Integrating Scheduling and Physical Design into a
Coherent Compilation Cycle for Reconfigurable Computing
Architectures

Kia Bazargan Seda Ogrenci Majid Sarrafzadeh
ECE Department CS Department CS Department
University of Minnesota UCLA UCLA

Minneapolis, MN 55455
kia@ece.umn.edu

ABSTRACT

Advances in the FPGA technology, both in terms of de-
vice capacity and architecture, have resulted in introduction
of reconfigurable computing machines, where the hardware
adapts itself to the running application to gain speedup. To
keep up with the ever-growing performance expectations of
such systems, designers need new methodologies and tools
for developing reconfigurable computing systems (RCS). This
paper addresses the need for fast compilation and physical
design phase to be used in application development / de-
bugging / testing cycle for RCS. We present a high-level
synthesis approach that is integrated with placement, mak-
ing the compilation cycle much faster. On the average, our
tool generates the VHDL code (and the corresponding place-
ment information) from the data flow graph of a program in
less than a minute. By compromising 30% in the clock fre-
quency of the circuit, we can achieve about 10 times speedup
in the Xilinx placement phase, and 2.5 times overall speedup
in the Xilinx place-and-route phase, a reasonable trade-off
when developing RCS applications.

1. INTRODUCTION

Reconfigurable computing systems (RCS) are the next
promising alternatives to costly high performance multi pro-
cessors. Such systems usually consist of a host processor,
(tightly) connected to a reconfigurable ” co-processor” called
Reconfigurable Functional Unit (RFU). The RFU can be an
FPGA (Field Programmable Gate Array) which resides ei-
ther on the same die as the host processor, or on a separate
chip, connected to the processor through a bus. An example
of an RCS architecture is shown in Figure 1-a (for a survey
on RCS,; refer to [4]). As the FPGAs get larger and faster,
both the number and complexity of the modules to load
on them increase, hence better speedups can potentially be
achieved by exploiting FPGAs in hardware systems.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

DAC 2001, June 18-22, 2001, Las Vegas, Nevada, USA.

Copyright 2001 ACM 1-58113-297-2/01/0006 ...$5.00.

Los Angeles, CA 90095-1596
seda@cs.ucla.edu

Los Angeles, CA 90095-1596
majid@cs.ucla.edu

RFU operations
| Data Memory |

|
I N
IData - IData E Q

RF CPU
Data B

CPU
RFUOPS instructions

RFU Config. | |CPU Instruction| :l:
Mel

mory Memory
(a) (b)

Figure 1: (a) The architecture of an RCS
FPGA configured with seven RFUOPs.

(b) An

In the past decade, we have witnessed notable benefits in
exploiting reconfigurable computing, despite the fact that
such benefits are limited to specific classes of applications.
Hauck has reported many such applications in [5]. Figure
1-b shows an FPGA which is configured with seven RFU
operations (RFUOPs). Examples of RFUOPs are adders,
constant multipliers, shifters, register and multiplexers.

1.1 Previous Work and Current Challenges

Despite all the success stories on FPGA implementations
of some applications, FPGAs are not as commonly used to-
day as one would expect. Among the reasons for the limited
use of FPGAs are small on-chip memories and low com-
munication bandwidth between the host processor and the
RFU.

On the other hand, if the current trend in the FPGA
technology improvements continue, the RFU systems of the
future will have enough on-chip memory both for RFU con-
figuration and program data. There will be specialized hard-
ware in the RFU fabric to handle floating point operations.
Furthermore, as the SOC technology becomes prevalent,
both the host CPU and the RFU can be placed on the same
die and as a result, high bandwidths between the two can
be achieved.

Apart from the architectural challenges, there are seri-
ous obstacles in realizing a general-purpose RCS in terms
of design techniques, as well as runtime support systems.
Today’s RCS designer should have very good programming
skills as well as detailed knowledge of the target hardware.
There are currently no compilers that can directly compile
a C program to configuration bit stream for commercial FP-

GAs'. Other compilers that convert C programs to hard-
ware description languages have been reported in the past
few years, although they are still in their developing stages
(e.g., [6]). Some compilers compile from C-like languages to
hardware languages.

