
On-chip Communication Architecture for  OC-768 Network Processors 
 

Faraydon Kar im, Anh Nguyen 
STMicroelectronics Inc.  

Central R&D 
San Diego, CA 92121 

{faraydon.karim, anh-q.nguyen}@st.com 
 

 
Suj it Dey, Ramesh Rao 

     University of California, San Diego 
   Department of Electrical Engineering 
               La Jolla, CA 92093 
     dey@ece.ucsd.edu, rrao@ucsd.edu 

Abstract 

The need for network processors capable of forwarding IP 
packets at OC-192 and higher data rates has been well 
established. At the same time, there is a growing need for 
complex tasks, like packet classification and differentiated 
services, to be performed by network processors. At OC-768 
data rate, a network processor has 9 nanoseconds to 
process a minimum-size IP packet. Such ultra high-speed 
processing, involving complex memory-intensive tasks, can 
only be achieved by multi-CPU distributed memory systems, 
using very high performance on-chip communication 
architectures. In this paper, we propose a novel 
communication network architecture for 8-CPU distributed-
memory systems that has the potential to deliver the 
throughput required in next generation routers. We then 
show that our communication architecture can easily scale 
to accommodate much greater number of network nodes. 
Our network architecture yields higher performance than 
the traditional bus and crossbar yet has low implementation 
cost. It is quite flexible and can be implemented in either 
packet or circuit switched mode. We will compare and 
contrast our proposed architecture with busses and 
crossbars using metrics such as throughput and physical 
layout cost. 

1. Introduction 
The next generation of Internet backbone routers must 

be designed to deliver ultra high performance over an 
optical infrastructure. This requirement is due to the growth 
of Internet traffic and increasing user expectation from 
service providers. At the current Internet traffic growth rate, 
it is expected that by 2003, OC-768 routers will be widely 
deployed.  At the same time, as Internet and Application 
Service Providers attempt to provide better quality, diverse, 
and differentiated services, it will no longer be enough for 
routers to perform the two fundamental tasks of routing and 
packet forwarding. 

The routing process collects information about the 
network topology and creates a forwarding table. The 
packet-forwarding process copies a packet from an input 
interface of the router to the proper output interface based 
on information contained in the forwarding table. In 
addition, it is expected that routers will be responsible for 
such tasks as packet classification that can distinguish 
packets and group them according to their different 
requirements, buffer management to determine the buffer 

allocation and admission control of packets, and packet 
scheduling to meet quality-of-service (QoS) contracts [1]. 

Traditionally, routers have been implemented using 
general-purpose RISC processors, or ASICs. While general-
purpose processor-based router architectures provide 
Internet Service Providers the flexibility to upgrade to new 
router tasks and services, they will not be able to satisfy the 
growing speed requirements for the new complex packet 
processing tasks like packet classification at OC-768 data 
rate. On the other hand, while ASIC based router 
implementations can provide for speed, they cannot provide 
for the required flexibility that is becoming important as 
router tasks and services expand. Hence, the need to develop 
high-speed network processors, with the dual and 
conflicting challenges of providing for programmability at 
OC-768 speed [2]. 

At OC-768 data rate (40Gbps), the arrival rate of IP 
packets could reach approximately 114 x 106 packets per sec 
(assuming 44 bytes per packet).  To ensure that the worst-
case time to process a packet does not violate the packet 
arrival rate, packet-processing time can be at most 
9ns/packet. It is expected that approximately 500 
instructions must be performed on each arriving packet to 
enable packet forwarding and classification on packet flows. 
Hence, an OC-768 network processor will require 57 GIPS 
processing power. Obviously, these requirements far exceed 
the capacity of any central CPU/memory architectures 
available today and in the expected time frame. 
Consequently, next-generation network processors will have 
to be based on multi-processor/distributed memory 
architectures.  

