A Transaction-Based Unified Simulation/Emulation
Architecture for Functional Verification

Murali Kudlugi® Soha Hassoun*
*|IKOS Systems Inc.

{murali,selvidge,dwp}@ikos.com

Abstract — A transaction-based layered architecture
providing for 100% portability of a C-based testbench be-
tween simulation and emulation is proposed. Transaction-
based communication results in performance which is com-
mensurate with emulation without a hardware target. Test-
bench portability eliminates duplicated effort when combin-
ing system level simulation and emulation. An implementa-
tion based on the IKOS VStation emulator validates these
architectural claims on real designs.

1. INTRODUCTION

Both simulation and emulation are integral parts of the
functional verification of large IC designs despite the dispar-
ity of methodologies in which they are used [4, 5, 8, 6, 3, 9,
7, 10]. Typically, each requires the creation of its own stim-
ulus driving environment (DE), an HDL testbench in the
case of simulation, for example, or an in-circuit hardware
test fixture for emulation. The need to create a new stimu-
lus environment for emulation limits its adoption despite its
significant model execution speed advantages.

Use of a single software-based stimulus environment for
both simulation and emulation is an attractive possibility
since it readily supports the migration between the two.
This can combine the benefits of simulation, in the form of
greater controllability and faster model turn time, with the
performance advantages offered by emulation. However, to
achieve significant performance advantages when using emu-
lation, the software stimulus environment must not become
a performance limitation. Most current software stimulus
environments interact with the device under test (DUT) at
a low level of abstraction, such as events on DUT pins within
an HDL testbench. This results in both frequent model syn-
chronization and frequent movement of small quantities of
data between the stimulus environment and DUT, which in
turn severely limits overall model performance, as we will
show.

In contrast, the unified simulation/emulation architecture
proposed in this paper overcomes the limitations of tradi-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

DAC 2001, June 18-22, 2001, Las Vegas, Nevada, USA.

Copyright 2001 ACM 1-58113-297-2/01/0006 ...$5.00.

Charles Selvidge*

Duaine Pryor*
*Tufts University

soha@eecs.tufts.edu

tional simulation /emulation platforms. The main objectives
of this architecture are:

e 100% portability of the DE between simulation and
emulation,

e enabling hybrid representations: supporting the DE in
an high level language, C, and the DUT in an HDL,
and

e climination of performance bottlenecks due to exces-
sive DE/DUT communication.

These goals can be achieved through a transaction-based
layered architecture in which only the implementations of
the lower layers are changed when moving from simulation to
emulation. Transactions, used to communicate between the
DE and the DUT, encapsulate both data and synchroniza-
tion information. Transactions thus require explicit, user-
defined sends and receives; however, they result in fewer
synchronization points between the DE and DUT. Both the
DUT and DE thus may progress independently, synchroniz-
ing only when needed.

The need for efficient and systematic migration between
simulation and emulation has been observed by many. Popsecu
and McNamar propose using the Zycad simulation accelera-
tor to verify the logic netlist for the emulator, thus minimiz-
ing initial debugging effort on the emulator[10]. Schnaider
and Yogev have proposed using transactions for the con-
current verification of hardware and software[11]. They de-
scribe a detailed API to interface a hardware simulation
engine and C code. They observe that the simulation per-
formance is not suitable for verifying entire application C
code; they state the need for interfacing the C code with an
emulator, as is proposed in this paper.

The remainder of this paper begins with an explanation
of transaction-based communication, and an overview of the
unified simulation/emulation architecture. Next, the archi-
tectural features common in simulation and emulation are
discussed. This is followed by a description of the customiza-
tion of the implementation for simulation and for emulation.
Finally, experimental results and conclusions are presented.