The process of compiling hardware description languages
to hardware (mostly logic synthesis, placement and routing)
is very time-consuming: minutes for small designs and hours
for larger ones. Long synthesis/physical design cycles mean
longer application development and debugging time, in turn
a hurdle for the widespread use of RCS in common comput-
ing platforms. The place-and-route algorithms proposed for
FPGAsare generally very slow or do not generate high qual-
ity placements. The only fast placement algorithm reported
in the literature is a work by Callahan et. al. [3] which is
a linear time algorithm for mapping and placement of data
flow graphs on FPGAs, but places the datapath modules
linearly, obviously eliminating lots of good placement solu-
tions.

1.2 Goals

Ideally, a programmer should be able to write his/her code
(e.g., DSP, encryption, compression, video/graphics, vector
calculations, etc.) in a high-level language and compile it
as we compile C programs today. Most of the optimizations
should be done automatically (yet allowing the programmer
to interfere), and the compilation/debugging cycle should
be short. Such a scenario does not leave room for logic syn-
thesis, placement and routing of the circuit at the gate-level.
Extensive use of versatile IP (intellectual property) libraries,
as well as templates for routing and placement seem to be
a necessity.

In this paper, we focus on high-level synthesis (HLS) and
physical design (PD) of statically reconfigurable systems.
That is, the RFU configuration for each program is gener-
ated and stored at compile time, and mapped to the RFU
fabric before the program starts running. We have pre-
sented fast, high quality REUOP allocation, operation bind-
ing to RFUOPs and operation scheduling (high-level syn-
thesis) combined with a computationally efficient placement
method (part of the physical design process) that can place
RFUOPs compactly.

We will show that better results can be achieved by allow-
ing the HLS and PD stages to interact so that the transition
from the front-end tools (compiler and HLS) to the back-end
tools (PD) is done more smoothly. The result is faster con-
vergence to the desired design specifications. In short, the
scope of this paper is datapath generation and physical de-
sign and their interactions. So, for example, we will not deal
with runtime support features such as initializing the RFU
with the data for the computations.

1.3 Outline

The rest of this paper is organized as follows. Section
2 describes the overall flow of our method. Section 2.4
describes our tool and its different componenets, namely,
high-level synthesis and the placement method. Section 3
focuses on our scheduling algorithm. Section 4 contains the
experiments, and finally, Section 5 concludes the paper and
discusses future directions for our work.

!There are, however, compilers for prototype RCS ar-
chitecutres such as CMU’s Chimaera, Berkeley’s Garp and
University of Washington’s RaPiD.

2. COMPILATIONANDSYNTHESISFLOW

Figure 2 shows the flow we propose to compile C pro-
grams to object code (to run on CPU) and RFU bit streams
(modules representing RFUOPs). First, a modified “gcc”
compiler [8] is used to convert loop bodies of a program to
data flow graphs (DFGs). For simplicity, we discard all the
bit-width information and only deal with the types of oper-
ations (refer to Section 5 for more discussion on this issue).

Candidates for

b Al
mapping onto
RFU >

—
w:a_g_.g,be

DFGCs

C program

IPI|braryy{7 R i tructural Synthesis i

tools /
Local Global S -
e,ea Placement Loop Placement E back-
block placement annotations
dimensions constraints

Figure 2: Our hardware/software compilation flow

The loop bodies are initially all candidates for being mapped
to RFU fabric as loop blocks (the selection of the parts of
the program to be mapped to the RFU, is known as hard-
ware/software partitioning. See [7]). A loop block is a set
of RFUOPs that perform the operations in a loop body. It
consists of different RFUOPs (such as adders, shifters, reg-
isters, multiplexers, etc.). The scheduler uses the area and
delay information in the IP library (we used Xilinx Core-
Gen 2.1i in our experiments) to assess the speedup and the
area of each of the loop blocks. The scheduler calls the local
and global placement algorithms (Section 2.4) to determine
the location of the individual RFUOPs on the chip. At the
end, the hierarchical structural VHDL code for the datap-
aths (that is, loop blocks), as well as the control path for
the loop bodies are created.

