
On-chip Communication Architecture for OC-768 Network Processors

Faraydon Kar im, Anh Nguyen
STMicroelectronics Inc.

Central R&D
San Diego, CA 92121

{faraydon.karim, anh-q.nguyen}@st.com

Suj it Dey, Ramesh Rao

 University of California, San Diego
 Department of Electrical Engineering
 La Jolla, CA 92093
 dey@ece.ucsd.edu, rrao@ucsd.edu

Abstract

The need for network processors capable of forwarding IP
packets at OC-192 and higher data rates has been well
established. At the same time, there is a growing need for
complex tasks, like packet classification and differentiated
services, to be performed by network processors. At OC-768
data rate, a network processor has 9 nanoseconds to
process a minimum-size IP packet. Such ultra high-speed
processing, involving complex memory-intensive tasks, can
only be achieved by multi-CPU distributed memory systems,
using very high performance on-chip communication
architectures. In this paper, we propose a novel
communication network architecture for 8-CPU distributed-
memory systems that has the potential to deliver the
throughput required in next generation routers. We then
show that our communication architecture can easily scale
to accommodate much greater number of network nodes.
Our network architecture yields higher performance than
the traditional bus and crossbar yet has low implementation
cost. It is quite flexible and can be implemented in either
packet or circuit switched mode. We will compare and
contrast our proposed architecture with busses and
crossbars using metrics such as throughput and physical
layout cost.

1. Introduction
The next generation of Internet backbone routers must

be designed to deliver ultra high performance over an
optical infrastructure. This requirement is due to the growth
of Internet traffic and increasing user expectation from
service providers. At the current Internet traffic growth rate,
it is expected that by 2003, OC-768 routers will be widely
deployed. At the same time, as Internet and Application
Service Providers attempt to provide better quality, diverse,
and differentiated services, it will no longer be enough for
routers to perform the two fundamental tasks of routing and
packet forwarding.

The routing process collects information about the
network topology and creates a forwarding table. The
packet-forwarding process copies a packet from an input
interface of the router to the proper output interface based
on information contained in the forwarding table. In
addition, it is expected that routers will be responsible for
such tasks as packet classification that can distinguish
packets and group them according to their different
requirements, buffer management to determine the buffer

allocation and admission control of packets, and packet
scheduling to meet quality-of-service (QoS) contracts [1].

Traditionally, routers have been implemented using
general-purpose RISC processors, or ASICs. While general-
purpose processor-based router architectures provide
Internet Service Providers the flexibility to upgrade to new
router tasks and services, they will not be able to satisfy the
growing speed requirements for the new complex packet
processing tasks like packet classification at OC-768 data
rate. On the other hand, while ASIC based router
implementations can provide for speed, they cannot provide
for the required flexibility that is becoming important as
router tasks and services expand. Hence, the need to develop
high-speed network processors, with the dual and
conflicting challenges of providing for programmability at
OC-768 speed [2].

At OC-768 data rate (40Gbps), the arrival rate of IP
packets could reach approximately 114 x 106 packets per sec
(assuming 44 bytes per packet). To ensure that the worst-
case time to process a packet does not violate the packet
arrival rate, packet-processing time can be at most
9ns/packet. It is expected that approximately 500
instructions must be performed on each arriving packet to
enable packet forwarding and classification on packet flows.
Hence, an OC-768 network processor will require 57 GIPS
processing power. Obviously, these requirements far exceed
the capacity of any central CPU/memory architectures
available today and in the expected time frame.
Consequently, next-generation network processors will have
to be based on multi-processor/distributed memory
architectures.

Now let us consider the on-chip communication
requirements imposed by typical network processor
applications. Consider the task of packet classification using
the algorithm described in [3]. Using an estimate of 10K
classification rules and 16-bit on-chip memory width, we
need to perform 625 memory accesses per packet arrival or
71.3 x 109 memory accesses per sec (in the worst-case). A
shared bus of a symmetrically distributed network of 8
nodes would need to be running at tens of GHz to support
this requirement. Which is clearly not achievable. On the
other hand, a crossbar could support this requirement at
lower clock-speed but accompanied by a high
implementation costs. Therefore, a cost-effective, scalable,
and high-performance on-chip communication architecture
is needed.