2. TRANSACTION-BASED COMMUNICA-
TION

Synchronization between different verification engines (netlist,

RTL, or ISS simulators and emulators) plays a crucial role in
determining the raw performance that can be achieved. Fine
grain synchronization results in the entire system proceeding

DE DUT

User Application User RTL

cycle-accurate
pin events

Application Adapter Transactor

transactions transactions

Co-modeling Drivers Co-modeling Primitives

Communication
Channel

Figure 1: Overview of the layered simula-
tion/emulation architecture. The implementation
of the co-modeling drivers and primitives are mod-
ified when switching from simulation to emulation.
The DUT is run either using a simulator or on an
emulator.

at the rate of the slowest verification engine. This tight cou-
pling could be implemented by cycle-based or event-based
synchronization, like the one used by Bauer et. alfor Quick-
turn’s event-driven behavioral simulation[2]. When synchro-
nizing a C simulation with an HDL simulator modeling a
detailed netlist, the latter becomes the bottleneck. When
synchronizing a C simulation with emulation, the C code
may become the bottleneck.

An alternative approach is synchronizing verification en-
gines only when necessary via transactions. Transactions
contain both data and synchronization information. They
are exchanged among the engines with explicit sends and
receives. Transactions allow each engine to forge ahead,
performing one or more clock cycles worth of work after
each synchronization point. For example, all the data for a
multi-cycle bus sequence or data communication frame may
be moved via a single message through one synchronization
point. In contrast, with cycle-based communication, there
would be one message and one synchronization point for
each DUT clock cycle. Event communication results in even
more messages and synchronizations.

The advantage of transaction-based synchronization v.s. cycle-

based synchronization can be understood by the following
simplified analysis. The initiation of one transaction for
a given verification engine incurs a latency of L; (in time
units), and creates Cyser clock cycles worth of work. One
cycle-based synchronization incurs latency of L., where
Ls. < L, and creates only one clock cycle worth of work. If
the clock has a period of 7, then the ratio of the work done
by the transaction-based engine to the cycle-based one is:

ratio = (Cyser X ™+ L) /(7w + Lsc)

Thus, a transaction-based verification engine will enable bet-
ter performance than a cycle-based one if the latency over-
head L; is kept to a minimum and if it is possible to perform
many cycles of work based on each transaction (i.e. Cyser
is large).

3. ARCHITECTURE

3.1 Overview

Figure 1 illustrates the unified, layered simulation /emulation
architecture. Like traditional simulation/emulation systems,
this architecture consists of a DE and a DUT connected via
a communication channel. The DE, DUT and communica-
tion channel have distinct layered components.

One main component of the DE is the User Application. It
utilizes an API provided by the Application Adapter, which
in turn is implemented using co-modeling Drivers.

The DUT is comprised of the User’s Netlist, an RTL
Transactor, and co-modeling Primitives. The transactor
acts as an interface between the User’s Netlist and the un-
derlying Primitives. The transactor transforms transactions
into cycle accurate pin events.

The raw communication channel provides a mechanism
for transporting data and synchronization between the DUT
and DE. To communicate, the DUT and DE utilize transac-
tions, which result in an atomic transfer of data and clock-
ing information. The transaction composition and width is
specified by the user. Transactions are atomic because any
generated events in the DE or DUT appear at the end of
the transaction.

The two top layers on both sides are common in the sim-
ulation and emulation environments. However, the imple-
mentations of the co-modeling Drivers and Primitives are
different. Also the communication channels are physically
different. Furthermore, all components of the DUT run on
a HDL simulator in the case of simulation, while running on
an emulator system when using hardware assisted verifica-
tion.

3.2 Uncontrolled v.s. Controlled Time

To allow independent time evolution within each verifi-
cation engine, or within the DE and DUT, the notion of
controlled time modeling within the DUT is developed.

Uncontrolled time refers to real time (wall clock). Con-
trolled time (or modeled time) refers to the time evolution
as seen by the DUT. Because communication and synchro-
nization are attributes of the modeling environment, not
the model, they must not appear to consume modeled time.
Thus, the DUT must be controlled by a clock that is gen-
erated based on controlled time. The DUT sees clock and
data on edges of the controlled clock. The time used in
transportation and processing of transactions is thus invis-
ible to the DUT. This results in a cycle-accurate execution
framework for the DUT in modeled time.