The VHDL code is translated into netlist using Synplic-
ity. The netlist, together with the placement constraints
(provided by our placement algorithms), is used as input
to Xilinx Design Manager to generate the final place-and-
route. Although we have used Xilinx chips as the target
architectures for the RFU, our methods are not limited to
any specific products, as long as the IP library is provided.

Currently we do not generate the object code for the host
processor and the interfacing routines between the RFU and
the CPU (the dotted box in Figure 2). Also missing from our
flow is any automatic feedback from the commercial synthe-
sis tools to the previous stages (the dotted curve in Figure
2). We intend to add these features to our work in future.

2.1 Physical Design Specification

Our tool starts with reading in a library description file.
The library file contains all operation types and their delays
on the CPU, as well as the information on the IP modules
(RFUOPs). For each IP module, the library file specifies the
delay, dimensions, and the operation types it can handle.

The user can specify hardware properties such as how
tightly the CPU and RFU are coupled and the size of the
RFU fabric. Also, the user has control over a number of
scheduling (e.g., how much effort should be put in minimiz-
ing the number of connections between RFUOPs as opposed

to minimizing the latency) and placement parameters (e.g.,
the quality/time adjustments for the loop block placements,
how the loop blocks should be placed on the chip, etc.).

2.2 High-level Synthesis

The input to the scheduler is the data flow graph of the
loop bodies in a program. After reading the DFG the sched-
uler (Section 3) schedules each of the loop blocks tentatively
on the RFU. Based on the communication model, the op-
erations in a loop block might be scheduled entirely on the
RFU or on both the RFU and the CPU.

For each loop, the scheduler calculates the latency gain
(i.e., the gain in latency when run on RFU as opposed to
entirely running on CPU), and stores this number so that
after generating the local placements for the loop blocks,
it can decide on which loops to actually map to the RFU
(based on the speedup/area numbers). The user can over-
ride such decisions and manually select individual loops for
mapping onto the RFU.

2.3 Physical Design Aware HLS

An important feature in our tool is its physical design
aware high-level synthesis. This feature makes the tool pow-
erful, and makes the interfacing with different back-end tools
easier. By interacting with the physical design stages, our
high-level synthesis phases generate better schedules for the
back-end tool. Generally, the higher levels of the design cy-
cle can make more profound impacts on the qualities of the
design than the lower levels can. So, by making high-level
decisions that are more consistent with the back-end tool
capabilities, the convergence to a desired solution would be
faster.

Examples of the physical design considerations in our high-
level algorithms are:

e Considering the congestion
Our scheduler considers the connectivity (defined in
Section 3.2.2) of the RFUOPs when scheduling op-
erations on the allocated RFUOPs. This in turn re-
sults in less congestion and hence easier routing by the
back-end tools (Section 4.2 presented the experimental
results supporting this claim).

e Avoiding high fanin modules
At the binding step (i.e., when deciding the RFUOP
on which an operation should be scheduled), the tool
not only considers how early a resource can finish the
operation, but it also considers how large the fanin set
of the resource is.

2.4 Hierarchical Placement

By taking a hierarchical approach to the placement prob-
lem, our tool is able to generate high quality placements
very quickly. After the scheduling is done for all the loops,
a hierarchical two-stage placement algorithm is used to de-
termine which loop blocks fit on the RFU and the location
of those that fit. The placement method consists of the lo-
cal placement step that determines the relative locations of
RFUOPs inside a loop block, and the global placement phase
that determines the location of the loop blocks on the RFU.

