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ABSTRACT 
Communication-based design represents a formal approach to  system-
on-a-chip design that considers communication between components 
as important as the computations they perform. Our “network-on-chip” 
approach partitions the communication into layers to maximize reuse 
and provide a programmer with an abstraction of the underlying 
communication framework. This layered approach is cast in the 
structure advocated by the OSI Reference Model and is demonstrated 
with a reconfigurable DSP example. The Metropolis methodology of 
deriving layers through a sequence of adaptation steps between 
incompatible behaviors is illustrated through the Intercom  design 
example. In another approach, MESCAL provides a designer with 
tools for a correct-by-construction protocol stack. 

GENERAL TERMS—Design 

KEYWORDS—Network-on-chip; platform-based design; 
communication-based design; protocol stack. 

1. INTRODUCTION 
It is now not only possible, but also economical, to integrate complex 
systems on a single silicon die. Designing such systems on a chip 
(SOC) is a complex process, and is currently approached with little 
organizing principles. The Gigascale Silicon Research Center (GSRC) 
aims to provide the essential tools and methodologies to allow 
integrated circuit designers to make the transition from ad hoc SOC 
design to a disciplined platform-based design.  
Essential elements of platform-based design are the design of the 
computation, i.e. the functional behavior of each core, and 
communication, i.e. its interaction between the cores. This 
orthogonalization of concerns is essential to the success of a re-use 
strategy as has been realized in recent years. The platform-based 
design methodology [9] addresses this concern by placing the 
computational cores and their interconnect strategy on the same 
footing.  
As was learned by the telecommunications community a while ago, 
reliable communication between components requires the definition of 
a protocol that provides a set of rules dictating how the interaction 

among components takes place, so that the overall system 
communication and performance requirements are met, while physical 
resources such as area and energy are minimized. Traditionally, on-
chip communication design has been done using rather ad-hoc and 
informal approaches that fail to meet the challenges posed by next-
generation SOC designs, namely:  
• Predictability - The capability of making early decisions based on 

the expected performance of the final implementation is very 
important in communication design to avoid time-consuming design 
iterations. The shift towards deep-sub-micron integration makes this 
aspect even more critical. The increasing ratio of the delay of long 
wires with respect to gate delay and the dependence of the 
propagation delay on the chip topology makes it increasingly hard 
to have the system functionality rely on physical parameters only.  

• Wiring delay - SOCs that occupy a large area and require long wires 
to connect communicating components face relevant delay and 
synchronization problems, especially if multiple (potentially 
asynchronous) clock domains are used.  

• Power dissipation - The power consumed by the interconnect 
structures, including clocks, is rapidly becoming a dominant 
component of the overall power-budget.  

• Diverse interconnect architectures – In the past the choice of the 
interconnect architecture was limited to a few choices, given the 
small number of blocks that had to be interconnected and the 
relative simplicity in dominating the performance and delay trade-
offs. For SOCs, a richer set of interconnect schema should be 
examined: for example, shared communication resources such as 
busses, crossbars, and meshes to minimize resource needs. Solving 
the latency vs. throughput tradeoff now requires to take in 
consideration a large number of design parameters, like pipeline 
stages, arbitration, synchronization, routing and repeating schemes. 

To address these challenges it is critical to take a global view of the 
communication problem, and decompose it along lines that make it 
more tractable while not restricting the design space at the same time. 
Communication design has to begin at higher levels of abstraction than 
the architecture and RTL level. We believe that a layered approach 
similar to that defined by the communication networks community 
(and standardized as the ISO-OSI Reference Model (RM) [18]) to 
address the problem of connecting a large number of computers on 
wide-area networks should also be used for on-chip communication 
design. The layered approach is well suited to describe protocol 
functions that operate on data units at different levels of abstraction (in 
the form of streams, packets, bits or analog waveforms) and that are 
subject to various time granularity constraints. Each layer may include 
one or more closely related protocol functions, such as data 
fragmentation, encoding and synchronization.  
Separating the communication protocol functions into layers that 
interact only via well-defined interfaces allows for a decomposition of 
the design problem into a set of simpler, tractable problems, and 
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simplifies the synthesis and validation tasks. As amply demonstrated in 
the communication-network domain, the approach also maximizes re-
use. An excellent example in case is the 802.11 wireless local-area 
network standard, where a single media-access layer supports different 
physical implementations through a unified interface. 
We call the layered-stack approach to the design of the on-chip inter-
core communications the Network-on-Chip (NOC) methodology. 
Designing NOCs is not an easy task, and may result in protocol 
implementations that are incorrect (e.g. due to deadlocks and race 
conditions), or sub-optimal (e.g. are power hungry or introduce 
unacceptable latency). To avoid such problems, it is essential to 
develop a new generation of methodologies and tools that: 
• By applying a discipline to on-chip communication design 

transition from ad-hoc SOCs to disciplined IC platforms.  
• Are based on formal Models of Computation and support a correct-

by-construction synthesis design flow and a set of analysis tools for 
broad design exploration.  