3.3 System Operation

The user of this simulation/emulation system provides C
code for the User Application, and a Netlist for simula-
tion/emulation. The User Application may contain a com-
plex C model of a system component, or it may contain a
test environment that provides test vectors for the Netlist.
The User Netlist is the RTL or gate level model to be co-
verified with the C code.

To send or wait for a transaction from the DUT, the User
Application utilizes specific calls provided by the Applica-
tion Adapter’s API (Application Programming Interface).
A standard C API has been developed which may be used
across many applications, and which can be used to build a
more specialized application-specific API.

Similarly, the User Netlist utilizes signals provided by the
Transactor, which is the system module responsible for pro-
cessing input and output transactions to the User Netlist.
Transactors unpack transactions arriving from the DE and
produce a sequence of cycle-level stimuli to the DUT. Trans-
actors also pack DUT output data and status information
that the User Netlist must send to the User Application.
They are thus tailored for each application. They are de-
signed to be compatible with the co-modeling Primitives.
The latter are application independent. They perform low-
level synchronization between the channel and the Transac-
tors.

Transactions can be initiated by the User Application or
by the Netlist. The User Application sends a transaction by
calling the appropriate API routine with the proper data.
The call activates the co-modeling Drivers which send the
transaction across the communication channel. If the DUT’s
co-modeling Primitives are busy, the transaction is buffered
in the channel. Once the transaction is received via the co-
modeling Primitives, it is passed to the Transactor. The
Transactor unpacks the data and presents it to the User
Netlist. When initiated by the User Netlist, transactions
undergo the reverse process. Similar channel buffering will
occur if the co-modeling Drivers are busy.

This architecture can be used in one of two modes: data
streaming and reactive co-modeling. In data streaming, data
vectors independent of previous DUT computations are sent
continuously from the DE to the DUT. This naturally best
utilizes any pipeline mechanism built into the channel. In
reactive co-modeling, the User C code depends on the results
of a previous transaction to generate the next transaction.
The User C code thus has to wait for the DUT to process
transactions and to respond before the initiation of any new
transactions. The channel pipelining is less effective, and
the DE and DUT may be idle awaiting new transactions.

4. APPLICATION ADAPTER

The Application Adapter’s API provides a variety of core
C routines to facilitate sending and receiving transactions.
Some of these routines are described. Call useSystem()
checks the availability of the HDL simulator or emulation
hardware. If no simulation license is available or the desired
emulator is in use or powered off, then this call returns error.
The calls setReadWidth(i) and setWriteWidth(i) set the
width of transactions. However, this is only set once, and
the same widths are utilized thereafter.

The write(data) writes the value of data to the inter-
face. This is a blocking call and will wait until the write
operation is possible. The read(data) reads a value from
the interface. This also is a blocking call and will wait until
data is available for reading. The call done() terminates
the simulation/emulation run. These primitives are power-
ful. They can be used by the User Application to perform
any send/receive operation of transactions.

5. CO-MODELING PRIMITIVES

The co-modeling Primitives are a collection of HDL com-
ponents provided to the user. The Primitives provide func-
tionality upon which the Transactors can be built. There
are four primitives: a clock module, an input module, an
output module, and a Dgate module. They are illustrated
in Figure 2.

The clock module Primitive is a controlled clock gen-
erator providing the user the ability to control the sim-
ulation/emulation clock, thus supporting concept of con-
trolled modeling of time evolution in the DUT. When Posi-
tiveEdgeEnabled is asserted the controlled clock undergoes
rising transitions in conjunction with a corresponding transi-
tion on the uncontrolled clock. When PositiveEdgeEnabled
is not asserted, the uncontrolled clock may fall but will not
rise. NegativeEdgeEnabled has a symmetrical effect with
respect to falling clock edges. The clock module also con-
trols Dgate modules which are latches that hold DUT data
stable at times when the controlled clock is inactive.