Now let us consider the on-chip communication 
requirements imposed by typical network processor 
applications. Consider the task of packet classification using 
the algorithm described in [3]. Using an estimate of 10K 
classification rules and 16-bit on-chip memory width, we 
need to perform 625 memory accesses per packet arrival or 
71.3 x 109 memory accesses per sec (in the worst-case). A 
shared bus of a symmetrically distributed network of 8 
nodes would need to be running at tens of GHz to support 
this requirement. Which is clearly not achievable. On the 
other hand, a crossbar could support this requirement at 
lower clock-speed but accompanied by a high 
implementation costs. Therefore, a cost-effective, scalable, 
and high-performance on-chip communication architecture 
is needed. 

Recent studies have shown the importance of the on-
chip communication architecture used in determining the 
performance of the overall System-on-Chip (SoC) [4][5][6]. 



In [6], performance of different on-chip communication 
architectures, with different topologies and protocols, has 
been analyzed under different classes of on-chip 
communication traffic. It has been shown that system 
performance can vary by as much as 2.5 times depending on 
the communication architecture used. For the same on-chip 
communication architecture used, performance can vary by 
up to 6 times depending upon the nature of the 
communication traffic. These results point to the criticality 
of choosing the right on-chip communication architecture 
for a system, depending on the communication traffic 
expected in the SoC. 

Techniques have been developed to design and 
synthesize on-chip communication to satisfy specific 
interface and communication needs of components in a 
system [7][8][9][10][11].  Recently, a reconfigurable on-
chip communication architecture has been proposed in [12], 
which allows adaptation of the communication protocols to 
the on-chip communication demand. A method has been 
proposed in [13] to optimally map a system's 
communication requirements to given template 
communication architectures. System performance 
improvements of up to an order of magnitude have been 
reported by on-chip communication reconfiguration and 
mapping techniques proposed.            

While there have been recent advances in the analysis 
and design of high-performance, configurable on-chip 
communication architectures, bus-based topologies and 
protocols are the most common forms of on-chip 
communication in current use in commercial SoCs 
[14][15][16][17][18], including efforts for bus interface 
standards VSIA [19]. While bus-based on-chip 
communication may be suitable for many applications, 
clearly it will not be able to satisfy an OC-768 network 
processor’s very demanding on-chip communication needs, 
as indicated above.  

An on-chip crossbar switch can be an alternative choice 
to satisfy the on-chip communication needs for an OC-768 
network processor. Theoretically, the performance 
(throughput/delay) of crossbars is high enough to permit the 
development of efficient network processing tasks [20]. In 
reality, its implementation cost is high; crossbars require 
many on-chip wires and relays to minimize clock-skew 
across the chip. In addition, crossbars do not scale well; as 
the number of nodes in the network increases, the 
implementation cost increases as O(n2). 

In this paper, we propose a novel on-chip 
communication strategy that has the potential to meet the 
performance requirements of next-generation optical 
routers. It is simpler to implement than a crossbar yet has 
much higher throughput than shared busses. Its complexity 
increases linearly as the number of network nodes.  A node 
can be a stand-alone entity such as processor or memory. 
Alternatively, it could consist of sub-components such as 
processors and memory units. We shall call the basic 
configuration of eight nodes and associated links Octagon. 

In section 2, we describe Octagon in more details. 
Included in the description is the routing protocol used to 
route packets/requests within the interconnection. We will 
also provide a rough physical layout comparison between 

Octagon and crossbar to highlight the higher cost 
associated with crossbar implementation. In section 3, we 
compare simulation results of a simple circuit switched 
version of Octagon with existing analytical performance 
results for a bus and a crossbar to justify our claim of 
higher performance. Section 4 deals with network 
scalability. Section 5 concludes the paper. 

2. Descr iption of Octagon Architecture &  Routing 
The basic unit of Octagon consists of eight nodes and 

twelve bi-directional links connected as shown in figure 1.  
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Figure 1. Basic Octagon configuration. 
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Figure 2. Basic Octagon configuration, alternate view. 

