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 ABSTRACT
This paper describes the first application of the Genevieve test gen-
eration methodology. The Genevieve approach uses semi-formal
techniques derived from “model-checking” to generate test suites
for specific behaviours of the design under test. An “interesting”
behaviour is claimed to be unreachable. If a path from an initial
state to the state of interest does exist, a counter-example is gener-
ated. The sequence of states specifies a test for the desired behav-
iour.

To highlight real problems that could appear during test genera-
tion, we chose the Store Data Unit (SDU) of the ST100, a new high
performance digital signal processor (DSP) developed by STMi-
croelectronics. This unit is specifically selected because of the fol-
lowing key issues:
1. big data structures that can not be directly modelled without

state explosion,
2. complex control logic that would require an excessive number

of tests to exercise exhaustively,
3. a design where it is difficult to determine how to drive the com-

plete system to ensure a given behaviour in the unit under test.

The Genvieve methodology allowed us to define a coverage model
specifically devoted to covering corner cases of the design. Hence
the generated test suite achieved very efficient coverage of corner
cases, and checked not only functional correctness but also
whether the implementation matched design intent. As a result the
Genevieve tests discovered some subtle performance bugs which
would otherwise be very difficult to find.

1. GENEVIEVE VERIFICATION SUITE
This section briefly describes the Genevieve verification suite (see
[1]), a semi-formal test generation tool.

Semi-formal test generation ( [2]) has developed from the use of
“model-checking” ( [3]) to generate test suites for specific behav-
iour of the design under test. An “interesting” behaviour is claimed
to be never reachable while supplying a property to a model-
checker. If a path from initial state to the state under interest does
exist, a counter-example is generated by a model-checker. The
sequence of passed states forms desired test suite to achieve the
goal behaviour.

An “interesting” design state is often referenced ascorner case,

which is a composition of border behaviours for different desig
parts or blocks. In this documents we often use “corner cases”
specify a particular design state we want to test.

Hereafter we describe used concept and terminology and give m
detail concerning the methodology itself.

1.1  Concept and Terminology
While writing tests, it is essential to measure the quality of gener
ed tests. The choice of measurement orcoverage modeldepends on
the resources available for test generation and simulation. One
the possibilities, available with commercial tools like VHDLCover
is to define the coverage model in terms of lines or statements o
design description. In our example the designers used VHDL
hardware description language. Good tests will cover each VHD
line/statement. The separate elements that compose a cove
model (lines/statement of VHDL source code) are calledcoverage
tasks. Thus, a coverage model is defined more formally as a set
coverage tasks.

Other coverage models derived from hardware languages inclu
 • Branch Coverage consists of all branches in VHDL sour

code;
 • Basic Sub-Condition Coverage consists of all branches

VHDL source code together with the conditions that were m
in order to take the branch;

 • Path Coverage consists of all possible combination of the s
of branches.

Though language based coverage models are comprehensive
easy to define, they do not reflect sequential behaviour of the circ
and thus real corner cases the designers wish to verify. To cope w
this problem, other coverage models have to be chosen relevan
sequence of the design states. The coverage model based on a F
State Machine (FSM) representation works well for this task.

Moreover, the employment of a formal model-checking too
makes the use of the FSM model natural for both test generat
and test quality measurement. So, we will compare the tests
tained with Genevieve and with ordinary verification routines usin
state coverage model briefly described bellow.

A finite state machineis defined to be a finiteset of statesand a
set oftransitions from state to state that occur oninput symbols
taken from some finiteenvironment set. For each input symbol
there is at most one transition out of each state (possibly back to
state itself). Note that not all input symbols are valid in all state
This means that the transition relation may be thought of as a fu
tion from a subset of the Cartesian product of the state set and
vironment set to the state set. A subset of the states are design
to be theinitial states of the machine, and another subset of th
states are designated as thefinal states. Often the following nota-
tional conventions are used:

A finite state machine has state set , inpu
symbols , transition function : , initial (or start)
states , and final states . An input symbol i
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said to bevalid at state if the transition function is defined at
.

A state coverage modelin this context might be equivalent to the
state set . It means that we are interested in testing every possible
state of an FSM. The test suites will cover each coverage task (each
state) of the state coverage model if the tests start with one of initial
states, finish in one of final states and go through each states of the
FSM at least once.

