
Addressing the System-on-a-Chip Interconnect Woes
Through Communication-Based Design1

M. Sgroi, M. Sheets, A. Mihal, K. Keutzer, S. Malik, J. Rabaey, A. Sangiovanni-Vincentelli
University of California at Berkeley, Princeton University

{sgroi, msheets, mihal, keutzer, jan, alberto}@eecs.berkeley.edu; malik@princeton.edu

ABSTRACT
Communication-based design represents a formal approach to system-
on-a-chip design that considers communication between components
as important as the computations they perform. Our “network-on-chip”
approach partitions the communication into layers to maximize reuse
and provide a programmer with an abstraction of the underlying
communication framework. This layered approach is cast in the
structure advocated by the OSI Reference Model and is demonstrated
with a reconfigurable DSP example. The Metropolis methodology of
deriving layers through a sequence of adaptation steps between
incompatible behaviors is illustrated through the Intercom design
example. In another approach, MESCAL provides a designer with
tools for a correct-by-construction protocol stack.

GENERAL TERMS—Design

KEYWORDS—Network-on-chip; platform-based design;
communication-based design; protocol stack.

1. INTRODUCTION
It is now not only possible, but also economical, to integrate complex
systems on a single silicon die. Designing such systems on a chip
(SOC) is a complex process, and is currently approached with little
organizing principles. The Gigascale Silicon Research Center (GSRC)
aims to provide the essential tools and methodologies to allow
integrated circuit designers to make the transition from ad hoc SOC
design to a disciplined platform-based design.
Essential elements of platform-based design are the design of the
computation, i.e. the functional behavior of each core, and
communication, i.e. its interaction between the cores. This
orthogonalization of concerns is essential to the success of a re-use
strategy as has been realized in recent years. The platform-based
design methodology [9] addresses this concern by placing the
computational cores and their interconnect strategy on the same
footing.
As was learned by the telecommunications community a while ago,
reliable communication between components requires the definition of
a protocol that provides a set of rules dictating how the interaction

among components takes place, so that the overall system
communication and performance requirements are met, while physical
resources such as area and energy are minimized. Traditionally, on-
chip communication design has been done using rather ad-hoc and
informal approaches that fail to meet the challenges posed by next-
generation SOC designs, namely:
• Predictability - The capability of making early decisions based on

the expected performance of the final implementation is very
important in communication design to avoid time-consuming design
iterations. The shift towards deep-sub-micron integration makes this
aspect even more critical. The increasing ratio of the delay of long
wires with respect to gate delay and the dependence of the
propagation delay on the chip topology makes it increasingly hard
to have the system functionality rely on physical parameters only.

• Wiring delay - SOCs that occupy a large area and require long wires
to connect communicating components face relevant delay and
synchronization problems, especially if multiple (potentially
asynchronous) clock domains are used.

• Power dissipation - The power consumed by the interconnect
structures, including clocks, is rapidly becoming a dominant
component of the overall power-budget.

• Diverse interconnect architectures – In the past the choice of the
interconnect architecture was limited to a few choices, given the
small number of blocks that had to be interconnected and the
relative simplicity in dominating the performance and delay trade-
offs. For SOCs, a richer set of interconnect schema should be
examined: for example, shared communication resources such as
busses, crossbars, and meshes to minimize resource needs. Solving
the latency vs. throughput tradeoff now requires to take in
consideration a large number of design parameters, like pipeline
stages, arbitration, synchronization, routing and repeating schemes.

To address these challenges it is critical to take a global view of the
communication problem, and decompose it along lines that make it
more tractable while not restricting the design space at the same time.
Communication design has to begin at higher levels of abstraction than
the architecture and RTL level. We believe that a layered approach
similar to that defined by the communication networks community
(and standardized as the ISO-OSI Reference Model (RM) [18]) to
address the problem of connecting a large number of computers on
wide-area networks should also be used for on-chip communication
design. The layered approach is well suited to describe protocol
functions that operate on data units at different levels of abstraction (in
the form of streams, packets, bits or analog waveforms) and that are
subject to various time granularity constraints. Each layer may include
one or more closely related protocol functions, such as data
fragmentation, encoding and synchronization.
Separating the communication protocol functions into layers that
interact only via well-defined interfaces allows for a decomposition of
the design problem into a set of simpler, tractable problems, and