The Octagon architecture has the following desirable 
properties: 
a) Communication between any pair of nodes can be 

performed by at most two hops (to be shown in the 
Routing section) 

b) Higher aggregate throughput than a shared bus or 
crossbar interconnect 

c) Simple shortest-path routing algorithm. 
d) Less wiring compared to that of a crossbar interconnect 

An alternate view of Octagon is shown in figure 2. This 
view provides us with a second scaling option to 
accommodate a larger number of on-chip components. We 
will elaborate on this point in section 4. 

Octagon can be operated in the packet or circuit 
switched mode. Define an Octagon Data Unit (ODU) to be 
the actual data field that is transported from node to node 
within Octagon. An ODU could be fixed or variable 
length. In the packet switched mode, ODUs are buffered at 
intermediate nodes if there is contention at the egress link. 
In the circuit switched mode, the entire path between 
source and destination nodes is allocated to a 
communicating node pair for a number of clock cycles. 
Non-overlapping communication paths are allowed 
concurrently. In other words, spatial reuse is allowed. 



Under this mode, system performance is a function of the 
chosen connection schedule. The question then is, given 
the set of pending communication requests, how should the 
connections be scheduled such that throughput (or some 
other metrics) is optimized? In section 3, we describe and 
simulate a simple schedule called the greedy algorithm. 

We now consider how routing of ODUs can be 
implemented under the Octagon architecture. 
 
2.1 Octagon Routing 

Octagon node addresses can be coded into a three-bit 
field. Routing of ODU may be accomplished as follows. A 
three-bit tag is pre-pended to each ODU. Each node 
compares the tag (ODU_addr) to its own address 
(Node_addr) to determine the next action to take. Let the 
relative address of an ODU be computed according to the 
following equation. 

). (modulo 8 Node_addr ODU_addr Rel_addr −=   (1) 

At each node on the Octagon, routing of ODUs is a 
function of Rel_addr as follows. 

• Rel_addr = 0, process at node 
• Rel_addr = 1 or 2, route clockwise 
• Rel_addr = 6 or 7, route counter-clockwise 
• Route across otherwise. 
Consequently, there is a pre-determined simple routing 

scheme for each ODU in the network. This enables any two 
nodes on the network to be separated by at most two hops. 
We next elaborate on the claim that Octagon has a lower on-
chip implementation cost compared to a crossbar. 
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Figure 3. Octagon physical layout schematic. 
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Figure 4. Crossbar physical layout schematic 

 
2.2 Octagon Implementation Cost 

Figures 3 and 4 illustrate the physical layout and wiring 
costs of the Octagon and crossbar interconnect architectures. 
In our network processor, each Octagon node consists of a 
processor-memory pair with an estimated size of 2mm x 
2mm. Let us consider the minimum wire spacing to be 
0.2µm, and the width of a 32-bit link to be 12µm (including 
individual wire width, spacing and shielding). As shown in 

figure 3, the physical layout of the Octagon architecture 
consists of 12 horizontal and 12 vertical 32-bit tracks. Each 
horizontal track is upper-bounded by 8mm, the total width 
of the 4 nodes. Each vertical track is upper-bounded by 
0.156 µm (13 x 12µm).  

As shown in Figure 4, the crossbar needs 8 horizontal 
and 32 vertical 32-bit tracks. While the horizontal tracks are 
upper-bounded by 8mm similar to the Octagon, the vertical 
tracks are upper-bounded by 0.108µm (9 x 12µm).   

The above discussion shows that the Octagon has less 
wiring complexity than a crossbar. In the next section, we 
show that in addition to the reduced implementation cost, 
Octagon has significantly better performance than crossbar. 

3. Per formance Analysis of Bus, Crossbar  and 
Octagon Architectures 

In this section, we analyze the performance of the two 
existing on-chip communication architectures - bus and 
crossbar, and the new communication architecture 
proposed – the Octagon.  We show that Octagon 
performance is orders of magnitude better than a bus-based 
communication, as expected, but also significantly better 
than that of a crossbar.  