The input module Primitive presents data from the com-
munication channel to the user’s netlist. The data is sent by
the User Application through the API call write(data). The
input Primitive contains an input data register matching the
transaction width that will temporarily hold channel data
until the user’s netlist (through the Transactor) accessed the
data. Upon the arrival of new data, the signal NewData is
asserted. A one on DataDone driven by the transactor indi-
cates that the module may overwrite the data value during
the next cycle.

The output module Primitive allows the user’s netlist (through

the transactor) to send data to the User’s Application, where
it can be read using the API call read(). This Primitive and
the input Primitive are intended to be symmetrical in op-
eration. Thus, when the module senses NewData, data is
read into an output data register. Once the read operation
is completed, DataDone is asserted.

6. IMPLEMENTATION

Implementing the architecture for both simulation and
emulation requires customizing the low level components of
the architecture in Figure 1 on both the DE and DUT sides.
For simulation, the DE and DUT are realized as two pro-
cesses connected through a UNIX-based, POSIX-compliant
socket[12]. For emulation, the DE is implemented on a host
workstation, the DUT is mapped to an emulator. The host
workstation communicates with the emulator through a PCI
card[1] and a specialized component, called the PCI-IB.

6.1 Simulation

The simulation environment consists of two executables
representing the DE and DUT. The C code for the User Ap-
plication is compiled together with an API library for the
Application Adapter. The library contains the API func-
tions described in Section 4. Here, the API functions contain
socket-based calls to interact with the other executable.

The other executable has an HDL simulation core which
runs the User RTL, Transactor code, and co-modeling Prim-
itives. To communicate with a UNIX socket, the co-modeling
Primitives (input, output, and clock) use special PLI (Pro-
gramming Language Interface) calls. PLI provides a mecha-
nism to interface Verilog programs with programs written in
C language. It also provides mechanisms to access internal
databases of the simulator from the C program. During exe-
cution, a provided library containing the PLI routines is dy-
namically linked with the simulation. Thus, the Primitives
through the PLI calls maintain socket level communication
between the User RTL code and User Application through
a UNIX-based, POSIX-compliant sockets.

Surprisingly, the current simulation implementation proves
in general to be less efficient than a pure PLI solution that

useSystem()
reset() Input New Data
Macro Data Done
isWriteAvailable()
write (dat;)
(cate) Data
T system clock
Application Adapter’s
API calls
\ ‘ Data
isReadAvailable() New Data
Output
Data Done
read(& data) Macro
T system clock

Data Data
€ Dgatc P>
RTL
Transactor =
Controlled
RTL
clock

NegEdgeEnab)
clock
control
PosEdgeEnabl

Figure 2: Co-modeling Primitives and their interaction with the Transactor and User RTL.

directly stimulates DUT pins without the aid of a Transac-
tor. Some experiments, not reported here, have shown as
much as a 4X slowdown. This behavior is due to the im-
plementation of the uncontrolled versus controlled time in
the case of simulation. When the HDL model is awaiting
the receipt of a transaction or the processing of an outgo-
ing transaction, it is unable to meaningfully proceed. This
manifests as the advancement of uncontrolled time with con-
trolled time being inactive. Progress is stalled until the DE
model is scheduled by the underlying operating system.

A means by which unproductive controlled clock cycles
can be suppressed is the yielding of control at such times to
the DE model. Based on experience with the emulation im-
plementation, this modification should result in performance
that equals or exceeds that of non-transaction communica-
tion.

To XMIT FIFO

pCI 2 5

Bus 32 PCI - > P cruator 64

~——3| Hogt -
Interface Emulator

Interface | ——r— | | | |- - Cae

64
32 RCV FIFO control
status

Figure 3: Block diagram of the PCI-IB — the com-
munication board between the host’s PCI cable and
the emulator.

6.2 Emulation

For emulation, the communication channel between the
User Application Side and the User RTL side is implemented
via an interface board, the PCI-IB, that sits between the
workstation host and the emulator. The implementation
uses a Sun Workstation running Solaris 2.5.1, and a VStation-
5M emulator system from IKOS. The emulator connection
is made via a face-plate connect which attaches to a single
emulator I/O cable. The PCI-IB is implemented primarily
using an Altera Flex 10KE FPGA.