In practice the state set is derived from some hardware descrip-
tion language (VHDL in our case) and represented as the Cartesian
product of the domain sets ofstate variablesfound in hardware de-
scription source: where

, , ... , are the domain sets (possible val-
ues) for the state variables , , ... , . Normally, ,

, ... correspond to signal or variable/register declarations
in circuit description.

Typically, designers are interested in testing not all but particular
state variables, particular values of state variables, or particular
combinations of state variable values. Exclusion of values/variables
that are not relevant from the user’s point of view makes the cover-
age model smaller and results in more efficient and more quickly
obtained tests. The Genevieve verification tools allow to distin-
guish between “interesting” and “not interesting” state sets by par-
titioning of the FSM state variables into three groups:
1. Coverage variables are state variables whose values are

included in coverage model; designers are interested to tests all
values of these variables;

2. Ignore variables are state variables whose values are not
included in coverage model; these variables are not relevant to
test process;

3. Care variables are state variables where some values are
included in coverage model; designers are interested to test not
all but some particular values of these variables.

The partitioning of variables into three groups is made by the user
and based on test requirements. Special instructions are conceived
for this purpose and discussed later.

Often systems operate under the assumption of some predefined
environment. The behaviour of the environment, and therefore the
inputs of FSM, depends on reaction of the design under consider-
ation. It is then necessary to model the environment as one or more
FSMs that provide legal inputs to the design. The environment
behaviour is integrated into the design model, thus extending the
state set of corresponding FSM and eliminating its input set. This
situation is similar to that during testing with testbenches. The top
level testbench circuit contains no inputs. If every variable, signal
or register is considered as a state variable, corresponding to the
outmost testbench, the FSM contains no inputs but only state set.

The environment becomes part of the input to test generator but we
do not wish our coverage models to be dependent on the environ-
ment FSMs, because they only represent the legal external stimulus
to the design. Fortunately, the variable partitioning helps to sepa-
rate between design and environment state sets. Thus, most of the
design state variables are coverage or case and define coverage
model, whereas the environment state variables are ignore ones and
do not influence the coverage model.

1.2  Methodology Description
As we mentioned previously, the Genevieve methodology relies on
formal methods for test generation. However, we can not apply for-
mal approaches directly due to the complexity of modern designs
and related state explosion problems (Figure 1).

To cope with state explosion difficulty, we describe the design un-
der test (DUT) in a simplified manner. This process, calledab-
straction, is shown in Figure 2. While there exist different kinds of
abstract mechanism (see [4]), in this work we are concerned mainly
with three of them:

1. functional abstraction to reveal the main functionality of th
design and to hide cumbersome details; the purpose of the t
ing becomes clear;

2. data abstraction is related to functional one; irrelevant data
grouped into classes or not considered at all;

3. temporal abstraction is interested in the order of events, rat
than in precise timing.

Ideally, the abstract description is the same as a (formal) specifi
tion for current circuit implementation. Advantages and limitation
of abstraction mechanisms are discussed in more detail while
scribing the tested SDU block.

We use the M ALT (Modelling micro-Architecture Language fo
Traversal) language for abstract description of the design un
test. M ALT is a VHDL based language with the usual VHDL fa
cilities. In addition, it is possible to define test coverage models a
test constraints for test generation process. The coverage mod
basically determined by adding special attributes to “interestin
signals or variables which are referenced ascoverage variables.
Thus, the combinations of all possible values of coverage variab
constitute the first rough set of interesting corner cases orcoverage
model. Each combination corresponds to a state when the abst
description is translated to a FSM model. Later in this document
use the term “state” to refer a combination of variable values a
we say that coverage model consists of coverage states.

The coverage model can be further refined by the means of spe
functions. Thus, the designer might be interested to test the circ
only with some specific values of some variables or signals.

The test constraints restrict the way targeted coverage states
reached. First of all, initial and final state of the test sequence c
be defined. Some states or transitions can be forbidden to appea
the test sequence. It is also possible to put some state between
other two states in a test suite.

Finally, M ALT allows non-deterministic expressions. It is espe
cially useful for input assignments: the designer can assign a se
values to a signal or variable. One of the values will be random
chosen during test generation. Some other facilities, like the pos
bility to define the test length or the number of tests required f
each coverage task, are also provided by the M ALT special co
structions.

When the abstract description is ready, it is translated to a state
chine representation usable by the GOTCHA test generation t
(Figure 2). The intended coverage model is also extracted dur
this translation from supplementary M ALT constructions
GOTCHA (Generator of Test Cases for Hardware Architecture)
a prototype coverage driven test generator, written expressly for
Genevieve project (see  [5]).