Let us denote requests that originate from node i and 
destined to node j as type ij. Requests of type ij arrive to the 
system following the Poisson process with parameter λij.  λij 
is considered to be the arrival rate of requests of type ij 
Service time is defined to be the time required by a 
destination node to complete all requested tasks if the 
request is processed in isolation. It   is exponentially 
distributed with parameter µij. 1/µij is the average service 
time per request. These assumptions can easily be extended 
to accommodate memoryless discrete-timed distribution 
such as Bernoulli arrivals and geometric or deterministic 
service time. We consider a symmetric system where λij = 
λ, ∀i,j and µij = µ, ∀i j. The utilization of requests type ij is 
denoted by ρij = λij/µij = λ/µ = ρ. Utilization is the average 
amount of service demand arriving within one time unit. 
The aggregated arrival rate is λtot = Σij λij. Total utilization 
ρtotal = λtot /µ. 
 
3.1 Per formance of Shared-Bus and Crossbar  

The shared bus is modeled as a single server queue with 
Poisson arrivals and exponential service time. Consider the 
aggregated request arrival process to the eight nodes. Since 
the individual arrival process is Poisson, the superposition is 
also Poisson [20]. In memory access applications, the 
service rate corresponds to the memory access speed. We 
ignore all propagation delays. Queued requests are served 
according to the FIFO discipline. The response time of an 
arriving request is defined to be the difference between the 
time of arrival and time of service completion by bus. Since 
the server is work-conserving [22], the expected response 
time, denoted by EWbus, for an arbitrary request arriving to 
the single-server queue is identical to that for a single-server 
multiple-queue system. The expected response time of a 
shared bus modeled by a single server queue is [23] 
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For crossbar throughput, we use the model as presented 
in [20]. In that paper, Chen and Stern showed that for a 
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In [20], various arbitration policies were studied to 
investigate their impact on switch performance. It was found 
that these arbitration policies do not affect the throughput 
results since maximum throughput is obtained based on the 
first moment of the service time. However, different 
arbitration policies do result in different response time. 

 
3.2 Per formance Analysis of Octagon 

We now investigate the performance of Octagon 
architecture by simulation, using a simple request-response 
traffic model. That is, a request is generated at a source node 
to be sent to a destination node. A connection eventually is 
established for the communication. For each connection, a 
request is sent and a response is received. The connection is 
then severed afterward.  

Without loss of generality, we associate with each node 
a processor and memory module as in figure 5. Applications 
of this traffic model can be found in routing table lookup, IP 
packet classification, etc., where requests for memory 
access is generated at each node. If the memory location 
requested is attached to the local node then no Octagon 
communication requests are generated. Otherwise, the 
request must be forwarded to the appropriate node via 
Octagon using the routing algorithm as presented in section 
2.1. At the destination node, the memory request consumes 
a number of clock cycles before a response is spawned, to 
be returned to the originating node.  
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Figure 5. High-level application model. 

We consider a connection oriented communication 
protocol. The connection scheduler follows a greedy 

algorithm. To elaborate, non-overlapping connections can 
be accommodated simultaneously. Each node maintains 
three queues of outstanding requests; one for each egress 
link. With respect to the overall network, priority is given to  
the requests at head-of-line in order of their arrival times 
(lower arrival time implies higher priority). At every service 
completion time, the scheduler checks to see if new 
connections can be made based on the previously described 
priority scheme. Connections are set up until no more can be 
accommodated without violating the non-overlapping rule. 
Note that we only consider head-of-line requests at each 
node. The scheduler is reactivated when a connection is torn 
down (to see if new connections can be set up). 

Figure 6 shows details of the model of each node. In 
addition to the request generator, processor, and memory, 
each node has three ingress and three egress ports labeled 
left (L), across (A), or right (R), consistent with its 
associated neighbor. Logically, the node emulates a simple 
4x4 non-blocking switch (plus processor and memory). The 
switch has neither input nor output buffering. The central 
scheduler performs switch arbitration. 
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Figure 6. Node model. 

