
MicroNetwork-Based Integration for SOCs
 Drew Wingard

Sonics, Inc.
Mountain View, CA 94040

wingard@sonicsinc.com

Abstract
In this paper, we describe the concept of using an on-chip network
as the fundamental communication architecture for a complex
SOC design. We describe some of the salient features of a
MicroNetwork that we have implemented, and introduce an
automated development environment that makes MicroNetwork-
based design productive. Finally, we show how one would use our
MicroNetwork to integrate an SOC, and provide a general
description of several completed MicroNetwork-based designs.

1. INTRODUCTION
Completing a design comprising several million logic gates is a
mind-boggling task. The only feasible approach to such a design
is to leverage the time-honored “divide and conquer” technique.
In the world of System-on-Chip (SOC) design, a fundamental
challenge is to structure the design process such that a team of
engineers can execute the design in parallel. This challenge is
magnified by both the lack of sufficient designers to complete a
new design and the extreme market pressure to deliver a complex
integrated circuit, together with software, in the time previously
allocated to a printed circuit board-level system design.

The only available approach for most market segments is to rely
heavily on re-use of previously defined semiconductor intellectual
property cores (IP cores). The goal is to allow a small design team
to leverage the work of others. Unfortunately, the reality is that
the design team typically spends too much time re-working and
re-verifying the IP cores, and not enough time focusing on the
value-added functionality of the SOC itself. When coupled with
the lack of predictability inherent in conventional communications
architectures, the result is chip designs that fail to meet the
performance, power, and area goals – much less the budgetary and
time requirements.

In this paper, we introduce a new methodology for the design of
complex SOCs that raises the level of abstraction available to the
designer. This methodology leverages the capabilities of the
MicroNetwork (an on-chip network) and a supporting
development environment to enable true communications-based

design. We start by presenting some of the related work in this
field. We then describe the fundamental protocols and features of
our MicroNetwork, and introduce the development environment
that supports MicroNetwork-based integration. Finally, we
describe how a designer uses our system to architect, implement,
and verify a complex SOC.

2. RELATED WORK
The vast majority of SOC designs that have been described to date
are based upon IP cores stitched together using a mix of computer
buses and various forms of point-to-point data or control links.
Two commonly used on-chip computer buses are AMBA [1] and
CoreConnect [2].

The notion of a data network on a chip is not new – many
networking chips integrate a switch fabric to accomplish the
routing function. Some have proposed similar communication
architectures for SOCs [3]. Chang [4] provides a reasonable
survey of the available communications topologies and protocols,
and Lahiri [5] proposes a novel dynamic scheme for optimizing
existing protocols.

Rowson [6] presents a compelling case for separating the
functionality of an IP core from its communications. The Virtual
Socket Interface Alliance’s On-Chip Bus activity has produced a
specification for an interconnect-independent data flow interface
[7].

We attempt to address several shortcomings of these approaches.
Computer bus-based communication architectures do not easily
handle the real-time isochronous data flows associated with
networking, telecommunications, and multimedia data streams.
Crossbar topologies require too much area, particularly since
many SOCs are dominated by the performance of a single memory
subsystem (some form of DRAM). Routed architectures suffer
from excessive latency and do not efficiently operate in SOC
environments with wide variations in data flow characteristics.

All of the approaches focus only on the data communications
challenge. However, the control flow and manufacturing test
harness must also be integrated into a completed chip. Finally, no
existing approach offers sufficient automation to facilitate
accurate early system performance modeling, physical
predictability, and rapid recovery from bugs or other late system
changes.

3. MICRONETWORK OVERVIEW
We have devised and implemented an on-chip network to manage
the communication between the IP cores on an SOC. We call this

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
38th DAC, June 18-22, 2001, Las Vegas, NV.
Copyright 2001 ACM 1-58113-000-0/00/0000…$5.00.

structure a MicroNetwork. A MicroNetwork is more similar to a
data network than to computer buses. The MicroNetwork unifies
the communication, which allows control flow and manufacturing
test signaling to use the network alongside data flow. The
MicroNetwork uses highly concurrent protocols, scalable data
path widths, and pipelining to enable efficient unification.
Furthermore, the MicroNetwork decouples the attached IP cores
from the behavior of the network itself. This allows the IP cores to
operate in their own local environment, accomplishing the
separation of computation from communication. MicroNetwork
decoupling greatly enhances the ability of design teams to work in
parallel, since the MicroNetwork provides both structure and
isolation. Data networks also manage, unify, and decouple.

