that, for most cases,

predicated switching achieves a performance boost by lever-
aging external moves. Speci�cally, the standard predicated
code in those experiments was executed on a centralized ma-
chine (thus eliminating the need for required external moves
on the critical path), or on a machine with fewer clusters,
again to avoid such moves. By avoiding external move op-
erations, in all cases standard predication was able achieve
the same initiation interval as predicated switching code ex-
ecuting on a clustered machine. However, as shown in the
table, the use of more `centralized' machines (by standard
predication) comes at a cost. Namely, there is an increase
(up to 80 % with an average of 59 %) in the maximum num-
ber of instructions issued by any given cluster on any given
scheduling step { this directly impacts the number of FUs
/ register �le ports required on the largest cluster. Simi-



Mediabench Benchmarks Retiming Function Machine Results Case

adpcm: none PS/C

P/C

IIPS = 15, IIP = 16

(IIP � IIPS)=IIPS =6.6%

1 (A)

Main inner loop body of adpcm-

decoder() (file: adpcm.c).

2 pipe stages PS/2CL

P/2CL

IIPS = 8, IIP = 9

(IIP � IIPS)=IIPS =12.5 %

2 (B)

PS/2CL

P/C

IIPS = 8, IIP = 8

(IIP � IIPS)=IIPS =0%

(MIP �MIPS)=MIPS =50%

(MLP �MLPS)=MLPS =22%

3 (C)

rasta: 2 pipe stages PS/2CL

P/2CL

IIPS = 4, IIP = 5

(IIP � IIPS)=IIPS =25%

4 (B)

Main inner loop body of eliminate() (file:

lqsolve.c).

PS/2CL

P/C

IIPS = 4, IIP = 4

(IIP � IIPS)=IIPS =0%

(MIP �MIPS)=MIPS =80%

(MLP �MLPS)=MLPS =16.6%

5 (C)

3 pipe stages PS/2CL

P/2CL

IIPS = 3, IIP = 4

(IIP � IIPS)=IIPS =33.3%

6 (B)

PS/2CL

P/C

IIPS = 3, IIP = 3

(IIP � IIPS)=IIPS =0%

(MIP �MIPS)=MIPS =57%

(MLP �MLPS)=MLPS =33.3%

7 (C)

mpeg2enc: 2 pipe stages PS/2CL

P/2CL

IIPS = 7, IIP = 7

(IIP � IIPS)=IIPS =0%

8 (B)

Main inner loop body of iquant1-intra()

(file: quantize.c).

3 pipe stages PS/3CL

P/3CL

IIPS = 5, IIP = 6

(IIP � IIPS)=IIPS =20%

9 (B)

PS/3CL

P/2CL

IIPS = 5, IIP = 5

(IIP � IIPS)=IIPS =0%

(MIP �MIPS)=MIPS =50%

(MLP �MLPS)=MLPS =66%

10 (C)

mpeg2enc: 3 pipe stages PS/3CL

P/3CL

IIPS = 6, IIP = 7

(IIP � IIPS)=IIPS =16.6%

11 (B)

Main inner loop body of iquant1-non-

intra() (file: quantize.c).

PS/2CL

P/2CL

IIPS = 6, IIP = 7

(IIP � IIPS)=IIPS =16.6%

12 (B)

Table 1: Experimental results.

larly, in all cases there is a signi�cant increase (up to 66 %,
with an average of 44 %) in the maximum number of live
variables on any given register �le, which directly impacts
register �le size requirements. As discussed in the intro-
duction, machines with smaller clusters are likely to sustain
a higher clock rate, thus although the initiation interval is
the same for the experiments in Group C, it is likely that
the performance of predicated switching code on a clustered
machine would be superior to that of standard predication
on a more centralized machine.
Finally note that, although the initiation interval is the

same for the predicated switching machines with 3 and 2
clusters in experiments 11 and 12, these cases are still in-
teresting, since the machine with 3 clusters might be able
to run at a faster clock rate due to its reduced issue width
requirements. Such trade-o�s should be carefully explored
when specializing a VLIW clustered machine (with support
for predicated switching) to speci�c target applications.

7. CONCLUSIONS
In this paper, we proposed a novel compiler transfor-

mation (SSA-PS) to generate predicated switching code.
We argued that, on clustered VLIW machines, predicated
switching execution compares favorably with state-of-the-
art predicated execution, since it enables aggressive specu-
lation while leveraging the penalties associated with inter-
cluster communication. Experimental results for multime-
dia benchmarks are presented, demonstrating that in prac-
tice such leveraging leads to signi�cant performance gains.
Given these encouraging preliminary results, we are are cur-
rently working on software pipelining and binding algorithms
suitable for clustered VLIWmachines with support for pred-
icated switching execution.
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