1 This research is sponsored in part by the Marco GSRC center, DARPA-ITO and
CNR.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or republish, to post on servers
or to redistribute to lists, requires prior specific permission and/or a fee.
DAC 2001, June 18-22, 2001, Las Vegas, Nevada, USA.
Copyright 2001 ACM 1-58113-297-2/01/0006…$5.00.

simplifies the synthesis and validation tasks. As amply demonstrated in
the communication-network domain, the approach also maximizes re-
use. An excellent example in case is the 802.11 wireless local-area
network standard, where a single media-access layer supports different
physical implementations through a unified interface.
We call the layered-stack approach to the design of the on-chip inter-
core communications the Network-on-Chip (NOC) methodology.
Designing NOCs is not an easy task, and may result in protocol
implementations that are incorrect (e.g. due to deadlocks and race
conditions), or sub-optimal (e.g. are power hungry or introduce
unacceptable latency). To avoid such problems, it is essential to
develop a new generation of methodologies and tools that:
• By applying a discipline to on-chip communication design

transition from ad-hoc SOCs to disciplined IC platforms.
• Are based on formal Models of Computation and support a correct-

by-construction synthesis design flow and a set of analysis tools for
broad design exploration.

• Maximize re-use with the definition of a set of interfaces between
layers

• Provide an application programmer with a set of APIs abstracting
architecture details.

While NOC design so far has not been addressed in a structured and
rigorous manner, several approaches have been developed that are
based on a similar point of view.
• The Virtual Socket Interface (VSI) Alliance [16] has developed a

standard interface to connect virtual components (VCs) to on-chip
buses. VCs and buses are adapted to this interface wrapping them
with appropriate glue logic.

• The Cosy [2] approach, based on the infrastructure and concepts
developed in the VCC framework [3] defines interfaces at multiple
levels of abstraction. The top level, called application, is purely
functional. Application-level transactions are then refined into
system transaction when a hardware or software implementation of
the upper layer functions is selected. This layer deals with selecting
communication parameters and solving latency-throughput
tradeoffs. Below, the Virtual Component Interface is adopted to
interface with specific Physical bus protocols.

• The Sonics [15] µ-network approach de-couples the design of the
communication among IPs. Each IP core communicates with an
agent in the Silicon Backplane using a protocol called OCP (Open
Core Protocol) and agents communicate with each other using
network protocols. Both protocols can be customized by the SOC
designer who can configure parameters such data width and buffer
depth.

• One important aspect of the NOC problem— the reservation of
network resources such as buffers and bandwidth—is addressed by
B. Dally, who proposes the flit-reservation flow control ([12]). This
approach makes use of packets sent over fast control wires to
reserve resources in the data connection layer and allows to
optimize the use of buffers without penalties in latency.

In this paper, we, first, describe the OSI Reference Model (RM) and
discuss its use for NOCs with an example of application, the Pleiades
platform. Then, we present the Metropolis methodology and
framework with an application, Intercom. Then we present MESCAL,
another approach to the design of NOCs, and offer some concluding
remarks.

2. OSI REFERENCE MODEL APPLIED TO
NOCs
The OSI RM is a framework that allows us to classify and describe
network protocols. Since its standardization, it has been used as a
reference for wired and wireless computer-network design. However,
the same layering concept and many of the protocol functions can be
used also to realize NOCs. Below, we briefly describe the seven OSI
layers and for each layer we give examples of on-chip application.
• Physical—The physical layer is concerned with the lowest-level

details of transmitting data (bits) on a medium. The NOC physical
layer protocols define such things as signal voltages, timing, bus
widths, and pulse shape. At this level delay and power consumption
may be difficult to predict. The floorplan of the chip can have a
dramatic effect on both of these metrics, as well as the actual routes
chosen for the wires. Also of particular concern at this layer is the
synchronization of signals, since IPs may be in different clocking
domains or require asynchronous communication.

• Data Link—The data-link layer is responsible for reliable transfer
of data over the physical link, and may include error detection and
correction functions. It must also arbitrate the access to a shared
physical medium, like a bus. Examples of Medium Access Control
(MAC) protocols are token ring and time division multiplex access
(TDMA). Delay predictability, throughput and power consumption
may vary significantly depending on which arbitration scheme is
adopted.