The GOTCHA compiler builds a C++ file containing both the tes
generation algorithm and the embodiment of the finite state m
chine. The state machine is explored via a depth or breadth f
search from each of the start states. Progress reports on this in
state space exploration can be customized in a limited way.
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Figure 1.  State explosion using conventional formal methods
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On completion of the enumeration of the entire reachable state
space, a random coverage task is chosen from amongst those that
have not yet been covered or proved to be uncoverable. A test is
generated by constructing an execution path to the coverage task
(state in our case) then continuing on to a final state. If the test
length recommendation has been exceeded at this point, then the
test is output, otherwise an extension path to a further final state is
sought, and appended to the test. This process continues until either
the test length recommendation is exceeded or final state reached
has no path to a further final state. If the randomly chosen coverage
task cannot reach a final state then no test is generated.

Thus, the GOTCHA tool results in a set ofabstract tests, each ab-
stract test containing a sequence of states. Figure 2 roughly shows
this process. A state is determined by concrete values of all state
variables (coverage or not). In the Figure 2 the state variables are
Input_AU0, Input_AU1, DRQ, A-SDQX, A-SDQY, D-SDQX,
and D-SDQY. Design variables contain both state variables in a
proper sense (it means variables or signals that represent real de-
sign’s registers) as well as input variables. Thus, in Figure 2 the
variables DRQ, A-SDQX, A-SDQY, D-SDQX, and D-SDQY rep-
resent proper states of the design under test, whereas the variables
Input_AU0 and Input_AU1 represent the design’s inputs.

Abstract tests give sequence of states to reach coverage task. They
can not be directly applied to the real design. In order to obtain real
or concrete tests, we have to makeconcretization of abstract
tests. The concretization consists of two major transformations.
Firstly, the design variables not corresponding to the design inputs

are removed from each state of abstract test. After this operation
abstract test sequence contains abstract inputs only. Then,
remaining input variables are replaced with the inputs of the co
crete test. The input of the concrete test has to provide intend
values to real design inputs. Normally, every value of each abstr
input variable demands separate concrete counterpart.

The level and structure of concrete test inputs depend on test ob
tives. It may be just supplying values to the design inputs via sim
lator commands or microcontroller instructions if the design
tested at functional level. In addition, a preamble and epilogue t
suites are almost always required in order to reset the real des
before test and compare the results after test. Normally the conc
ization is done during straightforward translation. At the end
concretization process real test suites are ready for simulation
emulation.

After simulation/emulation of the real design, obtained real test r
sults have to be compared with expected abstract ones. The com
ison can be seen as a process opposite to the concretizat
abstract test results are represented by the design state variabl
a proper sense. It means that input variables (Input_AU0 a
Input_AU1) have to be removed from abstract tests and then
maining variables compared to real test results. As abstract and
design description can differ considerably, the relation between
stract and real state variables must be established. In the examp
Figure 2, we have to find and display signals/variables of the re
design that correspond to the abstract variables DRQ, A-SDQX,
SDQY, D-SDQX, and D-SDQY.

Figure 2.  Genevieve test generation methodology

Abstraction

Block A5 Block A5 Block A5

Block A5Block A5Block A5

Block A5 Block A5

Block A5
B

ig
 R

eg
is

te
r

B
ig

 R
eg

is
te

r

Block A5

block1 block1

block1

block1 block1 block1

block1

block1

block1

block1block1 block1

block1

block1

block1block1

block1

block1

block1

block1
bl

oc
k1

bl
oc

k1

bl
oc

k1

bl
oc

k1

bl
oc

k1

block1

INPUT[31:0]
INPUT[31:0]
INPUT[31:0]

INPUT[31:0]

INPUT[31:0]
INPUT[31:0]

INPUT[31:0]

INPUT[31:0]
INPUT[31:0]
INPUT[31:0]
INPUT[31:0]
INPUT[31:0]

INPUT[31:0]
INPUT[31:0]

INPUT[31:0]
INPUT[31:0]
INPUT[31:0]
INPUT[31:0]
INPUT[31:0]
INPUT[31:0]

INPUT[31:0]

OUTPUT[31:0]
OUTPUT[31:0]

OUTPUT[31:0]
OUTPUT[31:0]
OUTPUT[31:0]
OUTPUT[31:0]

OUTPUT[31:0]
OUTPUT[31:0]

OUTPUT[31:0]
OUTPUT[31:0]
OUTPUT[31:0]

OUTPUT[31:0]

OUTPUT[31:0]
OUTPUT[31:0]
OUTPUT[31:0]

OUTPUT[31:0]
OUTPUT[31:0]

OUTPUT[31:0]
OUTPUT[31:0]

OUTPUT[31:0]
OUTPUT[31:0]
OUTPUT[31:0]

block1

INPUT[31:0]

S8

S4
S7

S5S2
S11

S10S1

S3

S9
S6

− coverage state

. . .

