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Abstract 
In this paper, we describe the concept of using an on-chip network 
as the fundamental communication architecture for a complex 
SOC design. We describe some of the salient features of a 
MicroNetwork that we have implemented, and introduce an 
automated development environment that makes MicroNetwork-
based design productive. Finally, we show how one would use our 
MicroNetwork to integrate an SOC, and provide a general 
description of several completed MicroNetwork-based designs. 

1. INTRODUCTION 
Completing a design comprising several million logic gates is a 
mind-boggling task. The only feasible approach to such a design 
is to leverage the time-honored “divide and conquer” technique. 
In the world of System-on-Chip (SOC) design, a fundamental 
challenge is to structure the design process such that a team of 
engineers can execute the design in parallel. This challenge is 
magnified by both the lack of sufficient designers to complete a 
new design and the extreme market pressure to deliver a complex 
integrated circuit, together with software, in the time previously 
allocated to a printed circuit board-level system design. 

The only available approach for most market segments is to rely 
heavily on re-use of previously defined semiconductor intellectual 
property cores (IP cores). The goal is to allow a small design team 
to leverage the work of others. Unfortunately, the reality is that 
the design team typically spends too much time re-working and 
re-verifying the IP cores, and not enough time focusing on the 
value-added functionality of the SOC itself. When coupled with 
the lack of predictability inherent in conventional communications 
architectures, the result is chip designs that fail to meet the 
performance, power, and area goals – much less the budgetary and 
time requirements. 

In this paper, we introduce a new methodology for the design of 
complex SOCs that raises the level of abstraction available to the 
designer. This methodology leverages the capabilities of the 
MicroNetwork (an on-chip network) and a supporting 
development environment to enable true communications-based 

design. We start by presenting some of the related work in this 
field. We then describe the fundamental protocols and features of 
our MicroNetwork, and introduce the development environment 
that supports MicroNetwork-based integration. Finally, we 
describe how a designer uses our system to architect, implement, 
and verify a complex SOC. 

2. RELATED WORK 
The vast majority of SOC designs that have been described to date 
are based upon IP cores stitched together using a mix of computer 
buses and various forms of point-to-point data or control links. 
Two commonly used on-chip computer buses are AMBA [1] and 
CoreConnect [2]. 

The notion of a data network on a chip is not new – many 
networking chips integrate a switch fabric to accomplish the 
routing function. Some have proposed similar communication 
architectures for SOCs [3]. Chang [4] provides a reasonable 
survey of the available communications topologies and protocols, 
and Lahiri [5] proposes a novel dynamic scheme for optimizing 
existing protocols. 

Rowson [6] presents a compelling case for separating the 
functionality of an IP core from its communications. The Virtual 
Socket Interface Alliance’s On-Chip Bus activity has produced a 
specification for an interconnect-independent data flow interface 
[7]. 

We attempt to address several shortcomings of these approaches. 
Computer bus-based communication architectures do not easily 
handle the real-time isochronous data flows associated with 
networking, telecommunications, and multimedia data streams. 
Crossbar topologies require too much area, particularly since 
many SOCs are dominated by the performance of a single memory 
subsystem (some form of DRAM). Routed architectures suffer 
from excessive latency and do not efficiently operate in SOC 
environments with wide variations in data flow characteristics. 

All of the approaches focus only on the data communications 
challenge. However, the control flow and manufacturing test 
harness must also be integrated into a completed chip. Finally, no 
existing approach offers sufficient automation to facilitate 
accurate early system performance modeling, physical 
predictability, and rapid recovery from bugs or other late system 
changes. 

3. MICRONETWORK OVERVIEW 
We have devised and implemented an on-chip network to manage 
the communication between the IP cores on an SOC. We call this 
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structure a MicroNetwork. A MicroNetwork is more similar to a 
data network than to computer buses. The MicroNetwork unifies 
the communication, which allows control flow and manufacturing 
test signaling to use the network alongside data flow. The 
MicroNetwork uses highly concurrent protocols, scalable data 
path widths, and pipelining to enable efficient unification. 
Furthermore, the MicroNetwork decouples the attached IP cores 
from the behavior of the network itself. This allows the IP cores to 
operate in their own local environment, accomplishing the 
separation of computation from communication. MicroNetwork 
decoupling greatly enhances the ability of design teams to work in 
parallel, since the MicroNetwork provides both structure and 
isolation. Data networks also manage, unify, and decouple. 