The reason that we treat the local and the global place-
ment problems differently is that the two are different in
nature. The number of interconnections between RFUOPs
in a loop block is considerably more than the number of

wires connecting loop blocks. The local placement stage
tries to minimize the area and the wire length of each loop
block individually. In our current implementation, we use
Wong-Liu’s simulated annealing floorplanning algorithm for
this stage. Since the number of modules in each loop block
is usually small (tens of modules in each loop block), and
there is not much wires between them, the annealing process
converges much faster compared to ASIC floorplanning. The
local placement algorithm keeps a number of best shapes (in
terms of the cost function, which can be a combination of
area, wire length and aspect ratio of the loop block) for each
loop block?. Keeping multiple shapes for each loop block
gives more flexibility to the global placement phase. As the
experiments show, the local placement generates placements
for all the loop blocks in about 50 seconds on the average,
although that is adjustable too.

The user can control various parameters in the local place-
ment (e.g., how much effort should be put into minimizing
wire length as opposed to the area of the loop blocks). Each
loop block can be placed using different values of such pa-
rameters. This is particularly useful if we would like to min-
imize the wire length on a loop block with the most critical
path, while our main concern with regards to another loop
block might be its large area.

After the local placement is generated for each loop block,
the tool tries to globally place the loop blocks on the RFU.
The global placement is done in decreasing order of loop
gain. The loop gain of a loop block is its speedup di-
vided by its area. If there is no room for a loop block,
the next loop block in the list is considered for placement.
The global placement method uses a very fast algorithm
called “KAMER-BF Decreasing” that we have developed.
KAMER-BF-Decreasing sorts the modules based on their
area, and inserts them using the KAMER-BF method [2].

2.5 VHDL Code Generation

Finally a set of hierarchical VHDL files are generated
which describe the datapath and corresponding control path
for each loop block. The placement information is written
in a file for the back-end tools. In our experiments, we used
Sinplicity 6.0 for compiling the structural VHDL code to
.edif netlist format and Xilinx Design Manager 2.1 as the
back-end tool. The placement information was written in
the .ucf (user constraints file) format for the Xilinx place-
and-route stage.

3. STATIC SCHEDULING

As we stated earlier, we have addressed the scheduling
problem for the statically configured RFU that is loosely
coupled with the CPU (i.e., the data communication speed
between the two is not high, e.g., through PCI bus). There
are multiple RFUOPs configured on the RFU for each loop
block. At any time, any number of RFUOPs can compute
in parallel. Choices of the RFUOPs from the IP library,
for placing on the RFU (as loop blocks), as well as their
locations on the chip, is made at compile time. Once the set
of RFUOPs and their locations is decided, the configuration
bit-stream is generated and stored as a “hardware code”.
‘When the program is loaded into memory, the configuration
is streamed to RFU, and then the program starts running.

2Qur experiments showed that keeping ten shapes is enough,
although this number could be changed.

Currently, we do not deal with the initialization of the loop
blocks, i.e., transferring data from the CPU to correspond-
ing loop block registers and RFU memory blocks. Also, we
do not map the vector variables (arrays, structures, etc.)
used in the input C program to memory blocks on the RFU.
We convert all array accesses to scalar variable accesses and
map those scalar variables to registers on the RFU. Our
future plan is to implement array variables as well.

3.1 Static Scheduling Problem Formulation

A program written in a high-level language can be repre-
sented by a control/data flow graph (CDFG). We only con-
sider loop bodies for optimization purposes, and hence use
the data flow graph (DFQG) instead. We define set OpT'ypes
as the set of all operation types that the hardware can per-
form, either on CPU or on RFU (CPU can perform all oper-
ation types). A function cpuDelay : OpTypes — Z+ maps
operation types to number of cycles each takes on CPU.
Parts of the program that we are considering for schedul-
ing (partly) on RFU are represented in a DFG as defined in
Equation 1. Nodes in DFG represent operations and edges
show precedence relation between operations.