A block diagram of our MicroNetwork system is shown in Figure
1. The system employs agents to actively manage each interface
socket on behalf of the attached IP core. It is the collection of
agents, together with the circuits and wires that connect the
agents, that constitute the MicroNetwork. The next subsections
describe the key features of the socket, the techniques that the
MicroNetwork uses to manage the communication, and the
physical structure of the MicroNetwork.

3.1 Socket
An important component of our system is a communication
architecture-independent interface socket called OCP [8]. The
OCP socket captures the interface behavior of an IP core at
electrical, logical, protocol, and performance levels. OCP is
architecture-independent for the same reasons as network sockets
– to simplify the interface and to provide flexibility in how the
abstracted network behaves.

Because the attached IP cores differ widely in communication
needs, OCP is actually a family of interfaces. An IP core designer
picks a member of the OCP family that matches the characteristics
of the core. The family members differ in signal widths, the
presence of certain signal groups, and the allowed encoding of
some signals. As a result, an 8-bit UART will use a very different
OCP member than an SDRAM controller with a 128-bit data
word.

From a data flow perspective, OCP is very similar to the VSIA
VCI [7]. However, OCP adds support for control signaling (such

as interrupts) and manufacturing test signaling (such as internal
scan).

3.2 Data Flow Support
While the fundamental data flow protocols used by our
MicroNetwork have been previously described [9], we will
summarize them here. We have chosen internal protocols for the
MicroNetwork that are based upon hardware threads that can be
time interleaved at a fine granularity. This allows the overall
MicroNetwork throughput to be scaled up to meet the aggregate
throughput required by the IP cores.

To enable highly scalable throughput, our MicroNetwork has
parameterized internal data path widths and pipelining. The depth
of the internal pipeline is chosen to minimize the achieved latency
at the desired clock frequency. This pipeline depth is tuned in the
development environment by selectively enabling pre-defined
retiming registers inside the MicroNetwork.

Our MicroNetwork’s access control (i.e. arbitration) scheme is
based upon a rotating priority system based upon TDMA. On each
clock cycle, the arbiter selects the agent that has been pre-
allocated the time slot, unless the agent is idle. If idle, the time
slot is made available via a round-robin scheme to agents that
contend against one another for bandwidth.

Other key data flow features include designer-defined FIFO
depths on a per-OCP basis, packing and unpacking support for
mixed data path widths, and highly configurable address
decoders.

3.3 Control Flow Support
Interrupts and other hardware-hardware control signals frequently
cause logical and physical design problems due to their
unstructured nature. Our MicroNetwork and its development
environment provide the needed structure.

Control flow signals are usually captured as part of their OCP
interface. These input and output signals are then either
terminated in the agent (for signals accessed via a software-visible
register) or routed across the MicroNetwork to the desired
destination.

In all cases, the control flow signals are retimed in the agent. The
retiming stage simplifies physical design and makes it simple to
implement more complex error recovery and interrupt steering
schemes.

3.4 Test/Debug Support
For those IP cores with test signaling specified in their OCP
socket, the MicroNetwork can serve as the delivery vehicle for
those test vectors. The designer is free to choose the number of
scan chains and scan control signals.

In addition, our MicroNetwork has a debug port that can capture a
complete trace of all the salient agent-agent communication. This
scheme relies upon an external interface clock frequency that is
several times as fast as the internal MicroNetwork frequency. The
resulting sampled trace may be fed back to the analysis tools in
the development environment to build a disassembled trace, run a
protocol checker, or measure latency and bandwidth on a per-
thread basis.

Figure 1. Block diagram of MicroNetwork from
development environment GUI.

3.5 Physical Implementation
The logical topology of the internal MicroNetwork interconnect is
a bus. Each signal driven onto the internal interconnect comes
directly from a register, thus defining the beginning of a timing
arc. The pipeline depth of the MicroNetwork determines the end
of that arc. At low clock frequencies, a shallow pipeline allows
the signals to propagate across the MicroNetwork interconnect,
through the selected agent, and across the attached OCP socket.
At high frequencies, a deep pipeline terminates the timing arc
upon entry to the selected agent.

The MicroNetwork agents themselves are fairly small, self-
contained units that are easy to implement physically due to the
flexible pipelining. The MicroNetwork interconnect is formed by
a group of transceivers that combine the multiplexing function of
the bus with repeaters. As shown in Figure 2, a deep OR tree
multiplexes the agent outputs while driving the signals to the
middle. After the left and right sides are combined, the result is
driven back to the agent inputs. The agents themselves are
typically placed abutting their attached IP cores.