 
3.3 Per formance Results 

Figure 7 shows the expected response time of the 
Octagon vs. bus and crossbar. We fix µ = 0.5 per clock 
cycle and vary λtot. The horizontal axis unit is ρtot = λtot/µ 
and the vertical axis unit is expected response time in clock. 
It can be seen that the Octagon has significantly higher 
maximum throughput than both the bus and crossbar. 
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Figure 7. Throughput comparison, Octagon vs. bus and crossbar. 

 



Let us briefly explain the performance results. The bus 
saturates at ρtot = 1 because a single server (the bus 
bandwidth) can provide at most one unit of service per unit 
of time. The crossbar can be modeled as a system of eight 
queues sharing eight servers (figure 8). Because of 
contention and head-of-line blocking, the eight available 
servers provide approximately four units of work per time 
unit [20]. Therefore, crossbar saturation occurs at ρtot ≈ 4. 
On the other hand, the Octagon architecture can be modeled 
as a system of 24 queues and 24 servers (three egress queues 
and three outgoing links per node, figure 9). It could be 
argued that analogous to the model for crossbar, the 
maximum throughput of the Octagon should be 
approximately 12. However, the difference is this: each 
request under Octagon may require two servers 
simultaneously. This reflects the fact that two adjacent links 
are locked when a connection for a two-hop request is made. 
Therefore, on average, each request in the latter consumes 
more resources than one in the former. Consequently, 
saturation for Octagon occurs at ρtot ≈ 8; still significantly 
higher than that for a crossbar. 
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Figure 8. Queueing model of 8x8 crossbar. 
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Figure 9. Queueing model of 8-node Octagon. 

4. Scalability  
Scalability is an important factor because of increasing 

performance demand from programmable network 
processors. Next generation network processors are 
expected to have 16 or more processors, and a large number 
of distributed memory components holding tables for IP 
lookup and classification. We believe that the need for 
interconnecting greater number of on-chip components in 
network processors and other system-on-chips will 
accelerate in the foreseeable future, hence the need for 
scalable on-chip communication architectures. 

One of the strengths of the Octagon architecture is its 
ability to scale linearly. Figure 10 shows an approach that 

requires two different node types: bridge and member 
nodes. As its name implies, bridge nodes connect adjacent 
Octagons and perform hierarchical routing of ODUs. As an 
example, consider a network consisting of eight 
interconnected Octagons. The Octagon address field of each 
ODU can be six bits wide; three high-order bits to identify 
the local Octagon and three low-order bits to identify the 
node. At each node, static routing can be performed on the 
entire field while at each member node, routing is 
performed based only on the low-order bits. Figure 10 also 
shows the cost as a function of increasing network size for 
Octagon and crossbar architectures. 
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Figure 10. Scaling strategy 1. 
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 The second approach to scalability takes advantage of 

the natural expansion of the Octagon architecture as shown 
in figure 2. Under this approach (figure 11), nodes are no 
longer identified as bridges and members. Instead, they 
should be called core and edge nodes. Core nodes are those 
with four bi-directional links and edge nodes have three. As 
shown in the table in figure 11, for certain number of nodes 
that need to be connected, the second scaling strategy offers 
the most compact architecture in terms of total number of 
links and physical layout area. 

5. Conclusion 
The motivation for this work comes from a need for high-
performance on-chip communication architectures to help 
deliver the processing capacity required by OC-768 routers 
and beyond. Traditional interconnect architectures such as 
shared bus and crossbars will have difficulties scaling to 
these data rates while maintaining reasonable costs. In this 
paper, we proposed a communication architecture which has 
many desirable properties such as minimal hop counts from 
one node to any other node on the network, simple static 
routing algorithm for network traffic, implementation 
complexity scales linearly with network nodes, and high 
performance. We compared the throughput of our 
architecture with those of shared bus and crossbar. Our 
analysis shows that our network significantly outperforms 
the shared bus and crossbar. 
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