A simplified block diagram of the PCI-IB is presented in-
Figure 3. The PCI connection is made via the host’s mother-
board connector or a PCI expansion box. The PCI-IB inter-

faces to the emulator through a bidirectional 64-bit data bus
and some control pins. PCI-IB implements a RCV (receive)
and a XMIT (transmit) FIFO of 4 entries each. These FIFOs
are also modeled in the simulation implementation in order
to maintain consistency between the environments. Each
FIFO can hold 4 entries of width 4K bits giving a maximum
transaction size is 4K. It is only possible to read and write
the entries in 32 bit chunks on the PCI side and 64 bits on
the cable side, requiring multiple accesses per transmission.
To control the PCI-IB, the low level co-modeling drivers
and Primitives have different implementations in the emula-
tion environment than those used in simulation. Instead of
driver code that communicates with the UNIX socket, the
drivers control the PCI-IB. Similarly, the Primitives’ imple-
mentation directly controls the PCI-IB emulator interface.
Whereas the controlled v.s. uncontrolled time concept cur-
rently has a negative performance consequence in a simu-
lation environment, there is no corresponding behavior in
emulation. Under emulation, since independent platforms
execute the DE and DUT models, uncontrolled time ad-
vance on the DUT doesn’t negatively impact execution of
the DE model. In this context, the transaction-based com-
munication delivers significant performance advantages in
comparison to cycle or event-based models and communica-
tion is the performance limiting factor in DUT execution.

7. EXPERIMENTAL RESULTS
7.1 Detailed Example: A Cell Phone

The effectiveness of transaction-based verification is demon-
strated using a digital cell phone design, the TI IS-54 US
TDMA. More information about the design can be found at
http://www.ti.com, search for IS-54.

The design is partitioned into three modules: a transmit-
ter, a receiver, and a channel. The channel module mod-
els the corruption of transmitter output due to the wireless
transmission environment between the base station trans-
mitter and the cell phone receiver, as well as fading effects
of a moving vehicle containing the handset receiver. The de-
sign environment applies real speech sample frames, vary the
parameters of the channel model, and listens to the result-
ing speech sample. Three implementations (all C, C+RTL
in simulation, C+gates in Emulation) of the design are eval-

Simulation Emulation EN=32 B N=512 0 N=1024 = N=2048
Time [CPU Utilization || Time gate Design
(secs) DUT:DE (secs) | Count | speed
DT || 330 s 87%:10% 11 152657 | 700kHz 200
DTR || 700 s 82%:19% 13 393523 | 625kHz

Table 1: Experimental results for the digital cell
phone example. The CPU utilization reports how
the processor was utilized to perform both simula-
tion and run the C code. The gate count for emu-
lation refers to the number of primitive gates in the
circuit. The number of clocks per frame describe
how many DUT cycles were needed to process the
design. Finally, the design speed refers to the fre-
quency of the clock on the DUT side.

uated, for two different variations of the design. In the first,
denoted by design DT Table 1, the transmitter is only mod-
eled in RTL, while the rest of the system is modeled in C.
In the second, denoted by DTR, the receiver is moved from
C to RTL. A commercial synthesis tool was used to con-
vert the C into RTL. In all cases, a total of 841 frames of
speech samples were processed. The DUT performed 250
DUT clock cycles for each frame in DT, and 420 DUT clock
cycles for each frame in DTR.

The results are reported in Table 1. Although the gate
count more than doubled when more of the design was moved
to Emulation, the verification time did not vary much from
the all C model of 12 seconds. This demonstrates gate-level
verification accuracy in the same time as running a C level
model. This occurs because emulation allows more concur-
rency in hardware execution. Certainly, the increase in gate
count adversely affects simulation.