State 1
Input_AU0 = SAQ_X

DRQ = 0

A−SDQY = 0
D−SDQX = 0
D−SDQY = 0

A−SDQX = 0

Input_AU1 = DRQ_X

TEST 1 State 2
Input_AU0 = DRQ_Y
Input_AU1 = DRQ_Y
DRQ = 1
A−SDQX = 1
A−SDQY = 0

D−SDQY = 0
D−SDQX = 0

State 3

Concretization

. . .
TEST 2

SAME RESULTS ?

CORRECT DESIGN !

. . .

. . .

A
−

S
D

Q
X

A
−

S
D

Q
Y

D
−

S
D

Q
X

D
−

S
D

Q
Y

Input_AU0

Input_AU1

. . . . . . . . . . . .

DRQ

Translation

Real Design Description Simplified Design Description

Test Generation

FSM Representation

SDW_[Pn_pp_u5] R15, P6, 0x08 = PP, 0x00 = modif, 0x0f = Guard

SDW_[Pn_pp_u5] R15, P6, 0x08 = PP, 0x00 = modif, 0x0f = Guard
SDW_[Pn_pp_u5] R15, P6, 0x08 = PP, 0x00 = modif, 0x0f = Guard

SDW_[Pn_pp_u5] R15, P6, 0x08 = PP, 0x00 = modif, 0x0f = Guard

TEST 1
Barrier

SAW_[Pn] R15, R11, 0x00 = modif
SDW_[Pn_u5] P2, P6, 0x08 = PP 0x0f = Guard
SDW_[Pn_u5] P2, P6, 0x08 = PP 0x0f = Guard
SAW_[Pn] R15, R11, 0x00 = modif
SAW_[Pn] R15, R11, 0x00 = modif

SDW_[Pn_u5] P2, P6, 0x08 = PP 0x0f = Guard
SAW_[Pn] R15, R11, 0x00 = modif
SDW_[Pn_u5] P2, P6, 0x08 = PP 0x0f = Guard

Concrete Tests Abstract Tests

Yes
No : Implementation bug No : Abstraction or Concretization bug 



m
e
y.

ch
e

to
d
d
.

ogy

or-
d

ll”
e
a

the
l to
y

ll of

the
l

odel

not
act
n-
is

d on
ele-
e

o-
e

ext
The comparison itself is done for each state of abstract test. In gen-
eral, the comparison is successful if every abstract state variable has
the same value as corresponding signals/variables of the real de-
sign. It is however possible that not all abstract state variables need
to be compared or a matching function is required for comparison.

If temporal abstraction was not used during abstract design descrip-
tion, then successive states of abstract test must correspond to suc-
cessive states of the real design (cycle accurate). Otherwise,
supplementary states (clock cycles) may exist between real design
states that match abstract design states. We say in this case that ab-
stract and real design descriptions have different time scale.

If the results of abstract and concrete tests match, then the design
implementation is correct and satisfies intended behaviour ex-
pressed by the abstract description. If not, then three scenarios are
possible. First, the implementation is not correct and has to be mod-
ified. Second, the abstraction is wrong: the design’s functionality is
misunderstood or too much details are omitted. Third, the concret-
ization does not supply intended abstract inputs to the real design.
In each case a feedback to the problem source is necessary and the
whole process has to be repeated.

2. VERIFIED SDU BLOCK
This section is devoted to the description of the SDU block that
was chosen as first application example of the Genvieve project.
SDU is a part of the ST100, a new high performance digital signal
processor (DSP) developed by STMicroelectronics. The verified
unit is a block of the Data Memory Controller (DMC) which is
responsible for storing data to memory.

The SDU unit has been specifically selected to highlight key issues
that the Genevieve project must address:
1. big data structures that can not be directly modelled without

state explosion,
2. complex control logic that would require an excessive number

of tests to exercise exhaustively,
3. a design where it is difficult to determine how to drive the com-

plete system to ensure a given behaviour in the unit under test.