DFG =<V, E type >, E CV x V type : V — OpTypes
(1)
The IP library is represented as set Library (Equation 2).
Each element in Library, which represents an RFUOP, is a
3-tuple (T3,d;, S;). T; is the set of all operation types that
the RFUOP can perform. d; is the delay of the operation on
RFU, and S; is the set of shapes (width, height) the REUOP
can take.

Library = {(T;,d:, S;) |T; C OpTypes,d; € Z*,S: C (ZT)*}
(2)
The static scheduling for reconfigurable computing sys-
tems is defined as the problem of finding the set resources
(Equation 3) and functions bound : V — (CPUNresources)
and start : V — Z such that the schedule is valid and the
total latency is minimized. Resources is the set of modules
instantiated from the library. There could be multiple copies
of the same Library type on the chip. We define function
finish in Equation 4.
resources = {ri = (i, zi, yi, wi, hq)|
l; = (1},d;, S;) € Library,zi,y: € Z,
(wi, hi) € Sj,wi < W, hi < H} 3)

finish : V — Z7, finish(op) = start(op) + dpound(op) (4)

The latency of the schedule is defined as the time the
last operation ends, i.e., maz{finish(op)}. It has been
shown that even when all resources have the same delay, the
scheduling problem is NP-hard. Our problem is somewhat
similar to scheduling operations with different voltage levels
(for power optimization), but with different cost models.

3.2 Static Scheduling Algorithm

Our scheduling method is non-preemptive, i.e., once an
operation starts execution, it will not be interrupted be-
fore completion. We have modified the well-known list-
scheduling algorithm to account for different running times
of the operations on different resources.

For a scheduled operation, we define function selfGain
as in Equation 5. Intuitively, this function is a measure of
how early an operation can be scheduled if a new resource,

capable of implementing the operation, is added to RFU. In
other words, selfGain is an indication of how an operation
is bound to be scheduled at its current time due to depen-
dency constraints, as opposed to resource constraints (see
Figure 3). The difference in latency of the new resource and
bound(op) should also be added to sel fGain, but we did not
show it in Equation 5 for simplicity.
selfGain Ve=Z
sel fGain(op) = start(op) —
maz{finish(pred)|(pred,op) € E} (5)

Figure 3: selfGain and succGain of node self.

Similarly, function succGain is defined in Equation 6°.
This function is a rough estimation of how the latency of the
whole schedule will be affected if the operation is scheduled
on a new resource. It speculates how early the successors of
a node can be scheduled, if the operation is moved to a new
resource r.

succGain V X resources — Z

succGain(op,r) =
maz{ finish(pred)|(pred,op) € E} +d,
—min{start(succ)|(op, succ) € E} (6)

Our method first allocates one resource for each operation
type that appears in the loop block (e.g., if there are three
additions and two shifting operations, the method allocates
one adder and one shifter). Then, in a resource allocation
loop, prospective new resources are examined for potential
gain in the overall latency, and the space they occupy on
the RFU. The candidate resource types are examined in the
order of the speculative gain on latency, the gain being a
linear combination of sel fGain and succGain.

If the new resource results in latency improvements, it is
added to the resources set and the nodes are rescheduled us-
ing list scheduling. Otherwise, the next candidate resource
in the list is examined.

3.2.1 Operation Scheduling (list-scheduling)

After a new resource is allocated, the DFG operations
are scheduled on the instantiated resources using the list-
scheduling method. When an operation is extracted from
the list scheduling queue, allocated resources are examined
for compatibility (i.e., of the same type) and the one which
can finish the operation the earliest is chosen. Ties are bro-
ken by using the connectivity of the resource to the resources
which implement operation’s predecessors.

3.2.2 Register and Multiplexer Instantiation

After the operations are scheduled on the current resources,
registers are inserted where a value is needed more than a cy-
cle later than the time it is generated. A left-edge heuristic

3The function we used in our code is more complex than
what is defined in Equation 6, but still the same time com-
plexity, i.e., O(d) where d is the maximum density of the
nodes in the DFG.

method is used to minimize the number of registers. After
register instantiation, the fanins of the RFUOPs as well as
registers are examined and multiplexers are inserted at the
inputs of the resources that get input from more than one
source.