7.2 Performance Benchmarks

Overall execution rate of a DUT when stimulated by a
test environment is a function of the latency and bandwidth
characteristics of the communication channel between stim-
ulus and DUT as well as the total communication needs im-
posed by the structure of the stimulus model. Experimental
results in this section demonstrate that a communication
channel can be produced with capabilities consistent with
emulation speeds. They also demonstrate that the precise
structuring of communication between stimulus and DUT
can have a dramatic impact on ultimate DUT model execu-
tion speeds.

To characterize bandwidth of the communication channel
in emulation, an experiment consisting of the application of
1 million vectors to a simple DUT is performed. The DUT
consists of a single, wide register. One parameter of the ex-
periment is the width of the register, and thus width of input
and output vectors, denoted N. Another is a pipeline depth
D, indicating the delay tolerable in receipt of prior outputs
relative to the production of new inputs by the stimulus.
Results are shown in Figure 4. Bandwidth nearly attains an
asymptotic level with a pipeline depth of 3 and is maximized
with a maximal transaction size.

To compare the performance impact of different communi-
cation styles, an experiment is performed in which the num-
ber of communication transactions per DUT cycle is varied.
Large numbers of communications per DUT cycle mimics

Millions of Bits/second

Pipeline Depth

Figure 4: Bandwidth, measured in MBits per sec-
ond, of the communication channel as a function of
transaction width, N, and pipeline depth, D.

an event-oriented communication model. A one-to-one ra-
tio corresponds to a cycle accurate level of communication.
Many DUT cycles per communication corresponds to an ab-
stract transaction-oriented communication style.

Results with communication occuring less frequently than
once per DUT cycle are presented in Figure 5. Results
with communication occuring more frequently than once
per DUT cycle are presented in Figure 6. As communi-
cation becomes infrequent, overall execution asymptotically
approaches the raw execution rate of the emulated DUT
model, whereas when communication is very frequent, per-
formance is completely determined by the communication
channel performance and required number of communica-
tion occurrences. Note that in Figure 6, the raw execution
speed of the model is effected by the total model size so all
vector sizes do not asymptotically approach the same limit.

All the numbers in this section were obtained by running
on an emulator running at 32 MhZ with a Sun Ultra-60
running SUNOS 5.7.

7.3 Additional Experiments

Several large industry designs with different characteris-
tics have been validated using the proposed architecture. In
each case, emulation provided considerable speedups over
simulation using PLI. Table 2 reports the detailed perfor-
mance of two such designs: a telecom chip that mostly op-
erated in co-modeling reactive mode, and an IP core that
was verified using test vectors in streaming mode.

8. CONCLUSION

The presented unified simulation/emulation architecture
allows for 100% portability between simulation and emula-
tion. It also provides a communication mechanism to con-
currently exercise different verification engines (Compiled
C & HDL simulators, and Compiled C & emulator). Two
key enabling concepts in the implementation were using
transaction-based communication and synchronization, and

1400
ON=512 BN=1024 CIN=2048
1200 n

1000 W

o
b=3
<

600 — —

} j:F | |
0 N
1 2 3 5 10 25 50 100
Cycles per Transaction

1000 * Cycles/sec

Figure 5: Results in DUT cycles per second when
communication occurs less frequently than once per
DUT cycle, mimicking transaction-based behavior.
One cycle per transaction refers to cycle accurate
performance.

Gate PLI Speed
Count | simulation | Emulation up
Telecom IC 1.6M 20 hrs 5 minutes 240
IP Core || 13.2K 5 days 23 minutes | 320

Table 2: Experimental Results for two industrial de-
signs Telecom IC and IP Core. Emulation was two
orders of magnitude faster than simulation of C and
RTL through PLI.

utilizing the controlled time concept to ensure a cycle-accurate
execution framework for the DUT. Experimental data shows
that performance in emulation is dramatically impacted by
the style of communication between stimulus and DUT and
that abstract, transaction-based communication provides max-
imum performance. The data also shows that transaction-
based verification using C models and emulation provides
cycle-based accuracy at a performance that is comparable to
abstract and pure untimed C models. Furthermore, speed
ups of 320X were obtained over PLI simulation.