Recent studies have shown the importance of the on-
chip communication architecture used in determining the
performance of the overall System-on-Chip (SoC) [4][5][6].

In [6], performance of different on-chip communication
architectures, with different topologies and protocols, has
been analyzed under different classes of on-chip
communication traffic. It has been shown that system
performance can vary by as much as 2.5 times depending on
the communication architecture used. For the same on-chip
communication architecture used, performance can vary by
up to 6 times depending upon the nature of the
communication traffic. These results point to the criticality
of choosing the right on-chip communication architecture
for a system, depending on the communication traffic
expected in the SoC.

Techniques have been developed to design and
synthesize on-chip communication to satisfy specific
interface and communication needs of components in a
system [7][8][9][10][11]. Recently, a reconfigurable on-
chip communication architecture has been proposed in [12],
which allows adaptation of the communication protocols to
the on-chip communication demand. A method has been
proposed in [13] to optimally map a system's
communication requirements to given template
communication architectures. System performance
improvements of up to an order of magnitude have been
reported by on-chip communication reconfiguration and
mapping techniques proposed.

While there have been recent advances in the analysis
and design of high-performance, configurable on-chip
communication architectures, bus-based topologies and
protocols are the most common forms of on-chip
communication in current use in commercial SoCs
[14][15][16][17][18], including efforts for bus interface
standards VSIA [19]. While bus-based on-chip
communication may be suitable for many applications,
clearly it will not be able to satisfy an OC-768 network
processor’s very demanding on-chip communication needs,
as indicated above.

An on-chip crossbar switch can be an alternative choice
to satisfy the on-chip communication needs for an OC-768
network processor. Theoretically, the performance
(throughput/delay) of crossbars is high enough to permit the
development of efficient network processing tasks [20]. In
reality, its implementation cost is high; crossbars require
many on-chip wires and relays to minimize clock-skew
across the chip. In addition, crossbars do not scale well; as
the number of nodes in the network increases, the
implementation cost increases as O(n2).

In this paper, we propose a novel on-chip
communication strategy that has the potential to meet the
performance requirements of next-generation optical
routers. It is simpler to implement than a crossbar yet has
much higher throughput than shared busses. Its complexity
increases linearly as the number of network nodes. A node
can be a stand-alone entity such as processor or memory.
Alternatively, it could consist of sub-components such as
processors and memory units. We shall call the basic
configuration of eight nodes and associated links Octagon.

In section 2, we describe Octagon in more details.
Included in the description is the routing protocol used to
route packets/requests within the interconnection. We will
also provide a rough physical layout comparison between

Octagon and crossbar to highlight the higher cost
associated with crossbar implementation. In section 3, we
compare simulation results of a simple circuit switched
version of Octagon with existing analytical performance
results for a bus and a crossbar to justify our claim of
higher performance. Section 4 deals with network
scalability. Section 5 concludes the paper.

2. Descr iption of Octagon Architecture & Routing
The basic unit of Octagon consists of eight nodes and

twelve bi-directional links connected as shown in figure 1.

7

6

5 3

2

1

4

0

Figure 1. Basic Octagon configuration.

0

7 4 1

2536

Figure 2. Basic Octagon configuration, alternate view.

The Octagon architecture has the following desirable
properties:
a) Communication between any pair of nodes can be

performed by at most two hops (to be shown in the
Routing section)

b) Higher aggregate throughput than a shared bus or
crossbar interconnect

c) Simple shortest-path routing algorithm.
d) Less wiring compared to that of a crossbar interconnect

An alternate view of Octagon is shown in figure 2. This
view provides us with a second scaling option to
accommodate a larger number of on-chip components. We
will elaborate on this point in section 4.

Octagon can be operated in the packet or circuit
switched mode. Define an Octagon Data Unit (ODU) to be
the actual data field that is transported from node to node
within Octagon. An ODU could be fixed or variable
length. In the packet switched mode, ODUs are buffered at
intermediate nodes if there is contention at the egress link.
In the circuit switched mode, the entire path between
source and destination nodes is allocated to a
communicating node pair for a number of clock cycles.
Non-overlapping communication paths are allowed
concurrently. In other words, spatial reuse is allowed.