This structure has been shown to perform very well in physical
design. First, placing the agent next to its IP core minimizes the
wire length on the OCP nets, and therefore minimizes delay and
wiring area. This is especially important for pre-characterized
“hard” IP cores, where re-buffering the outputs is difficult.

Second, the total length of wiring required to implement the
logical bus (without resorting to tri-state buffers) is only two times
the length of the MicroNetwork. This assumes that the agents
within the network are connected to their nearest neighbors from
the SOC floor plan, and requires much less total wire than
centralized multiplexing schemes.

Third, the delay of the structure is both small and predictable. In
deep sub-micron designs, the delay of wires becomes dominant.
At nominal IP core sizes of 20K to 200K gates, the expected
agent-agent spacing is in the 1-3mm range. At those lengths, it is
helpful to have a repeater in each agent transceiver – both in the
forward and reverse direction. The overhead of a 2- or 3-input OR
gate over a repeating buffer is very small (10ps or so), and this
extra delay is easily compensated by the increase in predictability
that arises from asking automated placement flows to solve
simpler problems.

As an example, we fabricated a 9-agent MicroNetwork in a
0.18µm foundry process. With about 1 cm total span (length of
MicroNetwork), the design completed at over 250MHz with a
fully automated physical flow and a commercial standard cell
library.

4. DEVELOPMENT ENVIRONMENT
We have developed a commercial development environment
around our MicroNetwork to enable designers to exploit the high
degree of flexibility inherent in the MicroNetwork. We built the
development environment using freely available tools. Most of the
programs are in Python [10], with graphical interfaces linked to
Tk [11]. All persistent data files are in ASCII, and most user-
edited source files are Tcl [11]. The resulting development
environment is simple to control from the command line or GUI,
the embedded command language enables rapid assembly of
complex systems, and all of the SOC-related source files are
simple to manage.

The development environment itself is composed of a set of point
tools, which are described in the next several subsections.

4.1 Block-based Design GUI
The example block diagram in Figure 1 is an actual screen shot
from our block-based design GUI (SOCCreator). A user of this
tool can rapidly assemble a working prototype of an SOC design
concept. The GUI supports automated connection of objects with
compatible interface bundles. An interface bundle is defined in a
Tcl file that specifies the name and direction of each signal group,
for each type of interface that connects to the bundle. For
instance, the OCP interface bundle has different signal directions
for Master-side versus Slave-side interfaces. Bundles allow the
abstraction of complex interfaces into single lines in the GUI.

Designers spend more time configuring the MicroNetwork than
connecting IP cores. To support this, the GUI has sets of
configuration panels for the MicroNetwork. Some parameters
(e.g. buffer depths, clock frequency ratios, etc.) are managed at
the agent level because they are largely independent. Other
parameters (e.g. the data path width and the arbitration system)
are managed at the MicroNetwork level because of agent-agent
dependencies.

The GUI also serves as a front end for most of the other point
tools. Alternatively, the point tools may be initiated directly from
the command line.

4.2 System Modeling
A first task in refining a communication architecture is to model
the performance of the architecture. Our system includes several
components to accelerate this process. MicroNetwork
performance can be modeled in either C++ or Verilog/VHDL.
The C++ model relies upon a C++ API view of OCP. It is possible
to mix and match C++ and HDL models in a single simulation,

Root Agent

Transceivers

Figure 2. Physical implementation of MicroNetwork internal interconnect.

since there is an automated bridge between the OCP API and the
simulator PLI.

The development environment includes behavioral master and
slave models (both in C++ and HDL) that are frequently useful in
modeling real or undersigned components as “black box” objects.
The behavioral masters read an assembled trace that is produced
from a transaction language. The transaction language is designed
to be both a source form for simple tests, and an intermediate
form to be output from cache modelers, trace generators, etc. The
behavioral models are configurable to the full extent of OCP. This
allows them to accurately model any OCP-compliant IP core at
the “bus functional model” level.

The environment includes simulation monitors that capture traces
into ASCII files, and disassemblers, protocol checkers, and
performance measuring programs to characterize a simulation run.

4.3 RTL Generation
Our MicroNetwork is extremely configurable. A finished
MicroNetwork has several hundred configuration settings. We
compile the source code for the MicroNetwork into our RTL
generator. The GUI captures configuration parameters into a Tcl
file, which is fed to the RTL generator. The generator interprets
the configuration parameter, computes context-sensitive default
parameters, performs parameter value checks, and passes the final
parameters to a macro processor that configures the final RTL.