• Maximize re-use with the definition of a set of interfaces between 
layers 

• Provide an application programmer with a set of APIs abstracting 
architecture details. 

While NOC design so far has not been addressed in a structured and 
rigorous manner, several approaches have been developed that are 
based on a similar point of view.  
• The Virtual Socket Interface (VSI) Alliance [16] has developed a 

standard interface to connect virtual components (VCs) to on-chip 
buses. VCs and buses are adapted to this interface wrapping them 
with appropriate glue logic. 

• The Cosy [2] approach, based on the infrastructure and concepts 
developed in the VCC framework [3] defines interfaces at multiple 
levels of abstraction. The top level, called application, is purely 
functional. Application-level transactions are then refined into 
system transaction when a hardware or software implementation of 
the upper layer functions is selected. This layer deals with selecting 
communication parameters and solving latency-throughput 
tradeoffs. Below, the Virtual Component Interface is adopted to 
interface with specific Physical bus protocols. 

• The Sonics [15] µ-network approach de-couples the design of the 
communication among IPs. Each IP core communicates with an 
agent in the Silicon Backplane using a protocol called OCP (Open 
Core Protocol) and agents communicate with each other using 
network protocols. Both protocols can be customized by the SOC 
designer who can configure parameters such data width and buffer 
depth.  

• One important aspect of the NOC problem— the reservation of 
network resources such as buffers and bandwidth—is addressed by 
B. Dally, who proposes the flit-reservation flow control ([12]). This 
approach makes use of packets sent over fast control wires to 
reserve resources in the data connection layer and allows to 
optimize the use of buffers without penalties in  latency. 

In this paper, we, first, describe the OSI Reference Model (RM) and 
discuss its use for NOCs with an example of application, the Pleiades 
platform. Then, we present the Metropolis methodology and 
framework with an application, Intercom. Then we present MESCAL, 
another approach to the design of NOCs, and offer some concluding 
remarks.  

2. OSI REFERENCE MODEL APPLIED TO 
NOCs 
The OSI RM is a framework that allows us to classify and describe 
network protocols. Since its standardization, it has been used as a 
reference for wired and wireless computer-network design. However, 
the same layering concept and many of the protocol functions can be 
used also to realize NOCs. Below, we briefly describe the seven OSI 
layers and for each layer we give examples of on-chip application. 
• Physical—The physical layer is concerned with the lowest-level 

details of transmitting data (bits) on a medium. The NOC physical 
layer protocols define such things as signal voltages, timing, bus 
widths, and pulse shape. At this level delay and power consumption 
may be difficult to predict. The floorplan of the chip can have a 
dramatic effect on both of these metrics, as well as the actual routes 
chosen for the wires. Also of particular concern at this layer is the 
synchronization of signals, since IPs may be in different clocking 
domains or require asynchronous communication. 

• Data Link—The data-link layer is responsible for reliable transfer 
of data over the physical link, and may include error detection and 
correction functions. It must also arbitrate the access to a shared 
physical medium, like a bus. Examples of Medium Access Control 
(MAC) protocols are token ring and time division multiplex access 
(TDMA). Delay predictability, throughput and power consumption 
may vary significantly depending on which arbitration scheme is 
adopted. 

• Network—The network layer provides a topology-independent 
view of the end-to-end communication to the upper level protocol 
layers. The connections established in the network could be static, 
or dynamic, such as offered by the reconfigurable interconnect of 
FPGAs. Similarly, data routes can be persistent over multiple 
transactions, or each transaction can be dynamically routed. In the 
latter case, congestion control may be required to reduce traffic 
through overburdened links. 

• Transport—Transport layer protocols establish and maintain end-
to-end connections. Among other things, they manage flow control, 
perform packet segmentation and reassembly, and ensure message 
ordering. This abstraction hides the topology of the network, and the 
implementation of the links that make up the network. Therefore, it 
is used by the layers above the transport layer to provide 
components with more formal methods of communication. 