Under this mode, system performance is a function of the
chosen connection schedule. The question then is, given
the set of pending communication requests, how should the
connections be scheduled such that throughput (or some
other metrics) is optimized? In section 3, we describe and
simulate a simple schedule called the greedy algorithm.

We now consider how routing of ODUs can be
implemented under the Octagon architecture.

2.1 Octagon Routing

Octagon node addresses can be coded into a three-bit
field. Routing of ODU may be accomplished as follows. A
three-bit tag is pre-pended to each ODU. Each node
compares the tag (ODU_addr) to its own address
(Node_addr) to determine the next action to take. Let the
relative address of an ODU be computed according to the
following equation.

). (modulo 8 Node_addr ODU_addr Rel_addr −= (1)

At each node on the Octagon, routing of ODUs is a
function of Rel_addr as follows.

• Rel_addr = 0, process at node
• Rel_addr = 1 or 2, route clockwise
• Rel_addr = 6 or 7, route counter-clockwise
• Route across otherwise.
Consequently, there is a pre-determined simple routing

scheme for each ODU in the network. This enables any two
nodes on the network to be separated by at most two hops.
We next elaborate on the claim that Octagon has a lower on-
chip implementation cost compared to a crossbar.

4

30

7

21

6 5

Figure 3. Octagon physical layout schematic.

10 2 3

67 5 4

Figure 4. Crossbar physical layout schematic

2.2 Octagon Implementation Cost

Figures 3 and 4 illustrate the physical layout and wiring
costs of the Octagon and crossbar interconnect architectures.
In our network processor, each Octagon node consists of a
processor-memory pair with an estimated size of 2mm x
2mm. Let us consider the minimum wire spacing to be
0.2µm, and the width of a 32-bit link to be 12µm (including
individual wire width, spacing and shielding). As shown in

figure 3, the physical layout of the Octagon architecture
consists of 12 horizontal and 12 vertical 32-bit tracks. Each
horizontal track is upper-bounded by 8mm, the total width
of the 4 nodes. Each vertical track is upper-bounded by
0.156 µm (13 x 12µm).

As shown in Figure 4, the crossbar needs 8 horizontal
and 32 vertical 32-bit tracks. While the horizontal tracks are
upper-bounded by 8mm similar to the Octagon, the vertical
tracks are upper-bounded by 0.108µm (9 x 12µm).

The above discussion shows that the Octagon has less
wiring complexity than a crossbar. In the next section, we
show that in addition to the reduced implementation cost,
Octagon has significantly better performance than crossbar.

3. Per formance Analysis of Bus, Crossbar and
Octagon Architectures

In this section, we analyze the performance of the two
existing on-chip communication architectures - bus and
crossbar, and the new communication architecture
proposed – the Octagon. We show that Octagon
performance is orders of magnitude better than a bus-based
communication, as expected, but also significantly better
than that of a crossbar.

Let us denote requests that originate from node i and
destined to node j as type ij. Requests of type ij arrive to the
system following the Poisson process with parameter λij. λij
is considered to be the arrival rate of requests of type ij
Service time is defined to be the time required by a
destination node to complete all requested tasks if the
request is processed in isolation. It is exponentially
distributed with parameter µij. 1/µij is the average service
time per request. These assumptions can easily be extended
to accommodate memoryless discrete-timed distribution
such as Bernoulli arrivals and geometric or deterministic
service time. We consider a symmetric system where λij =
λ, ∀i,j and µij = µ, ∀i j. The utilization of requests type ij is
denoted by ρij = λij/µij = λ/µ = ρ. Utilization is the average
amount of service demand arriving within one time unit.
The aggregated arrival rate is λtot = Σij λij. Total utilization
ρtotal = λtot /µ.