The RTL generator also creates HDL net lists that instantiate the
MicroNetwork and IP cores, and auto-connect their interface
bundles. This step removes the tedious process of connecting
dozens or hundreds of signal groups together in a text editor. This
automation makes it practical to assemble SOC models
throughout the design process, and to iterate those models as the
SOC is refined.

4.4 Timing Characterization
Many of the configuration options in the MicroNetwork involve
pipeline optimizations to balance timing convergence versus
latency. It is therefore essential to have good models for the
timing behavior of the MicroNetwork agents as the configuration
changes. We have developed a tool that pre-characterizes the
agents across a broad range of configurations. The tool generates
configurations and estimated boundary timing constraints, runs
the configured agent through logic synthesis and library mapping,
and parses the static timing report to capture the results.

Because this timing information is based only upon the process
technology, cell library, and synthesis flow, the timing
information is normally prepared before the architecture is
determined. This allows the designer to choose an architecture
based upon accurate physical information.

4.5 Simulation Support
We have discussed the automated connectivity, behavioral
models, and post-processing tools associated with the
development environment. All of these tools are important during
the simulation phases of the design. Additional automation
supported by the development environment includes structure Tcl-
based methods for capturing the steps required to prepare,
execute, and analyze a simulation run. The IP core designer
captures simple scripts for each phase, and the SOC integrator
references those scripts to invoke the proper tool chain for each
core at the proper moment in the simulation process.

4.6 Synthesis Support
The IP core designer normally captures pin-level timing
characteristics together with their core. The attached agent inherits
this information as timing constraints for synthesis. The
development environment maintains a complete timing model for
each boundary signal in the design (both inside the MicroNetwork
and outside). The environment creates hierarchical synthesis
scripts for each agent, propagating the timing values as
constraints. The synthesis methodology encourages the
specification of delays in a technology-independent fashion.
Symbolic constants are then resolved once the technology-
dependent parameters are determined.

5. USAGE MODEL
The previous sections provide a glimpse into a complex system.
This section describes how designers actually use our
MicroNetwork system to develop SOCs.

5.1 SOC Design Styles
In the conventional design style, each SOC design is fairly
unique. Even small derivatives off a base architecture require full
design and verification cycles.

There has been quite a bit of discussion in the electronics press
about the benefits of design platforms for SOCs [4]. Most known
examples are fairly rigid, in that the communications architecture
is invariant across the uses of the platform. While this approach
appears to work well in mature or low-performance market
segments, it is unlikely that the rigid platform will satisfy the
needs of markets where the list of IP cores for derivatives is
unknown at the time of platform creation.

We believe that MicroNetwork design techniques offer a third
approach – that of flexible SOC platforms [12]. In the flexible
platform approach, we leverage the inherent scalability of the
MicroNetwork and the automation of our design environment to
gain the advantages of design platforms (e.g. stable software
development environment, rapid physical design and verification
of derivative designs) without the disadvantages (e.g. over-design
for expansion, over-reliance on architect to guess derivative
requirements).

5.2 SOC Integration Flow
Here is a typical SOC integration flow for MicroNetwork
designers.

Step 1. Pre-characterize the MicroNetwork (Section 4.4).

Step 2. Determine base architecture.
Refine the SOC architecture to a block diagram showing
the major components and principle data flows.

Step 3. Choose MicroNetwork data flow parameters.
Determine the desired peak bandwidth for the
MicroNetwork based upon the principle data flows. One
rule of thumb is to add the sum of the peak bandwidths
of the real-time (isochronous) data flows together with
the sum of the sustained bandwidth of the non-real-time
data flows. Choose a MicroNetwork data path width and
clock frequency to satisfy the desired peak bandwidth.
Set the pipeline depths to balance latency versus
physical design effort at the targeted clock frequency
and estimated MicroNetwork length.

Step 4. Build data flow model.
Use supplied behavioral models or IP core models to
construct a simulation model in the GUI. Build traces to
represent principle data flows. Simulate and analyze the
results. Iterate, if required.

Step 5. Improve the model.
Integrate more accurate IP core models, particularly
around the memory subsystem. Begin allocating
bandwidth to meet isochronous constraints. Consider
performance benefits of exposing hardware threads at
shared DRAM interface(s). Keep simulating.

Step 6. Test the physicals.
Synthesize, place, and route an early MicroNetwork-
only net list to ensure physical predictability.