• Network—The network layer provides a topology-independent
view of the end-to-end communication to the upper level protocol
layers. The connections established in the network could be static,
or dynamic, such as offered by the reconfigurable interconnect of
FPGAs. Similarly, data routes can be persistent over multiple
transactions, or each transaction can be dynamically routed. In the
latter case, congestion control may be required to reduce traffic
through overburdened links.

• Transport—Transport layer protocols establish and maintain end-
to-end connections. Among other things, they manage flow control,
perform packet segmentation and reassembly, and ensure message
ordering. This abstraction hides the topology of the network, and the
implementation of the links that make up the network. Therefore, it
is used by the layers above the transport layer to provide
components with more formal methods of communication.

• Session—Session layer protocols add state to the end-to-end
connections provided by the transport layer. A common session
protocol is synchronous messaging, which requires that the sending
and receiving components rendezvous as the message is passed. The
state maintained by the protocol is a semaphore that indicates when
both the sender and the receiver have entered the rendezvous. Many
embedded system applications utilize this sort of functionality to
synchronize system components that are running in parallel. This is
especially true when the system components are CPU-like
processing elements that execute software programs.

• Presentation—The presentation layer is concerned with the
representation of data within messages. Protocols at this level
convert data into compatible formats. For example, two system
components may exchange messages with different byte orderings,
so this layer converts them to a common format.

• Application—This layer exports to the system components the
highest level of abstraction of the underlying communication
architecture. For example, in an embedded system that performs

video processing the basic communication function may be to
transfer a video frame from one system component to another. The
application layer would define a function that does exactly this by
utilizing the functions defined at lower stack layers. The system
components can use these abstract communication functions
without concern for the details, thus simplifying the component
design.

Communication-based design uses the stack model as a tool to guide
the decomposition of the design problem. The separation of
computation and communication reveals the communication
requirements of the system. The application layer provides the set of
communication functions that implement those requirements. It does
so by building upon the functionality defined at lower levels in the
stack model. In most cases, it is not necessary to implement protocols
at all of the OSI stack layers to provide this high-level functionality.
One of the benefits of the OSI stack model is that it scales to match the
needs of the system components. If the system components do not
require connections with state, data format conversion or other
features, the corresponding stack layers can be omitted. However, as
embedded systems scale in complexity their communication
architectures will have to scale in functionality as well.
The layered approach of OSI Model is a useful method for structuring
and organizing a protocol at an early stage of the design process.
However, on the way to implementation, designers may consider
whether the original layering structure should be maintained, or
whether performance is optimized by combining adjacent layers.

An NOC Example: The Pleiades Platform
The Pleiades platform (in its instantiation, the Maia processor) [17]
presents a reconfigurable integrated circuit for DSP applications that
demonstrates how the NOC layers of abstraction are applicable to
existing designs. The basic Pleiades architecture is a heterogeneous
collection of satellites such as arithmetic logic units (ALUs),
memories, processors, FPGAs, and multiply-accumulators. This
collection of interconnected satellites is analogous to a set of IPs
present in a SOC design. From a communication perspective, the
computation at each satellite is arbitrary because each is wrapped in an
inter-satellite communication interface.
This interface is actually the physical layer in the NOC framework,
because it specifies the signal definitions, timing, and synchronization
between two satellites. In the Pleiades case, this means that data links
are 18-bits wide and have 2 control bits. Additionally, each satellite
operates on a local clock, which is not necessarily coincident with the
other satellite clocks. For this reason, the interface is self-timed
through a two-phase asynchronous handshaking scheme. Lastly, the
communication reduces power consumption through reduced-swing
signaling. Individual links can be well characterized with predictable
delay and energy consumption. Since each link in the Pleiades
architecture is dedicated and error-free, no data-link layer is required.
It is in the network layer that the Pleiades architecture is especially
novel. The interconnect consists of a two-tiered hierarchical mesh to
provide energy efficiency as well as the required flexibility. At the
local level, universal switchboxes provide a method for
programmatically connecting wires with a cluster. The global level
provides switchboxes connected in a larger-granularity mesh for inter-
cluster communication. The switchboxes enable persistent paths while
allowing satellites reconnection to implement a different algorithm. A
network connection is set up at (re)configuration time, and is rewired
every time a new task is over-laid on the configurable fabric Because
of this flexibility, the energy consumption and delay are dependent

upon the actual path through the switchboxes. From a refinement
perspective, higher levels of abstraction cannot know these values a
priori so upper bounds or statistical averages can be used to provide
early estimations of these metrics. Additionally, constraints can be
used in the refinement process to influence the programming of the
actual routes.