A block diagram of our MicroNetwork system is shown in Figure 
1. The system employs agents to actively manage each interface 
socket on behalf of the attached IP core. It is the collection of 
agents, together with the circuits and wires that connect the 
agents, that constitute the MicroNetwork. The next subsections 
describe the key features of the socket, the techniques that the 
MicroNetwork uses to manage the communication, and the 
physical structure of the MicroNetwork. 

3.1 Socket 
An important component of our system is a communication 
architecture-independent interface socket called OCP [8]. The 
OCP socket captures the interface behavior of an IP core at 
electrical, logical, protocol, and performance levels. OCP is 
architecture-independent for the same reasons as network sockets 
– to simplify the interface and to provide flexibility in how the 
abstracted network behaves. 

Because the attached IP cores differ widely in communication 
needs, OCP is actually a family of interfaces. An IP core designer 
picks a member of the OCP family that matches the characteristics 
of the core. The family members differ in signal widths, the 
presence of certain signal groups, and the allowed encoding of 
some signals. As a result, an 8-bit UART will use a very different 
OCP member than an SDRAM controller with a 128-bit data 
word. 

From a data flow perspective, OCP is very similar to the VSIA 
VCI [7]. However, OCP adds support for control signaling (such 

as interrupts) and manufacturing test signaling (such as internal 
scan). 

3.2 Data Flow Support 
While the fundamental data flow protocols used by our 
MicroNetwork have been previously described [9], we will 
summarize them here. We have chosen internal protocols for the 
MicroNetwork that are based upon hardware threads that can be 
time interleaved at a fine granularity. This allows the overall 
MicroNetwork throughput to be scaled up to meet the aggregate 
throughput required by the IP cores. 

To enable highly scalable throughput, our MicroNetwork has 
parameterized internal data path widths and pipelining. The depth 
of the internal pipeline is chosen to minimize the achieved latency 
at the desired clock frequency. This pipeline depth is tuned in the 
development environment by selectively enabling pre-defined 
retiming registers inside the MicroNetwork. 

Our MicroNetwork’s access control (i.e. arbitration) scheme is 
based upon a rotating priority system based upon TDMA. On each 
clock cycle, the arbiter selects the agent that has been pre-
allocated the time slot, unless the agent is idle. If idle, the time 
slot is made available via a round-robin scheme to agents that 
contend against one another for bandwidth. 

Other key data flow features include designer-defined FIFO 
depths on a per-OCP basis, packing and unpacking support for 
mixed data path widths, and highly configurable address 
decoders. 

3.3 Control Flow Support 
Interrupts and other hardware-hardware control signals frequently 
cause logical and physical design problems due to their 
unstructured nature. Our MicroNetwork and its development 
environment provide the needed structure. 

Control flow signals are usually captured as part of their OCP 
interface. These input and output signals are then either 
terminated in the agent (for signals accessed via a software-visible 
register) or routed across the MicroNetwork to the desired 
destination. 

In all cases, the control flow signals are retimed in the agent. The 
retiming stage simplifies physical design and makes it simple to 
implement more complex error recovery and interrupt steering 
schemes. 

3.4 Test/Debug Support 
For those IP cores with test signaling specified in their OCP 
socket, the MicroNetwork can serve as the delivery vehicle for 
those test vectors. The designer is free to choose the number of 
scan chains and scan control signals. 

In addition, our MicroNetwork has a debug port that can capture a 
complete trace of all the salient agent-agent communication. This 
scheme relies upon an external interface clock frequency that is 
several times as fast as the internal MicroNetwork frequency. The 
resulting sampled trace may be fed back to the analysis tools in 
the development environment to build a disassembled trace, run a 
protocol checker, or measure latency and bandwidth on a per-
thread basis. 

Figure 1. Block diagram of MicroNetwork from 
development environment GUI. 