• Session—Session layer protocols add state to the end-to-end 
connections provided by the transport layer. A common session 
protocol is synchronous messaging, which requires that the sending 
and receiving components rendezvous as the message is passed. The 
state maintained by the protocol is a semaphore that indicates when 
both the sender and the receiver have entered the rendezvous. Many 
embedded system applications utilize this sort of functionality to 
synchronize system components that are running in parallel. This is 
especially true when the system components are CPU-like 
processing elements that execute software programs. 

• Presentation—The presentation layer is concerned with the 
representation of data within messages. Protocols at this level 
convert data into compatible formats. For example, two system 
components may exchange messages with different byte orderings, 
so this layer converts them to a common format. 

• Application—This layer exports to the system components the 
highest level of abstraction of the underlying communication 
architecture. For example, in an embedded system that performs 



video processing the basic communication function may be to 
transfer a video frame from one system component to another. The 
application layer would define a function that does exactly this by 
utilizing the functions defined at lower stack layers. The system 
components can use these abstract communication functions 
without concern for the details, thus simplifying the component 
design. 

Communication-based design uses the stack model as a tool to guide 
the decomposition of the design problem. The separation of 
computation and communication reveals the communication 
requirements of the system. The application layer provides the set of 
communication functions that implement those requirements. It does 
so by building upon the functionality defined at lower levels in the 
stack model. In most cases, it is not necessary to implement protocols 
at all of the OSI stack layers to provide this high-level functionality. 
One of the benefits of the OSI stack model is that it scales to match the 
needs of the system components. If the system components do not 
require connections with state, data format conversion or other 
features, the corresponding stack layers can be omitted. However, as 
embedded systems scale in complexity their communication 
architectures will have to scale in functionality as well.  
The layered approach of OSI Model is a useful method for structuring 
and organizing a protocol at an early stage of the design process. 
However, on the way to implementation, designers may consider 
whether the original layering structure should be maintained, or 
whether performance is optimized by combining adjacent layers.  

An NOC Example: The Pleiades Platform 
The Pleiades platform (in its instantiation, the Maia processor) [17] 
presents a reconfigurable integrated circuit for DSP applications that 
demonstrates how the NOC layers of abstraction are applicable to 
existing designs. The basic Pleiades architecture is a heterogeneous 
collection of satellites such as arithmetic logic units (ALUs), 
memories, processors, FPGAs, and multiply-accumulators. This 
collection of interconnected satellites is analogous to a set of IPs 
present in a SOC design. From a communication perspective, the 
computation at each satellite is arbitrary because each is wrapped in an 
inter-satellite communication interface.  
This interface is actually the physical layer in the NOC framework, 
because it specifies the signal definitions, timing, and synchronization 
between two satellites. In the Pleiades case, this means that data links 
are 18-bits wide and have 2 control bits. Additionally, each satellite 
operates on a local clock, which is not necessarily coincident with the 
other satellite clocks. For this reason, the interface is self-timed 
through a two-phase asynchronous handshaking scheme. Lastly, the 
communication reduces power consumption through reduced-swing 
signaling. Individual links can be well characterized with predictable 
delay and energy consumption. Since each link in the Pleiades 
architecture is dedicated and error-free, no data-link layer is required. 
It is in the network layer that the Pleiades architecture is especially 
novel. The interconnect consists of a two-tiered hierarchical mesh to 
provide energy efficiency as well as the required flexibility. At the 
local level, universal switchboxes provide a method for 
programmatically connecting wires with a cluster. The global level 
provides switchboxes connected in a larger-granularity mesh for inter-
cluster communication. The switchboxes enable persistent paths while 
allowing satellites reconnection to implement a different algorithm. A 
network connection is set up at (re)configuration time, and is rewired 
every time a new task is over-laid on the configurable fabric Because 
of this flexibility, the energy consumption and delay are dependent 

upon the actual path through the switchboxes. From a refinement 
perspective, higher levels of abstraction cannot know these values a 
priori so upper bounds or statistical averages can be used to provide 
early estimations of these metrics. Additionally, constraints can be 
used in the refinement process to influence the programming of the 
actual routes.  

3. METROPOLIS APPROACH 
The Metropolis project [13] is developing a formal methodology for 
SOC design, based on the principles advocated in this paper. 