The SDU block is shown in Figure 3. It inputs data from the ST100
address (AU) and data (DU) execution units which provide respec-
tively address and corresponding data. To achieve a high perfor-
mance, both the AU and DU blocks are split into two identical sub-
units (AU0, AU1, and DU0, DU1 respectively) capable of provid-
ing two addresses and two data values per machine cycle. While
the AU execution unit basically supplies the address for memory
stores, it occasionally can supply the data itself. The data can come
from the AU unit when, for example, an address pointer register of
the AU unit needs to be stored in the memory.

The data from AU and/or DU execution units is routed to Store
Data Queues (SDQs) of the SDU and then further to the memory.
As the memory is organized into two banks X and Y, the data is
held in four separate queues according to both the source and des-
tination (A-SDQx, A-SDQy, D-SDQx, D-SDQy).

This organization requires a routing mechanism to allow stored
data to go to the correct bank. When an address is output from the
AU-pipe it specifies where the data should be directed (X/Y bank):
 • When the data comes from the AU it is directly routed to the

correct A-SDQ[xy].
 • When the data comes from DU the routing information is stored

in a DU Routing Queue (DRQ). The DRQ is a FIFO which
records 4 bits of data on each cycle where the AU provides an
address for a store from the DU. The information is coded by an
X and Y enable bit for each slot. As soon as the corresponding
data is available at the output of the DU it is routed to the cor-
rect D-SDQ[xy] according to the DRQ directives. If only one
slot provides the DMC with an address the 2 bits of the other
slot are set to “no store”. This makes it possible to preserve the
ordering of slot0 versus slot1 when reading DU data. This is
necessary because the DU slots can be granted independently.

The SDU unit outputs the data to the X bank memory either fro
A-SDQx or D-SDQx queues according to the arrival order. Th
same principle is applied to the data storing in the Y-bank memor

Figure 3 shows the routing mechanism from the first slots of ea
execution unit (AU0 and DU0) to the X memory bank only. In th
same manner the data are routed from the AU0 and DU0 slots
the Y memory bank and from the AU1 and DU1 slots to the X an
Y memory banks. The depth of A-SDQx, A-SDQy, D-SDQx, an
D-SDQy queues is nine and the depth of DRQ queue is thirteen

3. TEST GENERATION FOR SDU UNIT
This section describes how Genevieve test generation methodol
was applied to the SDU unit.

The interesting corner cases for this block are those reflecting “b
der” filling of five principle SDU queues. Each queue is considere
to be empty, partially filled (we say valid) or full. For the D-SDQ
queues, it is also important to consider when queue is “almost fu
(we say quasifull), meaning that one place is left empty in th
queue. We refer to the empty, valid, quasifull and full status of
queue asabstract stateof queue, state ofabstract queue, or ab-
stract queue state.

All possible combinations of abstract queue states constitute
corner cases to test. The corner cases number is then equa
3*3*3*4*4=432. The test generation objective is to cover as man
as possible of these corner cases, taking into account that not a
them are in principle reachable.

3.1  Abstract Model
The abstract model has to capture the essential behaviour of
SDU block, thus concentrating on modeling the five principa
queues of the unit. Each abstract queue is represented in the m
by a signal that can take “empty”, “valid”, “quasifull” or “full” ab-
stract value. Unfortunately, the use of abstract queues only is
sufficient for real test suites generation. That’s why each abstr
queue signal is doubled by a “real” queue signal calculating co
crete number of elements in the queue each clock cycle. This
schematically shown in Figure 4.

The number of elements in each real queue is determined base
the present number of elements, coming inputs and whether an
ment is output to the memory. For example, if the A-SDQx queu
contains five elements, two datas arrive from the AU unit both g
ing to the X-bank memory, and one element is output from th
queue into the memory, then the number of elements during n

A-SDQx

AU1

A-SDQy

AU0

D
R

Q

DU0

D-SDQy

CORE

DMC

FORMAT

D-SDQx

D
AT

A

D
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A
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Figure 3.  Store Data Unit (SDU)
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clock cycle is equal to six (6 = 5+2-1). When the real elements num-
ber is calculated, a special function maps this real number to an ab-
stract queue state. Thus, for A-SDQ queues zero corresponds to the
“empty” abstract state, any number from one to eight corresponds
to the “valid” abstract state, and nine corresponds to the “full” ab-
stract state. The output to each memory bank (X/Y) is regulated by
a special process that keeps the order of data arrival (from AU or
DU execution unit).