3. METROPOLIS APPROACH
The Metropolis project [13] is developing a formal methodology for
SOC design, based on the principles advocated in this paper.

3.1 The Metropolis Methodology
In the Metropolis methodology, the SOC designer first describes (or
selects from IP libraries) the blocks that perform computations and,
then, designs the communication among them using a rigorous
successive refinement process. To maximize reusability, the layers of
the protocols should only encapsulate the original computation cores
without any change in their internal structure.
The design of communication begins with the declaration of a set of
constraints that the protocol must satisfy and moves towards a final
implementation through a sequence of successive refinement steps.
Constraints usually consist of a set of formulae including variables
such as power, number of errors, delay. They are propagated (e.g.
through budgeting) at each design step, while the current specification
is either refined with the addition of new details or is (partially)
mapped onto architectural elements, such as physical channels and
protocol layers that are selected from libraries. Note that the
architecture/function orthogonalization principle applies to all levels of
the design hierarchy as well as the constraint mapping mechanism. We
refer to this aspect as the fractal nature of design since the same
pattern repeats itself on all scales.
Metropolis is based on a formal representation of the system
specification throughout all levels of abstraction, but is not biased
towards any specific Model of Computation (MoC) or communication
semantics. At the highest level of abstraction, the system specification
is purely denotational, i.e. the system is described as a set of
concurrent components, called processes, each defined as an
input/output relation. In contrast to the traditional design practice,
where the specification of the processes also includes details of the
communication interface and hence is not easily reusable, the
communication among processes is separated and dealt with explicitly.
For example, at this level one can view an MPEG encoder as
composed of components like DCT Transform, Huffmann encoding
and motion compensation, without any information of how they
interact (e.g. block by block or frame by frame communication).
Communication is defined separately, when a set of protocols and a
medium that physically connects the communicating components are
selected.
To explain our approach to communication design, we introduce the
adapter concept [13]. For two behavioral objects to communicate with
each other, they must agree on the semantics and syntax. If a mismatch
in either is found, an adapter must be introduced.
Consider two processes that are connected, i.e., the output of a process,
called sender, is connected to the input of the other process, called
receiver. If the sender's output domain, defined as the set of its output
signals, is different from the receiver's input domain—the set of input
signals for which its behavior is defined—, an object that maps (at the
semantic or syntactic level or both) signals from one domain to the
other must be interposed between sender and receiver. For example,
consider an IP block that sends 128-bit packets to a receiving IP that

Behavior Adaptation

Channel Adaptation

 Optimization

 Encapsulation

 Channel Selection

accepts only 24-bit packets: an object breaking the large packets into
smaller ones is needed. These functions, which we call behavior
adapters, are the key to enable reusability of pre-designed blocks.
Behavior adapters are also used every time a bridge between two
networks using different protocols is needed. Behavior adapters can be
synthesized automatically, as demonstrated in [11] for interfaces
between incompatible hardware protocols.
So far, we assumed that communication between blocks occurs over a
logical connection. To derive a physical implementation, the designer
must select a channel, such as a wire, a bus or a network that can
physically transport signals. In Metropolis each channel is defined by
a set of properties, such as FIFO ordering, error rate and bandwidth,
and a set of interfaces (e.g., read and write) that the processes
connected to the channel can access. Once a physical channel is
chosen, the designer must select also a model of computation that
defines the firing rules that the processes must follow when they access
the channel. The firing rules are part of a MoC wrapper that
encapsulates each process. If the selected physical channel does not
immediately meet the communication constraints on parameters like
delay, throughput, reliability, it is necessary to introduce adapters
(called channel adapters) between sender and receiver, and the
channel. Consider the problem of implementing a reliable error-free
connection. If an unreliable channel with a non-negligible error rate is
selected, it is necessary to introduce adapters, e.g. encoding or
retransmission functions, between the unreliable channel and the
sender and receiver.
When no more adaptation steps are needed, all protocol layers are
clearly identified. At this point, opportunities for optimizations should
be explored, for example merging adapters and communicating
processes. In general, behavior of processes may be changed due to
these optimizations, and they may not be easily reusable as a result.
One can always return to a higher level of abstraction at which
modification can be kept local without affecting the rest of the system.