3.1 Per formance of Shared-Bus and Crossbar

The shared bus is modeled as a single server queue with
Poisson arrivals and exponential service time. Consider the
aggregated request arrival process to the eight nodes. Since
the individual arrival process is Poisson, the superposition is
also Poisson [20]. In memory access applications, the
service rate corresponds to the memory access speed. We
ignore all propagation delays. Queued requests are served
according to the FIFO discipline. The response time of an
arriving request is defined to be the difference between the
time of arrival and time of service completion by bus. Since
the server is work-conserving [22], the expected response
time, denoted by EWbus, for an arbitrary request arriving to
the single-server queue is identical to that for a single-server
multiple-queue system. The expected response time of a
shared bus modeled by a single server queue is [23]

)1(tottot

tot
busEW

ρλ
ρ
−

= . (2)

For crossbar throughput, we use the model as presented
in [20]. In that paper, Chen and Stern showed that for a
large switch (number of node N ~20) with speedup factor of
one, the response time EWxbar could be obtained from

)8(2

2

stot

stot
sxbar EW

WE
EWEW

λ
λ
−

+= , (3)

µλµ
λ 1

)8(

8
 where

2
+

−
= o

tot

tot
s pEW ,

8
1 and tot

op
ρ

−= .

In [20], various arbitration policies were studied to
investigate their impact on switch performance. It was found
that these arbitration policies do not affect the throughput
results since maximum throughput is obtained based on the
first moment of the service time. However, different
arbitration policies do result in different response time.

3.2 Per formance Analysis of Octagon

We now investigate the performance of Octagon
architecture by simulation, using a simple request-response
traffic model. That is, a request is generated at a source node
to be sent to a destination node. A connection eventually is
established for the communication. For each connection, a
request is sent and a response is received. The connection is
then severed afterward.

Without loss of generality, we associate with each node
a processor and memory module as in figure 5. Applications
of this traffic model can be found in routing table lookup, IP
packet classification, etc., where requests for memory
access is generated at each node. If the memory location
requested is attached to the local node then no Octagon
communication requests are generated. Otherwise, the
request must be forwarded to the appropriate node via
Octagon using the routing algorithm as presented in section
2.1. At the destination node, the memory request consumes
a number of clock cycles before a response is spawned, to
be returned to the originating node.

7

6

5 3

2

1

4

0 P1

M1

P0 M0

P2

M 2

P3

M3

P4 M4

P5

M 5

P6

M6

P7

M7

Figure 5. High-level application model.

We consider a connection oriented communication
protocol. The connection scheduler follows a greedy

algorithm. To elaborate, non-overlapping connections can
be accommodated simultaneously. Each node maintains
three queues of outstanding requests; one for each egress
link. With respect to the overall network, priority is given to
the requests at head-of-line in order of their arrival times
(lower arrival time implies higher priority). At every service
completion time, the scheduler checks to see if new
connections can be made based on the previously described
priority scheme. Connections are set up until no more can be
accommodated without violating the non-overlapping rule.
Note that we only consider head-of-line requests at each
node. The scheduler is reactivated when a connection is torn
down (to see if new connections can be set up).

Figure 6 shows details of the model of each node. In
addition to the request generator, processor, and memory,
each node has three ingress and three egress ports labeled
left (L), across (A), or right (R), consistent with its
associated neighbor. Logically, the node emulates a simple
4x4 non-blocking switch (plus processor and memory). The
switch has neither input nor output buffering. The central
scheduler performs switch arbitration.

Request

Generator

ProcessorMemory

Arbiter

L L

A

R

A

R

In
gr

es
s

E
gr

es
sNon-blocking

Sw itch

Scheduler

Figure 6. Node model.

3.3 Per formance Results

Figure 7 shows the expected response time of the
Octagon vs. bus and crossbar. We fix µ = 0.5 per clock
cycle and vary λtot. The horizontal axis unit is ρtot = λtot/µ
and the vertical axis unit is expected response time in clock.
It can be seen that the Octagon has significantly higher
maximum throughput than both the bus and crossbar.

0

5

10

15

20

25

30

35

40

45

0.1 1 1.9 2.8 3.7 4.6 5.5 6.4 7.3

EWbus

ρtot

R
es

po
n s

e
tim

e
(c

lo
ck

 c
yc

l e
s)

EWoct

EWxbar

Figure 7. Throughput comparison, Octagon vs. bus and crossbar.