An important difference between our scheduling problem,
and the traditional one is that here the area of steering logic
components is comparable to functional units (e.g., an 8-
bit 2:1 multiplexer takes 4 CLBs, the same number as a
registered 8-bit adder takes). For this reason, we provide
special heuristics in our scheduling algorithm to address area
minimization in the higher levels of the design. This results
in a more smooth transition to the back-end tools and less
surprises for the designer. Section 4.2 presents experimental
results that show the effectiveness of our approach compared
to a traditional method.

Since routing resources are limited in FPGAs, high con-
gestion and large fanin/fanouts should be avoided*. To do
so, we employ two heuristic methods: one during the list-
scheduling and another one during multiplexer insertion.
The former has only approximations on how the final con-
nections between the modules would be (because the regis-
ters and multiplexers have not been instantiated yet), where
the latter knows the exact connections.

The heuristic used in list-scheduling to minimize conges-
tion and fanin, uses the connectivity parameter, defined in
Equation 7. The heuristic used in multiplexer insertion,
replicates high-fanin RFUOPs and registers as a post pro-
cessing phase.

connectivity : resources X resources +— Z,

connectivity(ry,rz2) = |C|
C = {(, 9)|(opi; op;) € E, bound(op:) =r1,
bound(opj) = r2} (7)

4. EXPERIMENTAL RESULTS

We used Xilinx XC4000XL series as the target FPGA
architecture in our Experiments (further experiments with
Virtex devices show similar results). As the IP library, we
used Xilinx CoreGen 2.1i IP blocks. We generated only 8-
bit REUOPs, although our methods are capable of handling
larger modules as well. We assumed that the configurable
component runs at half the clock speed of the host proces-
sor (e.g., Virtex’s grade 5-6 speed can achieve 150 MHz on
the data path, and the host CPU be a 300MHz Pentium
processor). Since we target loops for optimization, we used
the pipelined version of the operations in the IP library. We
used Honeywell adaptive computing benchmark programs
as well as some MediaBench programs. Table 2 shows the
test programs we used for scheduling.

4.1 Scheduling Experiments

In this experiment, we ran our scheduling method on dif-
ferent benchmarks. The RFU area was set large enough so
that no loop blocks are rejected due to lack of RFU space.
The tool removed loop blocks with no speedup from the
RFU, though (i.e., loops that run faster on CPU). Table 2
summarizes the results. The second column (“Total num-
ber of loop blocks”) shows how many loop blocks were rep-
resented in the DFG file. The third column shows the the

4The former makes the routing phase hard, while the latter
has a negative impact both on the routing and clock speed

latency on a uni-processor host machine. The fourth col-
umn lists the number of loops that actually showed speedup
on the RFU. Column five (“Scheduled cycles”) show the
latency of the whole DFG after scheduling, counting both
loop blocks that were scheduled solely on the CPU and those
which gained speedup on the RFU (overall speedup is the
ratio of columns 5 and 3). Finally, the last two columns
correspond to the latency and the speedup of the mapped
loop blocks (i.e., those which gained speedup on the RFU).

CPU | loops | schd | mapd | spdup
Benchmark loo- | cyc- | map- | cyc- | cyc- | /mppd
programs ps les ped les les iter.
DCT 2 36 2 18 18 2.00
DFET 2 29 1 27 1.50
FFTGen 4 47 4 36 36 1.30
Image 15 220 9 125 82 2.15
Comp/dcmp | 19 191 12 141 90 1.55
Jpeg 8 195 7 90 84 2.25

Table 2: Original number of cycles and scheduled
number of cycles per iterations of the loops.