3.1 The Metropolis Methodology 
In the Metropolis methodology, the SOC designer first describes (or 
selects from IP libraries) the blocks that perform computations and, 
then, designs the communication among them using a rigorous 
successive refinement process. To maximize reusability, the layers of 
the protocols should only encapsulate the original computation cores 
without any change in their internal structure. 
The design of communication begins with the declaration of a set of 
constraints that the protocol must satisfy and moves towards a final 
implementation through a sequence of successive refinement steps. 
Constraints usually consist of a set of formulae including variables 
such as power, number of errors, delay. They are propagated (e.g. 
through budgeting) at each design step, while the current specification 
is either refined with the addition of new details or is (partially) 
mapped onto architectural elements, such as physical channels and 
protocol layers that are selected from libraries. Note that the 
architecture/function orthogonalization principle applies to all levels of 
the design hierarchy as well as the constraint mapping mechanism. We 
refer to this aspect as the fractal nature of design since the same 
pattern repeats itself on all scales. 
Metropolis is based on a formal representation of the system 
specification throughout all levels of abstraction, but is not biased 
towards any specific Model of Computation (MoC) or communication 
semantics. At the highest level of abstraction, the system specification 
is purely denotational, i.e. the system is described as a set of 
concurrent components, called processes, each defined as an 
input/output relation. In contrast to the traditional design practice, 
where the specification of the processes also includes details of the 
communication interface and hence is not easily reusable, the 
communication among processes is separated and dealt with explicitly. 
For example, at this level one can view an MPEG encoder as 
composed of components like DCT Transform, Huffmann encoding 
and motion compensation, without any information of how they 
interact (e.g. block by block or frame by frame communication). 
Communication is defined separately, when a set of protocols and a 
medium that physically connects the communicating components are 
selected.  
To explain our approach to communication design, we introduce the 
adapter concept [13]. For two behavioral objects to communicate with 
each other, they must agree on the semantics and syntax. If a mismatch 
in either is found, an adapter must be introduced. 
Consider two processes that are connected, i.e., the output of a process, 
called sender, is connected to the input of the other process, called 
receiver. If the sender's output domain, defined as the set of its output 
signals, is different from the receiver's input domain—the set of input 
signals for which its behavior is defined—, an object that maps (at the 
semantic or syntactic level or both) signals from one domain to the 
other must be interposed between sender and receiver. For example, 
consider an IP block that sends 128-bit packets to a receiving IP that 
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accepts only 24-bit packets: an object breaking the large packets into 
smaller ones is needed. These functions, which we call behavior 
adapters, are the key to enable reusability of pre-designed blocks. 
Behavior adapters are also used every time a bridge between two 
networks using different protocols is needed. Behavior adapters can be 
synthesized automatically, as demonstrated in [11] for interfaces 
between incompatible hardware protocols.  
So far, we assumed that communication between blocks occurs over a 
logical connection. To derive a physical implementation, the designer 
must select a channel, such as a wire, a bus or a network that can 
physically transport signals. In Metropolis each channel is defined by 
a set of properties, such as FIFO ordering, error rate and bandwidth, 
and a set of interfaces (e.g., read and write) that the processes 
connected to the channel can access. Once a physical channel is 
chosen, the designer must select also a model of computation that 
defines the firing rules that the processes must follow when they access 
the channel. The firing rules are part of a MoC wrapper that 
encapsulates each process. If the selected physical channel does not 
immediately meet the communication constraints on parameters like 
delay, throughput, reliability, it is necessary to introduce adapters 
(called channel adapters) between sender and receiver, and the 
channel. Consider the problem of implementing a reliable error-free 
connection. If an unreliable channel with a non-negligible error rate is 
selected, it is necessary to introduce adapters, e.g. encoding or 
retransmission functions, between the unreliable channel and the 
sender and receiver. 
When no more adaptation steps are needed, all protocol layers are 
clearly identified. At this point, opportunities for optimizations should 
be explored, for example merging adapters and communicating 
processes. In general, behavior of processes may be changed due to 
these optimizations, and they may not be easily reusable as a result. 
One can always return to a higher level of abstraction at which 
modification can be kept local without affecting the rest of the system. 
 
 
 
 
 
 
 
 
 
 
Behavior and channel adapters are the building blocks of our protocol-
design methodology. Their presence and the order in which they are 
defined may vary from case to case. They roughly correspond to 
classical protocol layers defined in the OSI model, even though an OSI 
layer often includes multiple protocol functions, hence multiple 
adapters. However, we believe that taking a view of the protocol 
design process as a sequence of adaptation steps between incompatible 
behaviors and interfaces allows us to define a methodology for 
selecting and ordering protocol functions as well as to develop 
techniques for automatic protocol synthesis.  