Let us briefly explain the performance results. The bus
saturates at ρtot = 1 because a single server (the bus
bandwidth) can provide at most one unit of service per unit
of time. The crossbar can be modeled as a system of eight
queues sharing eight servers (figure 8). Because of
contention and head-of-line blocking, the eight available
servers provide approximately four units of work per time
unit [20]. Therefore, crossbar saturation occurs at ρtot ≈ 4.
On the other hand, the Octagon architecture can be modeled
as a system of 24 queues and 24 servers (three egress queues
and three outgoing links per node, figure 9). It could be
argued that analogous to the model for crossbar, the
maximum throughput of the Octagon should be
approximately 12. However, the difference is this: each
request under Octagon may require two servers
simultaneously. This reflects the fact that two adjacent links
are locked when a connection for a two-hop request is made.
Therefore, on average, each request in the latter consumes
more resources than one in the former. Consequently,
saturation for Octagon occurs at ρtot ≈ 8; still significantly
higher than that for a crossbar.

0

1

2

7

λtot/8

λtot/8

λtot/8

λtot/8

Figure 8. Queueing model of 8x8 crossbar.

0

1

2

23

λtot/24

λtot/24

λtot/24

λtot/24

Figure 9. Queueing model of 8-node Octagon.

4. Scalability
Scalability is an important factor because of increasing

performance demand from programmable network
processors. Next generation network processors are
expected to have 16 or more processors, and a large number
of distributed memory components holding tables for IP
lookup and classification. We believe that the need for
interconnecting greater number of on-chip components in
network processors and other system-on-chips will
accelerate in the foreseeable future, hence the need for
scalable on-chip communication architectures.

One of the strengths of the Octagon architecture is its
ability to scale linearly. Figure 10 shows an approach that

requires two different node types: bridge and member
nodes. As its name implies, bridge nodes connect adjacent
Octagons and perform hierarchical routing of ODUs. As an
example, consider a network consisting of eight
interconnected Octagons. The Octagon address field of each
ODU can be six bits wide; three high-order bits to identify
the local Octagon and three low-order bits to identify the
node. At each node, static routing can be performed on the
entire field while at each member node, routing is
performed based only on the low-order bits. Figure 10 also
shows the cost as a function of increasing network size for
Octagon and crossbar architectures.

Nodes

8

15

22 (shown)

Horizontal Links
#/max length(mm)

12/8

24/8

36/8

Nodes

8

15

22

O
ct

ag
on

C
ro

ss
ba

r

Vertical Links
#/max length(mm)

12/0.156

24/0.156

36/0.156

Horizontal Links
#/max length(mm)

8/8

15/16

22/11

Vertical Links
#/max length(mm)

32/0.108

120/0.192

242/0.276

Figure 10. Scaling strategy 1.

Nodes

8

19 (shown)

34

Links

12

31

58

Figure 11. Scaling strategy 2.

 The second approach to scalability takes advantage of

the natural expansion of the Octagon architecture as shown
in figure 2. Under this approach (figure 11), nodes are no
longer identified as bridges and members. Instead, they
should be called core and edge nodes. Core nodes are those
with four bi-directional links and edge nodes have three. As
shown in the table in figure 11, for certain number of nodes
that need to be connected, the second scaling strategy offers
the most compact architecture in terms of total number of
links and physical layout area.

5. Conclusion
The motivation for this work comes from a need for high-
performance on-chip communication architectures to help
deliver the processing capacity required by OC-768 routers
and beyond. Traditional interconnect architectures such as
shared bus and crossbars will have difficulties scaling to
these data rates while maintaining reasonable costs. In this
paper, we proposed a communication architecture which has
many desirable properties such as minimal hop counts from
one node to any other node on the network, simple static
routing algorithm for network traffic, implementation
complexity scales linearly with network nodes, and high
performance. We compared the throughput of our
architecture with those of shared bus and crossbar. Our
analysis shows that our network significantly outperforms
the shared bus and crossbar.

6. Acknowledgement:
We would like to thank Naresh Soni for his

encouragement and support, and Razak Hossain for his help
on physical layout and implementation issues.

7. References:
[1] Kumar, V.P.; Lakshman, T.V.; Stiliadis, D., “Beyond

best effort: router architectures for the differentiated
services of tomorrow's Internet,” IEEE
Communications Magazine, Volume: 36 Issue: 5 , May
1998, pp. 152 –164.