As we can see, even though the RFU fabric is working
with half the frequency of that of the CPU, we still can
gain speedups of about 2. Some individual loops show even
speedups of around 4. The scheduling time was less than a
second in all the cases.

4.2 Connectivity and Routing Experiments

As described in Section 3.2.2, we employ heuristics at the
operation scheduling step to decrease the number of con-
nections in the final design. High connectivity not only in-
creases congestion and makes the routing harder and slower,
but it can also indirectly affect the area of the design. The
increase in the area is caused by resource replication. Since
some IP libraries have limited number of multiplexer types
(e.g., we found that using multiplexers with more than three
inputs causes routing failure in some cases), the HLS tool
has to either use cascaded multiplexers or replicate func-
tional units if the number of fanins is more than the maxi-
mum multiplexer inputs.

L. Bound No Con Min Con

DFG(D,#op)* | A [[con [#m [[con [#m || con [#m

Image (L15, 39) | 22 72 39 74 35 71 34

Image (L5, 84) 22]| 197 | 85 205 | 87 205 84

versat (L2, 34 16 94 33 97 31 90 31

(

()
JPEG (L5,25) |16 || 70 | 12 |[75 | 25 || 68 | 9
JPEG (L7,57) | 24 || 252 | 91 || 262 | 103 || 248 | 94

Average [[137] 52 [143] 56] 136 | 50

*ID is the loop identifier. “#op” is # DFG nodes.

#m is the number of modules in the loop block.
Table 3: Number of connections after register and
multiplexer instantiation.

The purpose of this experiment is to show the effective-
ness of the heuristic that we use to reduce the number of
connections and multiplexers. We tested our method (called
“Min Conn” in Table 3) against two other algorithms. The
descriptions of the three algorithms are listed below.

e Min Conn: Described in Section 3.2. Considers
connectivity during list scheduling.

e Lower Bound: Allocates the minimum number of re-
sources (not considering registers and multiplexers) for
the minimum latency schedule.

Without .ucf With .ucf Ratio
Xilinx Xilinx Crit. Xilinx Xilinx Crit. Our
Benchmark place route path place route path place PD Clock
programs time (s) | time (s) (ns) time (s) | time (s) (ns) time (s) || speed | period
DCT 46 71 14.538 17 43 16.788 6.9 175% 1.15
DFT 53 90 12.912 17 52 16.945 4.3 195% 1.31
FFTGen 57 106 13.309 16 66 13.569 4.8 188% 1.02
Cmp/Dcmp(a)*T 2146 2683 15.000 50 619 18.638 23 698% 1.24
Cmp/Dcmp(wl)*¥ 402 926 19.713 95 653 19.042 23.1 172% 0.97
Image(a)*T 1218 1614 14.355 95 558 25.884 82.5 385% 1.8
Image(wl)** ¥ 224 919 27.449 62 536 36.778 83.4 168% 1.34
JPEG(a)"Jr 848 1103 17.433 45 367 32.16 111 373% 1.84
JPEG™* 167 534 25.458 38 377 32.23 112.8 133% 1.27
[Average [573.44 [894.00 | 17.80 J| 48.33 [363.44 | 23.56 | 50.20 [276% | 1.33 |

Note: all designs mapped to Xilinx XC4028 (32x32 CLBs) unless otherwise specified.
**Mapped to Xilinx XC4085 (56x56 CLBs)

*Mapped to Xilinx XC4062 (48x48 CLBs)
tLoop blocks optimized for minimum area.

+
tLoo

p blocks optimized for min. wire length.

Table 1: Back-end place-and-route improvements when using our placement constraints.

e No Conn: This is similar to the “Min Conn” case, but
the connectivity is not considered at all.

The columns marked with “#m” in Table 3 report the to-
tal number of modules, including RFUOPs as well as regis-
ters and multiplexers. The “con” columns report the actual
number of connections in the generated VHDL file. “\” is
the minimum latency.