9. ACKNOWLEDGMENTS

The authors wish to extend their sincere thanks to the
following people: Balakrishna Nayak and Sundeep Arole for
help with testcases; Dave Scott and Manish Naik for the
simulation implementation discussions; John Stickly for cell
phone demo and benchmarking; Varun Gupta, Jeff Evans
and Andy Lindenburgh for help with large examples; and
Mitch Dale for useful discussions.

10. REFERENCES
[1] “PCI Local Bus Specification, Revision 2.1”. PCISig, 1995.
[2] J. Bauer, M. Bershteyn, I. Kaplan, , and P. Vyedin. “A
Reconfigurable Logic Machine for Fast Event-Driven
Simulation”. In Proc. of the ACM/IEEE Design
Automation Conference (DAC), 1998.

200

180 —

o L EN=512

B N=1024

140 —

ON=2048

120 —

100

80 —

60

1000 * Cycles/sec

40
o L r._| O e
2 3 5 10 25 50

Transactions per Cycle

100

Figure 6: Results in DUT cycles per second when
communication occurs more frequently than once per
DUT cycle, mimicking event-based behavior. One
cycle per transaction refers to cycle accurate per-
formance.

[3] F. Casaubielilh, A. Mclssac, M. Benhamin, M. Barttley,
F. Pogodalla, F. Rocheteau, M. Belhadj, J. Eggleton,

G. Mas, G. Barrett, and C. Berthet. “Functional
Verification Methodology of Chameleon Processor”. In
Proc. of the ACM/IEEE Design Automation Conference
(DAC), 1996.

[4] B. Clement, R. Hersemeule, E. Lantreibecq, B. Ramanadin,
P. Coulomb, and F. Pogodalla. “Fast Prototyping: A
System Design Flow Applied to a Complex
System-On-Chip Multiprocessor Design ”. In Proc. of the
ACM/IEEE Design Automation Conference (DAC), 1999.

[5] A. Evans, A. Silburt, G. Vrckovnik, T. Brown,

M. Dufresne, G. Hall, T. Ho, , and Y. Liu. “Functional
Verification of Large ASICS”. In Proc. of the ACM/IEEE
Design Automation Conference (DAC), 1998.

[6] G. Ganapathy, R. Narayan, G. Jorden, and D. Fernandez.
“Hardware Emulation for Functional Verification for K5”.
In Proc. of the ACM/IEEE Design Automation Conference
(DAC), 1996.

[7] M. Kantrowitz and L. Noack. “I’m Done Simulating: Now
What? Verification Coverage Analysis and Correctness
Checking of the DECchip21164 Alpha Microprocessor”. In
Proc. of the ACM/IEEE Design Automation Conference
(DAC), 1996.

[8] N. Kim, H. Choi, S. Lee, S. Lee, I.-C. Park, and C.-M.
Kyun. “Virtual Chip: Making Functional Models Work On
Real Target Systems”. In Proc. of the ACM/IEEE Design
Automation Conference (DAC), 1998.

[9] J. Monaco, D. Holloway, and R. Raina. “Functional
Verification Methodology for the PowerPC 604
Microprocessor”. In Proc. of the ACM/IEEE Design
Automation Conference (DAC), 1996.

[10] V. Popescu and B. McNamara. “Innovative Verification
Strategy Reduces Design Cycle Time for High-End Sparc
Processor”. In Proc. of the ACM/IEEE Design Automation
Conference (DAC), 1996.

[11] B. Schnaider and E. Yogev. “Software Development in a
Hardware Simulation Environment”. In Proc. of the
ACM/IEEE Design Automation Conference (DAC), 1996.

[12] R. Stevens. “UNIX Network Programming, Netowkring
APIs: Sockets and XTI”, volume 1. Prentice Hall, 2
edition, 1997.

	Main
	DAC01
	Front Matter
	Table of Contents
	Session Index
	Author Index