As the data can arrive only from one execution unit (AU or DU) at
a time, the abstraction is done for the inputs of the SDU block. The
four inputs to the SDU block are grouped into two classes: input
from slot 0 (Input_AU0) and input from slot 1 (Input_AU1). Each
class can be one of the following values designating both the data
source and memory destination: “saq_x”, “saq_y”, “drq_x”,
“drq_y”, and “no_au”.

Temporal abstraction is not done for the verified unit. In order to
trace generated test suites and to check the expected performance,
the numbers of queue elements must have cycle-by-cycle matching
in the real design and abstract model. As the sequence of events we
are interested in (number of elements in the queues) is cycle accu-
rate, the abstract model has to follow the behaviour of the real de-
sign, and not “skip” real design states.

3.2  Abstract Test Generation with GOTCHA
The SDU abstract model was supplied to the GOTCHA tool for ab-
stract test generation. The coverage model is defined by the five
signals corresponding to abstract queues (the signals ABS_DRQ,
ABS_SAQX, ABS_SAQY, ABS_SDQX, and ABS_SDQY have
the special CVAR_SCALAR attribute), thus giving 432 possible
coverage states. No refinements of coverage model, like reducing
the set of coverage states by the means of special functions or de-

fining transitions to cover, were used. There was also no need to
fine final states as any state of the model was a valid state
terminate the tests during simulation.

The input signals participate in the global state space definiti
(section 1.1) and are assigned inside the abstract model. The ea
way to determine the model’s inputs is to use non-deterministic a
signments: the tool randomly chooses one of the assigned val
and then explores all reachable states in order to find a cover
one. If a coverage state is found, an abstract test (sequence of s
to the coverage state) is generated.

Unfortunately, the state space of the abstract model is still huge d
to non-negligible depth of “real” SDU queues. If the input assign
ments are completely random, most of the coverage states will n
er be found because of the state explosion problem. That’s why
chose to “guide” the tool towards possible interesting corner cas
This is done by splitting input assignments into several modes.
objective of an assignment mode is to fill or empty certain queue
Thus, we may gradually fill the D-SAQx queue in the first mod
and the D-SDQx queue in the second. Then, during test genera
the coverage states with full D-SAQx or D-SDQx queues are like
to be found.

Normally, the inputs are guided to cover certain coverage stat
Due to the complexity of the design it is not possible to cover all d
sired coverage states within one model even with guided inpu
The solution we found is to use several versions of the same
stract model, each version guiding inputs to cover a different co
erage subset.

Thus, during test generation with GOTCHA we wrote several ve
sions of the same abstract model, each differing in input assig
ments. These then generated test suites that covered subse
coverage states. To define the overall coverage with all genera
test suites, a simple analysis program was written. This progr
analyses newly generated tests and adds newly covered state
previously covered state set. It also completes final test suites w
new tests. After 24 abstract models no more corner cases were c
ered so we stopped the test generation process.

Using GOTCHA tool we were able to cover 293 of 432 coverag
states. We estimate that a significant part of the uncovered states
not reachable.

3.3  Concretization of Abstract Tests
The target of the test generation process is to obtain tests at a fu
tional level meaning sequences of ST100 instructions. For th
each abstract test generated with GOTCHA has to be translated
corresponding instruction pattern. The principle of concretization
described in section 1.2. The concretization process for the SD
unit is shown in Figure 5.

Let’s consider Figure 5 in more detail. The transformation is do
in two steps. The first step is translation of abstract test into te
specification for Genesys, a model-based test generator. In ev
abstract test each assignment of the SDU input variables (AU0
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Figure 5.  Concretization process for the SDU unit

Macro for DRQ_Y SDW_[Pn_u5] P2, P6, 0x08 = PP 0x0f = Guard // Store in Y
. . . . . .

Macro for DRQ_X SDW_[Pn_pp_u5] R12, P6, 0x00 = modif, 0x0f = Guard // Store in X

State 5
Input_AU0 = SAQ_X

DRQ = 1
Input_AU1 = DRQ_X

A−SAQX = 8
ABS−DRQ = valid
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. . .