[2] F. Karim, “Network Processors: The New Frontier in
SoC Design and Validation,” Presentation, DATE
conference, 2000.

[3] Lakshman, T.V.; Stiliadis, D.; “High-Speed Policy-
based Packet Forwarding Using Efficient Multi-
dimensional Range Matching,” Proceedings of ACM
SIGCOMM, Sept. 1998, pp. 191-202.

[4] K.Lahiri, A.Raghunathan, S.Dey, "Fast performance
analysis of bus-based system-on-chip communication
architectures", in Proc. Intl Conf. on Computer Aided
Design, pp. 566-572, Nov. 1997.

[5] K.Lahiri, A.Raghunathan, S.Dey, "Performance
analysis of systems with multi-channel communication
architectures", in Proc. Int. Conf. VLSI Design, pp.
530-537, Jan. 2000.

[6] K.Lahiri, A.Raghunathan, S.Dey, "Evaluation of the
traffic performance characteristics of system-on-chip
communication architectures", in Proc. Int. Conf. VLSI
Design, pp. 29-35, Jan. 2001.

[7] T.Yen and W.Wolf, "Communication synthesis for
distributed embedded systems” , in Proc. Intl Conf. on
Computer Aided Design, pp. 288-294, Nov. 1995.

[8] J.Daveau, T.B.Ismail, A.A.Jerraya,"Synthesis of
system-level communication by an allocation based
approach", in Proc. Int. Symp. On System Level
Synthesis, pp. 150-155, Sept. 1995.

[9] J.A.Rowson and A.Sangiovanni-Vincentelli, "Interface
based design", in Proc. Design Automation Conf. pp.
178-183, Jun. 1997.

[10] R.B.Ortega and G.Borriello, "Communication
synthesis for distributed embedded systems", in Proc.
Intl Conf. on Computer Aided Design, pp. 437-444,
Nov. 1998.

[11] M.Gasteier and M.Glesner,"Bus-based communication
synthesis on system level", ACM Trans. Design
Automation Electronic Systems, pp. 1-11, Jan. 1999.

[12] K.Lahiri, A.Raghunathan, G.Lakhshminarayana,
S.Dey, "Communication Architecture Tuners: a
methodology for the design of high performance
communication architectures for system-on-chips", in
Proc. Design Automation Conf. pp. 513-518, Jun.
2000.

[13] K.Lahiri, A.Raghunathan, S.Dey, "Efficient
Exploration of the SoC Communication Architecture
Design Space", in Proc. Intl Conf. on Computer Aided
Design, pp. 424-430, Nov. 2000.

[14] "IBM On-chip CoreConnect Bus Architecture",
http://www.chips.ibm.com/products/coreconnect/index.
html

[15] "Peripheral Interconnect Bus Architecture",
http://www.omimo.be

[16] "Sonics Integration Architecture, Sonics Inc",
http://www.sonicsinc.com

[17] B. Cordan, "An efficient bus architecture for system-
on-a-chip design", Proc. Custom Integrated Circuits
Conf., pp. 623-626, 1999.

[18] D.Flynn, "AMBA: enabling reusable on-chip designs",
IEEE Micro, pp. 20-27, vol 7, no. 4, 1997.

[19] "On chip bus attributes specification 1 OCB 1 1.0, On-
chip bus DWG",
http://www.vsi.org/library/specs/summary.htm

[20] Chen, J. and Stern, T., “Throughput Analysis, Optimal
Buffer Allocation, and Traffic Imbalance Study of a
Generic Nonblocking Packet Switch, IEEE JSAC, Vol.
9, No. 3, 1991, pp. 439-449.

[21] Cinlar, E., Introduction to Stochastic Processes, pp.
87-88, Prentice Hall, 1975.

[22] Gross, D., and Harris, C., Fundamental of Queueing
Theory, pp. 297-300, John Wiley & Sons, 3rd Edition,
1998.

[23] Gross, D., and Harris, C., Fundamental of Queueing
Theory, pp. 61-68, John Wiley & Sons, 3rd Edition,
1998.

	Main
	DAC01
	Front Matter
	Table of Contents
	Session Index
	Author Index