Behavior and channel adapters are the building blocks of our protocol-
design methodology. Their presence and the order in which they are
defined may vary from case to case. They roughly correspond to
classical protocol layers defined in the OSI model, even though an OSI
layer often includes multiple protocol functions, hence multiple
adapters. However, we believe that taking a view of the protocol
design process as a sequence of adaptation steps between incompatible
behaviors and interfaces allows us to define a methodology for
selecting and ordering protocol functions as well as to develop
techniques for automatic protocol synthesis.

3.2 A Metropolis Example: Intercom
A case study for this successive refinement approach is the
implementation of an Intercom mobile terminal that supports voice
communication over a wireless LAN [14]. The final architecture of the
Intercom includes an embedded microprocessor and custom logic
connected through a chip-wide shared bus provided by Sonics, Inc
[15]. Here, we describe the systematic approach used to design the
NOC.
We used the Cadence VCC design environment [3] to capture the
behavior of the system and evaluate the cost and performance of
different implementations. This environment is based on the
orthogonalization of function and architecture and is a pre-cursor of
the Metropolis paradigm of separation between communication and
computation realized via the concept of architectural services. A
library of different communication architectures (e.g. a variety of
busses and crossbars) is available to a designer, enabling her to
evaluate the effects of the choice of communication scheme on the
performance of the design. VCC models the function of the system
components as a network of asynchronously communicating finite
state machines (CFSMs). Clearly, this model of communication does
not accurately reflect any realizable implementation of a
communication network so refinement is required. Once each CFSM
is mapped onto a physical resource, such as the embedded processor or
custom logic, the communication refinement and implementation
process begins.
The goal is to design a NOC that allows the embedded processor,
custom logic, and memory to communicate on the chip. The first step
is the selection of a physical channel and corresponds to the definition
of the physical layer in the OSI RM. Similar to the Pleiades example,
this refinement defines a standard interface that is implemented for
each component in the system. In this case, this interface consists of a
32-bit data bus, a 32-bit address bus, and a set of control wires.
The first adaptation step is required because data transfer must
ultimately occur in discrete words over wires. Hence, a block
performing segmentation and reassembling of data exceeding the
width of the bus is introduced to adapt the sender and receiver
interfaces. Next, a medium access controller (MAC) adapter is
introduced to arbitrate the access to the shared medium. For this
purpose a time division multiple access (TDMA) scheme is used,
where the arbitration policy for time-slots is round-robin token
passing. This arbitration policy precludes starvation but makes
accurate characterization of delay difficult to predict since it is
dependent upon the communication profiles of the other components
sharing the medium. The delay can be easily given an upper bound,
but this often results in a pessimistic estimate.
A refinement at each receiver determines whether it is the intended
destination for each communication by examining the address of the
data. Similar memory-mapped addressing schemes are common in
contemporary SOCs, especially in those containing embedded
microprocessors. In addition, since the sender may have to wait to gain
access to the medium, a buffer is introduced to queue the transaction.
Since all the components in the system use the same clock, no explicit
refinement is required for synchronization. The bit width, MAC,
addressing, and buffer adaptors comprise the data link layer of the
Intercom system. Since all interfaces between the components,
adaptors, and medium are compatible, the refinement process is
complete.
We used the Open Core Protocol specification and FastForward
toolset of Sonics, Inc., whom we thank for the support, to generate an

interconnect implementing the network, data link, and physical layers
of the Intercom project.