3.5 Physical Implementation 
The logical topology of the internal MicroNetwork interconnect is 
a bus. Each signal driven onto the internal interconnect comes 
directly from a register, thus defining the beginning of a timing 
arc. The pipeline depth of the MicroNetwork determines the end 
of that arc. At low clock frequencies, a shallow pipeline allows 
the signals to propagate across the MicroNetwork interconnect, 
through the selected agent, and across the attached OCP socket. 
At high frequencies, a deep pipeline terminates the timing arc 
upon entry to the selected agent. 

The MicroNetwork agents themselves are fairly small, self-
contained units that are easy to implement physically due to the 
flexible pipelining. The MicroNetwork interconnect is formed by 
a group of transceivers that combine the multiplexing function of 
the bus with repeaters. As shown in Figure 2, a deep OR tree 
multiplexes the agent outputs while driving the signals to the 
middle. After the left and right sides are combined, the result is 
driven back to the agent inputs. The agents themselves are 
typically placed abutting their attached IP cores. 

This structure has been shown to perform very well in physical 
design. First, placing the agent next to its IP core minimizes the 
wire length on the OCP nets, and therefore minimizes delay and 
wiring area. This is especially important for pre-characterized 
“hard” IP cores, where re-buffering the outputs is difficult. 

Second, the total length of wiring required to implement the 
logical bus (without resorting to tri-state buffers) is only two times 
the length of the MicroNetwork. This assumes that the agents 
within the network are connected to their nearest neighbors from 
the SOC floor plan, and requires much less total wire than 
centralized multiplexing schemes. 

Third, the delay of the structure is both small and predictable. In 
deep sub-micron designs, the delay of wires becomes dominant. 
At nominal IP core sizes of 20K to 200K gates, the expected 
agent-agent spacing is in the 1-3mm range. At those lengths, it is 
helpful to have a repeater in each agent transceiver – both in the 
forward and reverse direction. The overhead of a 2- or 3-input OR 
gate over a repeating buffer is very small (10ps or so), and this 
extra delay is easily compensated by the increase in predictability 
that arises from asking automated placement flows to solve 
simpler problems. 

As an example, we fabricated a 9-agent MicroNetwork in a 
0.18µm foundry process. With about 1 cm total span (length of 
MicroNetwork), the design completed at over 250MHz with a 
fully automated physical flow and a commercial standard cell 
library. 

4. DEVELOPMENT ENVIRONMENT 
We have developed a commercial development environment 
around our MicroNetwork to enable designers to exploit the high 
degree of flexibility inherent in the MicroNetwork. We built the 
development environment using freely available tools. Most of the 
programs are in Python [10], with graphical interfaces linked to 
Tk [11]. All persistent data files are in ASCII, and most user-
edited source files are Tcl [11]. The resulting development 
environment is simple to control from the command line or GUI, 
the embedded command language enables rapid assembly of 
complex systems, and all of the SOC-related source files are 
simple to manage. 

The development environment itself is composed of a set of point 
tools, which are described in the next several subsections. 

4.1 Block-based Design GUI 
The example block diagram in Figure 1 is an actual screen shot 
from our block-based design GUI (SOCCreator). A user of this 
tool can rapidly assemble a working prototype of an SOC design 
concept. The GUI supports automated connection of objects with 
compatible interface bundles. An interface bundle is defined in a 
Tcl file that specifies the name and direction of each signal group, 
for each type of interface that connects to the bundle. For 
instance, the OCP interface bundle has different signal directions 
for Master-side versus Slave-side interfaces. Bundles allow the 
abstraction of complex interfaces into single lines in the GUI. 

Designers spend more time configuring the MicroNetwork than 
connecting IP cores. To support this, the GUI has sets of 
configuration panels for the MicroNetwork. Some parameters 
(e.g. buffer depths, clock frequency ratios, etc.) are managed at 
the agent level because they are largely independent. Other 
parameters (e.g. the data path width and the arbitration system) 
are managed at the MicroNetwork level because of agent-agent 
dependencies. 

The GUI also serves as a front end for most of the other point 
tools. Alternatively, the point tools may be initiated directly from 
the command line. 