Step 7. Integrate IP cores and verify functionality.
Leverage behavioral models and core-specific
simulation scripts for portable test bench.

Step 8. Map control flow.
Establish interrupt and error architectures. Route
hardware-hardware signals, and terminate IP core
control and status fields.

Step 9. Verify system functionality.
Map into hardware accelerator or emulator, as needed.

Step 10. Map manufacturing test and complete physical design.

Note that the automation of the development environment allows
the design team to easily overlap architectural design with logical
and physical design. Changes that previously required weeks of
implementation and verification are now an afternoon’s work.
More importantly, the automation allows the designers to discover
problems earlier in the design cycle, while the design is less firm
and where improvements are simpler.

5.3 Example Data
Several commercial and test designs have been completed using
our MicroNetwork. As of this writing, only one has been
announced [13]. These designs are concentrated in premises and
central office networking applications. All use a distributed DMA
architecture, so even medium-speed peripherals have the ability to
initiate an OCP request. The number of initiators per design
ranges from 6 – 9. Most designs have at least two high-bandwidth
memory subsystems.

The designs have been fabricated in 0.35, 0.25, and 0.18 µm
CMOS technologies. They have MicroNetwork clock frequencies
in the 80-250 MHz range. They have used internal data path
widths of 32 and 64 bits, and pipeline depths of 2, 3, 4, and 5
MicroNetwork clock cycles.

6. CONCLUSION
We have presented a system that leverages the concept of an on-
chip network to raise the level of abstraction at which an SOC can
be designed. The flexibility of the MicroNetwork enabled us to
create a commercial development environment that offers a high
degree of design automation. The network and the environment
together form a potent combination for successfully completing
SOCs that consume several million logic gates.

We are barely scratching the surface of all the possible network-
based communication architecture approaches that should be
explored. We will certainly see more advanced protocols and
topologies, as well as tighter integration with system-level design
tools. There is also a strong opportunity for the application of
formal methods to prove the performance and functionality of
such complex systems.

7. ACKNOWLEDGMENTS
The author would like to acknowledge the invaluable
contributions by the Sonics team to the theory and development of
the SiliconBackplane MicroNetwork. In particular, the
contributions of Scott Evans, Mike Meyer, Jay Tomlinson, and
Wolf-Dietrich Weber merit special recognition.

8. REFERENCES
[1] ARM, Limited, AMBA Specification, Revision 2.0, May

1999, available from http://www.arm.com.

[2] IBM, CoreConnect Bus Architecture, 1999, available from
http://www.chips.ibm.com/products/coreconnect.

[3] P. Guerrier et al., “A Scalable Architecture for System-On-
Chip Interconnections,” In Proc. of the Sophia Antipolis
Forum on MicroElectronics (SAME ’99), October 1999.

[4] H. Chang et al., Surviving the SOC Revolution: A Guide to
Platform-Based Design. Kluwer Academic Publishers,
Norwood, MA, 1999.

[5] K. Lahiri et al., “Communications Architecture Tuners: A
Methodology for the Design of High-Performance
Communication Architectures for Systems-on-Chip,” in
Proc. of the 37th Design Automation Conference, pp. 513-
518, June 2000.

[6] J. Rowson and A. L. Sangiovanni-Vincentelli., “Interface-
based Design,” in Proc. of the 34th Design Automation
Conference, pp. 178-183, June 1997.

[7] Virtual Socket Interface Alliance, Virtual Component
Interface Standard, OCB Specification 2, Version 1.0,
March 2000.

[8] Sonics, Inc., Open Core Protocol Specification, Version 1.0,
October 1999, available from http://www.sonicsinc.com.

[9] D. Wingard and A. Kurosawa, “Integration Architecture for
System-on-a-Chip Design,” in Proc. of the 1998 Custom
Integrated Circuit Conference, pp. 85-88, May 1998.

[10] G. van Rossum, Python Reference Manual, Report CS-
R9525. CWI, Amsterdam, April 1995.

[11] J. Ousterhout, Tcl and the Tk Toolkit. Addison-Wesley,
Reading MA and London, April 1994.

[12] D. Wingard, “MicroNetworks for Flexible SOC Platforms,”
in Proc. of the Sophia Antipolis Forum on MicroElectronics
(SAME2000), October 2000.

[13] PMC-Sierra, Inc., PM73140/PM73141 Voice Over Packet
Processor Data Sheet, Issue 1, August 2000.

	Main
	DAC01
	Front Matter
	Table of Contents
	Session Index
	Author Index