4. MESCAL
MESCAL stands for Modern Embedded Systems, Compilers,
Architectures, and Languages [9]. The goal of the MESCAL project is
to provide a programmer’s model and software development
environment that allows for the efficient implementation of an
interesting set of applications onto a family of fully programmable
architectures. MESCAL is based on the assumption that domain-
specific programmable solutions are required to deliver the benefits of
programmability while still delivering acceptable performance. Design
reuse within an application domain is accomplished through software
programmability of the system components in the architecture.
As we have seen in previous sections, any successful solution to the
design reuse problem must fully take into account the communication
requirements of the embedded application. These communication
requirements are revealed in the high-level application models that are
used to describe the applications. The task of the designer is to
implement these communication requirements through the
communication architecture of the target platform. The
communication architecture covers everything from the physical
interconnects to the software that the application processes use to
perform communication. We use the OSI stack model as the
foundation of a divide-and-conquer approach to the design of
communication architectures.
In the MESCAL project, we seek to provide a set of tools that support
the stack methodology for communication architecture design. These
tools provide a method of formally specifying protocol stacks for on-
chip networks. In this section we show that by providing the stack
model with a set of formal semantics we can perform correct-by-
construction synthesis from stack diagrams to communication
architecture implementations. Also, we show how the MESCAL
programmable architecture allows for the flexibility of communication
architectures after fabrication.

4.1 MESCAL Model-of-Communication
Just as the application model is a high-level view of the application's
computational requirements, the stack model is a high-level view of
the system's communication requirements. Formal models of
computation give application models meaning by providing them with
functional semantics. We can provide similar functional semantics to
the stack model. Anyone who is familiar with the OSI stack and
network protocols can look at a diagram of a protocol stack and
understand the communication system that it is describing. The
functional semantics are a formalization of this intuition. This will
guarantee that the stack model will have meaning beyond a conceptual
diagram. The stack model will become a functional model that can be
used to define the behavior of communication architecture.
The goal of the MESCAL design environment is to allow architects to
design communication architectures using a graphical stack model as a
high-level description “language”. The formal semantics underlying
the stack model enable a correct-by-construction synthesis path from
this high-level description to an implementation. Our formal model of
computation for the OSI stack is based upon Communicating
Sequential Processes (CSP) [6]. In this model a protocol is viewed as a
process that performs computation on data packets. Packets are passed
through the stack model from one protocol-layer to the next using a
rendezvous similar to that defined in CSP.

The MESCAL project utilizes the Ptolemy II heterogeneous modeling
environment as a framework for building our design tools. We are
implementing a Ptolemy domain for describing communication
architectures using the stack model. When it is complete, we will be
able to describe stack models of on-chip networks in a formal
framework. The environment will provide an extendable library of
Ptolemy actors that implement common on-chip network protocols.
Designers create stack models by assembling protocol actors.
Synthesis tools use knowledge of the underlying formalisms to turn the
models into implementations. Previous research projects, including the
x-kernel [8] and the CLICK [10] modular router, also create
frameworks for working with networking protocols, yet do not address
the specific issues of programmable NOCs that are the focus of
MESCAL.

4.2 MESCAL Communication Architecture
The programmable nature of MESCAL architectures provides
flexibility after systems are fabricated. As we treat both processing
elements and communication architectures as ``first class citizens’’, we
seek to achieve flexibility for communication architectures as well as
the programmable components themselves. Unless reconfigurable
hardware is used, the low-level aspects of a communication
architecture (such as physical buses) are fixed at fabrication. However,
a great deal of flexibility can still be achieved by implementing the top
layers of the protocol stack in software. Then, when the application's
communication requirements change, the system can adapt by
exporting a new set of communication functions to the system
components.
The block diagram of the basic building block of the MESCAL
architecture, known as a communicator, is shown in the Figure below.
It combines a VLIW-like processing element, some local memory and
cache, and a coprocessor called a communication assist (CA). The CA
coprocessor offloads much of the overhead of communications from
the processing element. A similar approach was introduced earlier in
[7]. The topmost layers of the stack model are implemented in
software on the CA coprocessor. This allows them to be modified even
after the architecture is fabricated. The lowest layers of the stack
model, such as interfaces to physical interconnects, are implemented as
hardware peripherals on the CA coprocessor. All communications
between processing elements is handled by the hardware and software
of the CA coprocessors.