4.2 System Modeling 
A first task in refining a communication architecture is to model 
the performance of the architecture. Our system includes several 
components to accelerate this process. MicroNetwork 
performance can be modeled in either C++ or Verilog/VHDL. 
The C++ model relies upon a C++ API view of OCP. It is possible 
to mix and match C++ and HDL models in a single simulation, 
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Figure 2. Physical implementation of MicroNetwork internal interconnect. 



since there is an automated bridge between the OCP API and the 
simulator PLI. 

The development environment includes behavioral master and 
slave models (both in C++ and HDL) that are frequently useful in 
modeling real or undersigned components as “black box” objects. 
The behavioral masters read an assembled trace that is produced 
from a transaction language. The transaction language is designed 
to be both a source form for simple tests, and an intermediate 
form to be output from cache modelers, trace generators, etc. The 
behavioral models are configurable to the full extent of OCP. This 
allows them to accurately model any OCP-compliant IP core at 
the “bus functional model” level. 

The environment includes simulation monitors that capture traces 
into ASCII files, and disassemblers, protocol checkers, and 
performance measuring programs to characterize a simulation run. 

4.3 RTL Generation 
Our MicroNetwork is extremely configurable. A finished 
MicroNetwork has several hundred configuration settings. We 
compile the source code for the MicroNetwork into our RTL 
generator. The GUI captures configuration parameters into a Tcl 
file, which is fed to the RTL generator. The generator interprets 
the configuration parameter, computes context-sensitive default 
parameters, performs parameter value checks, and passes the final 
parameters to a macro processor that configures the final RTL. 

The RTL generator also creates HDL net lists that instantiate the 
MicroNetwork and IP cores, and auto-connect their interface 
bundles. This step removes the tedious process of connecting 
dozens or hundreds of signal groups together in a text editor. This 
automation makes it practical to assemble SOC models 
throughout the design process, and to iterate those models as the 
SOC is refined. 

4.4 Timing Characterization 
Many of the configuration options in the MicroNetwork involve 
pipeline optimizations to balance timing convergence versus 
latency. It is therefore essential to have good models for the 
timing behavior of the MicroNetwork agents as the configuration 
changes. We have developed a tool that pre-characterizes the 
agents across a broad range of configurations. The tool generates 
configurations and estimated boundary timing constraints, runs 
the configured agent through logic synthesis and library mapping, 
and parses the static timing report to capture the results. 

Because this timing information is based only upon the process 
technology, cell library, and synthesis flow, the timing 
information is normally prepared before the architecture is 
determined. This allows the designer to choose an architecture 
based upon accurate physical information. 

4.5 Simulation Support 
We have discussed the automated connectivity, behavioral 
models, and post-processing tools associated with the 
development environment. All of these tools are important during 
the simulation phases of the design. Additional automation 
supported by the development environment includes structure Tcl-
based methods for capturing the steps required to prepare, 
execute, and analyze a simulation run. The IP core designer 
captures simple scripts for each phase, and the SOC integrator 
references those scripts to invoke the proper tool chain for each 
core at the proper moment in the simulation process. 

4.6 Synthesis Support 
The IP core designer normally captures pin-level timing 
characteristics together with their core. The attached agent inherits 
this information as timing constraints for synthesis. The 
development environment maintains a complete timing model for 
each boundary signal in the design (both inside the MicroNetwork 
and outside). The environment creates hierarchical synthesis 
scripts for each agent, propagating the timing values as 
constraints. The synthesis methodology encourages the 
specification of delays in a technology-independent fashion. 
Symbolic constants are then resolved once the technology-
dependent parameters are determined. 

5. USAGE MODEL 
The previous sections provide a glimpse into a complex system. 
This section describes how designers actually use our 
MicroNetwork system to develop SOCs. 

5.1 SOC Design Styles 
In the conventional design style, each SOC design is fairly 
unique. Even small derivatives off a base architecture require full 
design and verification cycles. 

There has been quite a bit of discussion in the electronics press 
about the benefits of design platforms for SOCs [4]. Most known 
examples are fairly rigid, in that the communications architecture 
is invariant across the uses of the platform. While this approach 
appears to work well in mature or low-performance market 
segments, it is unlikely that the rigid platform will satisfy the 
needs of markets where the list of IP cores for derivatives is 
unknown at the time of platform creation. 