3.2 A Metropolis Example: Intercom  
A case study for this successive refinement approach is the 
implementation of an Intercom mobile terminal that supports voice 
communication over a wireless LAN [14]. The final architecture of the 
Intercom includes an embedded microprocessor and custom logic 
connected through a chip-wide shared bus provided by Sonics, Inc 
[15].  Here, we describe the systematic approach used to design the 
NOC. 
We used the Cadence VCC design environment [3] to capture the 
behavior of the system and evaluate the cost and performance of 
different implementations. This environment is based on the 
orthogonalization of function and architecture and is a pre-cursor of 
the Metropolis paradigm of separation between communication and 
computation realized via the concept of architectural services. A 
library of different communication architectures (e.g. a variety of 
busses and crossbars) is available to a designer, enabling her to 
evaluate the effects of the choice of communication scheme on the 
performance of the design. VCC models the function of the system 
components as a network of asynchronously communicating finite 
state machines (CFSMs). Clearly, this model of communication does 
not accurately reflect any realizable implementation of a 
communication network so refinement is required. Once each CFSM 
is mapped onto a physical resource, such as the embedded processor or 
custom logic, the communication refinement and implementation 
process begins. 
The goal is to design a NOC that allows the embedded processor, 
custom logic, and memory to communicate on the chip. The first step 
is the selection of a physical channel and corresponds to the definition 
of the physical layer in the OSI RM. Similar to the Pleiades example, 
this refinement defines a standard interface that is implemented for 
each component in the system. In this case, this interface consists of a 
32-bit data bus, a 32-bit address bus, and a set of control wires. 
The first adaptation step is required because data transfer must 
ultimately occur in discrete words over wires. Hence, a block 
performing segmentation and reassembling of data exceeding the 
width of the bus is introduced to adapt the sender and receiver 
interfaces. Next, a medium access controller (MAC) adapter is 
introduced to arbitrate the access to the shared medium. For this 
purpose a time division multiple access (TDMA) scheme is used, 
where the arbitration policy for time-slots is round-robin token 
passing. This arbitration policy precludes starvation but makes 
accurate characterization of delay difficult to predict since it is 
dependent upon the communication profiles of the other components 
sharing the medium. The delay can be easily given an upper bound, 
but this often results in a pessimistic estimate.  
A refinement at each receiver determines whether it is the intended 
destination for each communication by examining the address of the 
data. Similar memory-mapped addressing schemes are common in 
contemporary SOCs, especially in those containing embedded 
microprocessors. In addition, since the sender may have to wait to gain 
access to the medium, a buffer is introduced to queue the transaction. 
Since all the components in the system use the same clock, no explicit 
refinement is required for synchronization. The bit width, MAC, 
addressing, and buffer adaptors comprise the data link layer of the 
Intercom system. Since all interfaces between the components, 
adaptors, and medium are compatible, the refinement process is 
complete. 
We used the Open Core Protocol specification and FastForward 
toolset of Sonics, Inc., whom we thank for the support, to generate an 



interconnect implementing the network, data link, and physical layers 
of the Intercom project. 

4. MESCAL 
MESCAL stands for Modern Embedded Systems, Compilers, 
Architectures, and Languages [9]. The goal of the MESCAL project is 
to provide a programmer’s model and software development 
environment that allows for the efficient implementation of an 
interesting set of applications onto a family of fully programmable 
architectures. MESCAL is based on the assumption that domain-
specific programmable solutions are required to deliver the benefits of 
programmability while still delivering acceptable performance. Design 
reuse within an application domain is accomplished through software 
programmability of the system components in the architecture. 
As we have seen in previous sections, any successful solution to the 
design reuse problem must fully take into account the communication 
requirements of the embedded application. These communication 
requirements are revealed in the high-level application models that are 
used to describe the applications. The task of the designer is to 
implement these communication requirements through the 
communication architecture of the target platform. The 
communication architecture covers everything from the physical 
interconnects to the software that the application processes use to 
perform communication. We use the OSI stack model as the 
foundation of a divide-and-conquer approach to the design of 
communication architectures. 
In the MESCAL project, we seek to provide a set of tools that support 
the stack methodology for communication architecture design. These 
tools provide a method of formally specifying protocol stacks for on-
chip networks. In this section we show that by providing the stack 
model with a set of formal semantics we can perform correct-by-
construction synthesis from stack diagrams to communication 
architecture implementations. Also, we show how the MESCAL 
programmable architecture allows for the flexibility of communication 
architectures after fabrication. 