The bold faces show the minimum values in each row.
In every case, our method results in either less number
of wires or less resource duplications (due to large fanin
RFUOPs). It is noteworthy that our heuristic scheduling
methods almost always achieve the minimum latency. Also,
the scheduling time in all the cases were less than a second.

4.3 Placement Experiments

To test our methods, we use our tool to generate VHDL
files and generate a placement for the datapaths represented
by the input DFG. Then using only the VHDL files, we use
FPGA vendor tools to place-and-route the design. Then we
run the FPGA vendor tools again, but this time we force
our placement on the design.

Table 1 summarizes the results of this set of experiments.
In all cases, not only our placement generates placements
very quickly (50 seconds on the average), but it also causes
considerable speedup in the Xilinx place-and-route phase
(276% on the average).

In terms of the quality of the placement, our method
followed by Xilinx place-and-route generates results that
are consistently around 1.3 times worse than the place-and-
route generated using Xilinx alone. It is interesting to note
that the only cases that deviate from the 1.3 factor, are
those optimized for minimum area. If we leave those two
cases out, the average ratio would be 1.2.

The one to last column (“PD speed”) is the ratio between
the runtimes of Xilinx place-and-route without .ucf (second
coulumn+third) and our placement followed by Xilinx place-
and-route with .ucf (5" + 6" + 8" columns). It can be
seen that our placement followed by Xilinx place-and-route
is 276% faster than the case where Xilinx tools do the whole
place-and-route with no hints in the form of user constraint
files. Comparing the Xilinx placement times with and with-
out .ucf, the former runs 10.69 times faster than the latter
on the average. On the average, the routing time with .ucf
is 2.2 times faster than the case with no .ucf. Ideally, by
having an accurate delay estimator we can bypass back-end

tools altogether during the development cycle. At the last
optimization stage, the back-end tools can be run.

5. CONCLUSION

We presented a fast compilation flow for reconfigurable
computing. Using “physical design aware” scheduling and
a hierarchical two-stage placement algorithm, our method
is able to convert C programs to placed VHDL datapaths
in less than a minute. For more details on our work, see
[1]. There are lots of directions to which our work can be
extended. Handling nested control paths is our immediate
future goal. Providing back-annotations from the back-end
tools, computation precision management, more advanced
solutions to the hardware/software partitioning problem are
just a few more to name.

6. REFERENCES

[1] K. Bazargan. “Designing CAD Tools for Reconfigurable
Computing”. PhD thesis, Department of Electrical and
Computer Engineering, Northwestern University, 2000.
K. Bazargan and M. Sarrafzadeh. “Fast Online
Placement for Reconfigurable Computing Systems”.
Symposium on FPGAs for Custom Computing
Machines, pp. 300-302, 1999.

T. J. Callahan, P. Chong, A. DeHon, and

J. Wawrzynek. “Fast Module Mapping and Placement
for Datapaths in FPGAs”. Symposium on Field
Programmable Gate Arrays, 1998.

A. DeHon and J. Wawrzynek. “Embedded Tutorial:
Reconfigurable Computing: What, Why, and
Implications for Design Automation”. Design
Automation Conference, pp. 610-615, 1999.

S. Hauck, “The Roles of FPGAs in Reprogrammable
Systems”, Proceedings of the IEEE, 86(4):615-638,1998.
T. Maruyama and T. Hoshino. “A C to HDL Compiler
for Pipeline Processing on FPGAs”. Symposium on
FPGAs for Custom Computing Machines, 2000.

M. Weinhardt. “Compilation and Pipeline Synthesis for
Reconfigurable Architectures”. Reconfigurable
Architectures Workshop (RAW), 1997.

Z. A. Ye, N. Shenoy, and P. Baneijee. “A C compiler
for a processor with a reconfigurable functional unit”.
Symposium on Field-Programmable Gate Arrays,

pp. 95-100, 2000.

2]

[4]

[5]

[6]

[7]

[8]

	Main
	DAC01
	Front Matter
	Table of Contents
	Session Index
	Author Index