We believe that MicroNetwork design techniques offer a third 
approach – that of flexible SOC platforms [12]. In the flexible 
platform approach, we leverage the inherent scalability of the 
MicroNetwork and the automation of our design environment to 
gain the advantages of design platforms (e.g. stable software 
development environment, rapid physical design and verification 
of derivative designs) without the disadvantages (e.g. over-design 
for expansion, over-reliance on architect to guess derivative 
requirements). 

5.2 SOC Integration Flow 
Here is a typical SOC integration flow for MicroNetwork 
designers. 

Step 1. Pre-characterize the MicroNetwork (Section 4.4). 

Step 2. Determine base architecture.  
Refine the SOC architecture to a block diagram showing 
the major components and principle data flows. 

Step 3. Choose MicroNetwork data flow parameters.  
Determine the desired peak bandwidth for the 
MicroNetwork based upon the principle data flows. One 
rule of thumb is to add the sum of the peak bandwidths 
of the real-time (isochronous) data flows together with 
the sum of the sustained bandwidth of the non-real-time 
data flows. Choose a MicroNetwork data path width and 
clock frequency to satisfy the desired peak bandwidth. 
Set the pipeline depths to balance latency versus 
physical design effort at the targeted clock frequency 
and estimated MicroNetwork length. 



Step 4. Build data flow model.  
Use supplied behavioral models or IP core models to 
construct a simulation model in the GUI. Build traces to 
represent principle data flows. Simulate and analyze the 
results. Iterate, if required. 

Step 5. Improve the model.  
Integrate more accurate IP core models, particularly 
around the memory subsystem. Begin allocating 
bandwidth to meet isochronous constraints. Consider 
performance benefits of exposing hardware threads at 
shared DRAM interface(s). Keep simulating. 

Step 6. Test the physicals.  
Synthesize, place, and route an early MicroNetwork-
only net list to ensure physical predictability. 

Step 7. Integrate IP cores and verify functionality.  
Leverage behavioral models and core-specific 
simulation scripts for portable test bench. 

Step 8. Map control flow.  
Establish interrupt and error architectures. Route 
hardware-hardware signals, and terminate IP core 
control and status fields. 

Step 9. Verify system functionality.  
Map into hardware accelerator or emulator, as needed. 

Step 10. Map manufacturing test and complete physical design. 

Note that the automation of the development environment allows 
the design team to easily overlap architectural design with logical 
and physical design. Changes that previously required weeks of 
implementation and verification are now an afternoon’s work. 
More importantly, the automation allows the designers to discover 
problems earlier in the design cycle, while the design is less firm 
and where improvements are simpler. 

5.3 Example Data 
Several commercial and test designs have been completed using 
our MicroNetwork. As of this writing, only one has been 
announced [13]. These designs are concentrated in premises and 
central office networking applications. All use a distributed DMA 
architecture, so even medium-speed peripherals have the ability to 
initiate an OCP request. The number of initiators per design 
ranges from 6 – 9. Most designs have at least two high-bandwidth 
memory subsystems. 

The designs have been fabricated in 0.35, 0.25, and 0.18 µm 
CMOS technologies. They have MicroNetwork clock frequencies 
in the 80-250 MHz range. They have used internal data path 
widths of 32 and 64 bits, and pipeline depths of 2, 3, 4, and 5 
MicroNetwork clock cycles. 

6. CONCLUSION 
We have presented a system that leverages the concept of an on-
chip network to raise the level of abstraction at which an SOC can 
be designed. The flexibility of the MicroNetwork enabled us to 
create a commercial development environment that offers a high 
degree of design automation. The network and the environment 
together form a potent combination for successfully completing 
SOCs that consume several million logic gates. 

We are barely scratching the surface of all the possible network-
based communication architecture approaches that should be 
explored. We will certainly see more advanced protocols and 
topologies, as well as tighter integration with system-level design 
tools. There is also a strong opportunity for the application of 
formal methods to prove the performance and functionality of 
such complex systems. 
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