We believe that the communication-assist provides the right degree of
flexibility for our communication architectures. When an architecture
is designed for a specific application, all features of the communication
architecture including the physical hardware implementation can be
customized for that application. After fabrication, the programmable
nature of the communication assist allows the system to adapt to the
changing needs of the application. The flexibility lies in the
implementation of the upper layers of the stack model. These are the
layers that provide the highest-level communication functionality to
the processing elements.

 MESCAL system component

5. CONCLUSION
The Gigascale Silicon Research Center aims to provide the key tools
and methodologies to allow integrated circuit designers to make the
transition from ad hoc system on a chip design to a disciplined
approach to platform design. One of the essential elements of this
transition is taking a rigorous, though flexible, approach to the design
of on-chip networks that interconnect IP blocks of all variety,
including processing elements. In this paper we have outlined essential
elements of this design discipline and illustrated the approach with two
design examples. Two design methodologies (Metropolis, Mescal)
based on these concepts have been detailed. It is the authors’ belief
that a network-on-chip approach, driven by a consistent design
methodology, is bound to lead to dramatic changes in how SOCs will
be constructed in the next decade. The GSRC project has offered us an
invaluable framework to test new ideas and interact among ourselves
and the other researchers involved in other aspects of SOC design.

6. REFERENCES
[1] F. Balarin et al., “Hardware-Software Co-Design of Embedded

Systems: The POLIS Approach”, Kluwer Academic Publishers,
1997.

[2] J. Y. Brunel et al., “Cosy communication IP”. Proceedings of the
Design Automation Conference, Los Angeles, CA June 2000.

[3] Cierto VCC, Cadence Design Systems.
http://www.cadence.com/technology/hwsw/ciertovcc/

[4] Commercial Video Processors. MIT, Cambridge, MA.
http://wad.www.media.mit.edu/people/wad/vsp/node1.html.

[5] T. R. Halfhill. ”Intel Network Processor Targets Routers”.
Microprocessor Report, Vol. 13, September 13, 1999.

[6] C. A. R. Hoare. Communicating Sequential Processes. Prentice
Hall International Series in Computer Science, 1985.

[7] M. Horowitz and K. Keutzer. ``Hardware-software co-design’’.
In SASIMI’93, October 1993, pp. 5-14.

[8] N. C. Hutchinson and L. L. Peterson. ”The x-kernel: an
architecture for implementing network protocols”. IEEE
Transactions on Software Engineering, Vol. 17, No. 1, pp. 64-76.

[9] K. Keutzer et al. ”System-Level Design: Orthogonalization of
Concerns and Platform-Based Design”. IEEE Transactions on
Computer-Aided Design. Vol. 19, No. 12. December 2000.

[10] E. Kohler, R. Morris, B. Chen, J. Jannotti, F. Kaashoek. ”The
Click Modular Router”. ACM Transactions on Computer
Systems, Vol. 18, No. 3, August 2000, pp. 263-397.

[11] R. Passerone et al., “Automatic Synthesis of Interfaces Between
Incompatible Protocols”, Proceedings of the 31st Design
Automation Conference, San Francisco, CA, pp. 8-13, June
1998.

[12] L. .S. Pen and B. Dally, “Flit-Reservation Flow Control”,
Proceedings of 6-th International Symposium of High-
performance Computer Architecture, Jan. 2000.

[13] A. Sangiovanni-Vincentelli et al., “Formal Models for
Communication-based Design”. Proceedings of the 11-th
International Conference on Concurrency Theory, Concur '00,
August 2000.

[14] J. Silva et al. “Wireless protocols design: challenges and
opportunities,” Proceedings of Int. Workshop on
Hardware/Software Codesign, May 2000.

[15] Sonics Inc. http://www.sonicsinc.com/
[16] VSI Alliance. http://www.vsi.org/
[17] H. Zhang, et al. “A 1-V hererogeneous reconfigurable DSP IC

for wireless baseband digital signal processing,” IEEE J. Solid
State Circuits, vol. 35, Nov. 2000, pp. 1697-1704.

[18] H. Zimmermann, OSI Reference Model - The ISO Model of
Architecture for Open Systems Interconnection, IEEE
Transactions on Communications COM-28, No. 4: April 1980.

	Main
	DAC01
	Front Matter
	Table of Contents
	Session Index
	Author Index