4.1 MESCAL Model-of-Communication 
Just as the application model is a high-level view of the application's 
computational requirements, the stack model is a high-level view of 
the system's communication requirements. Formal models of 
computation give application models meaning by providing them with 
functional semantics. We can provide similar functional semantics to 
the stack model. Anyone who is familiar with the OSI stack and 
network protocols can look at a diagram of a protocol stack and 
understand the communication system that it is describing. The 
functional semantics are a formalization of this intuition. This will 
guarantee that the stack model will have meaning beyond a conceptual 
diagram. The stack model will become a functional model that can be 
used to define the behavior of communication architecture. 
The goal of the MESCAL design environment is to allow architects to 
design communication architectures using a graphical stack model as a 
high-level description “language”. The formal semantics underlying 
the stack model enable a correct-by-construction synthesis path from 
this high-level description to an implementation. Our formal model of 
computation for the OSI stack is based upon Communicating 
Sequential Processes (CSP) [6]. In this model a protocol is viewed as a 
process that performs computation on data packets. Packets are passed 
through the stack model from one protocol-layer to the next using a 
rendezvous similar to that defined in CSP. 

The MESCAL project utilizes the Ptolemy II heterogeneous modeling 
environment as a framework for building our design tools. We are 
implementing a Ptolemy domain for describing communication 
architectures using the stack model. When it is complete, we will be 
able to describe stack models of on-chip networks in a formal 
framework. The environment will provide an extendable library of 
Ptolemy actors that implement common on-chip network protocols. 
Designers create stack models by assembling protocol actors. 
Synthesis tools use knowledge of the underlying formalisms to turn the 
models into implementations. Previous research projects, including the 
x-kernel [8] and the CLICK [10] modular router, also create 
frameworks for working with networking protocols, yet do not address 
the specific issues of programmable NOCs that are the focus of 
MESCAL. 

4.2 MESCAL Communication Architecture 
The programmable nature of MESCAL architectures provides 
flexibility after systems are fabricated.  As we treat both processing 
elements and communication architectures as ``first class citizens’’, we 
seek to achieve flexibility for communication architectures as well as 
the programmable components themselves. Unless reconfigurable 
hardware is used, the low-level aspects of a communication 
architecture (such as physical buses) are fixed at fabrication.  However, 
a great deal of flexibility can still be achieved by implementing the top 
layers of the protocol stack in software. Then, when the application's 
communication requirements change, the system can adapt by 
exporting a new set of communication functions to the system 
components. 
The block diagram of the basic building block of the MESCAL 
architecture, known as a communicator, is shown in the Figure below. 
It combines a VLIW-like processing element, some local memory and 
cache, and a coprocessor called a communication assist (CA). The CA 
coprocessor offloads much of the overhead of communications from 
the processing element. A similar approach was introduced earlier in 
[7]. The topmost layers of the stack model are implemented in 
software on the CA coprocessor. This allows them to be modified even 
after the architecture is fabricated. The lowest layers of the stack 
model, such as interfaces to physical interconnects, are implemented as 
hardware peripherals on the CA coprocessor. All communications 
between processing elements is handled by the hardware and software 
of the CA coprocessors.  

We believe that the communication-assist provides the right degree of 
flexibility for our communication architectures. When an architecture 
is designed for a specific application, all features of the communication 
architecture including the physical hardware implementation can be 
customized for that application. After fabrication, the programmable 
nature of the communication assist allows the system to adapt to the 
changing needs of the application. The flexibility lies in the 
implementation of the upper layers of the stack model. These are the 
layers that provide the highest-level communication functionality to 
the processing elements. 

 
 MESCAL system component 



5. CONCLUSION 
The Gigascale Silicon Research Center aims to provide the key tools 
and methodologies to allow integrated circuit designers to make the 
transition from ad hoc system on a chip design to a disciplined 
approach to platform design. One of the essential elements of this 
transition is taking a rigorous, though flexible, approach to the design 
of on-chip networks that interconnect IP blocks of all variety, 
including processing elements. In this paper we have outlined essential 
elements of this design discipline and illustrated the approach with two 
design examples. Two design methodologies (Metropolis, Mescal) 
based on these concepts have been detailed. It is the authors’ belief 
that a network-on-chip approach, driven by a consistent design 
methodology, is bound to lead to dramatic changes in how SOCs will 
be constructed in the next decade. The GSRC project has offered us an 
invaluable framework to test new ideas and interact among ourselves 
and the other researchers involved in other aspects of SOC design. 
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