State 6
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Input_AU1 = DRQ_Y
DRQ = 1

. . .
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AU1) is replaced with a Genesys macro allowing to supply desired
value to the SDU real inputs. For example, the assignment to the
SAQ_X value means that data arrives from the Address Unit (AU)
block and goes to the X bank memory. For this particular value a
special macro is manually created that:
 • uses SAW (Store Address Word) command; the data thus flows

from the AU unit because one of its registers needs to be stored;
 • defines the store address to be in the X memory bank.

For the DRQ_X/Y values, the SDW (Store Data Word) command
is used, meaning that data comes from the Data Unit (DU) block
and that routing information is stored in the DRQ queue first.

The sequence of macros corresponding to the inputs from one ab-
stract test constitutes the core for one Genesys test specification.
Some reset commands are added in the beginning of each test spec-
ification.

The second step is final test generation using Genesys. Each test
specification is transformed into instruction sequence ready for
simulation. The macros of instruction sequence are translated by
Genesys into concrete ST100 commands. The concrete command
corresponding to one particular macro can slightly vary from one
translation to another. For example, instructions corresponding to
the SAQ_X macro can use different registers of the AU block and
different store addresses remaining nevertheless in the X-bank
memory space.

As the SDU inputs are supplied at functional level by means of
ST100 instructions, a modification of intended input sequence is
possible. The flexibility is fixed during macro definition.

3.4  Abstract and concrete test results
When concrete tests are generated, they are used for RTL-level sim-
ulation of ST100. In order to compare the expected abstract results
with concrete ones, the SDU functionality has to be traced during
simulation. Special simulator commands are used to record the val-
ues of interesting microarchitectural signals.

First of all, we need to check whether intended abstract values are
indeed supplied to the SDU inputs. Therefore we display some re-
quest/grant signals and the actual SDU input values. Further, to ver-
ify the functionality of the SDU block, we record the signals
representing the number of elements in each queue and queues sta-
tus (empty, valid, quasifull or full). The time information (clock cy-
cle number) is also displayed to distinguish states of the real design:
each state corresponds to separate clock cycle.

The comparison itself is done by a special purpose program: for
each state of abstract test the signal values are checked against cor-
responding signal values of simulation results. Although the cover-
age model is defined by signals of abstract queues only, for each
queue we compare both the abstract queue status and actual number
of elements in the queue. This is done to facilitate the analysis of
testing results.

As mentioned before, the temporal abstraction is not used for SDU
abstract model. It means that consequent states of abstract test must
correspond to consequent states (clock cycles) of the real design.

4. CONCLUSION
4.1  Results
This work resulted in efficient test generation methodology demon-
strated on a complex design. We established different steps of the
test generation process and finally obtained concrete tests applica-
ble for real design simulation. We also created suitable design ver-
ification environment consisting of several translation and
comparison programs.

The SDU unit chosen for this experiment has sophisticated behav-
iour and complex interfaces with other system blocks. The extreme-
ly simplified abstract model of the SDU device has 60480000 states
(10*10*10*10*14=140000 real queue states multiplied by 432 ab-

stract queue states). We could only generate tests by defining m
more smaller coverage model and by guiding inputs in order
reach coverage states.

The possibility to define coverage models is a very important fe
ture of the test generation process. It allows to clearly identify t
purpose of testing and to measure the quality of generated test
has to be pointed out that before Genevieve approach the desig
and verification team mostly used metrics based on covered lines
circuit’s hardware description. In practice it appears that the
code-based metrics are very weak and do not cover “border” circ
behaviour.

Based on the coverage model we measured the quality of gener
tests. Using the Genevieve methodology we managed to obt
tests for 293 of 432 possible corner cases of interest. During co
parison step we discovered that not all abstract tests matched si
lation results. Some SDU behaviour, while still functionally
correct, did not match the original specification. In particular th
implementation did not use the whole capacity of the queues
these were never filled if only one place was available in a queu
So, Genevieve tests discovered some subtle performance bugs
would otherwise be very difficult to find.

Due to the mismatching between implementation and specificati
the number of corner cases covered by concrete Genevieve test
less than the number of corner cases covered by corresponding
stract tests. But even so, the tests generated by Genevieve tools
show better results than the tests generated manually by a verif
tion engineer where less corner cases are covered by a bigger n
ber of manual tests. These results are summarized in the ta
below.

Another result achieved with the experiment is the possibility
model complex design environment and to generate tests for a p
ticular system block at a high functional level. We were able to su
ply intended values to the SDU inputs via sequences of ST1
instructions. This was only possible because the Genevieve ve
cation tools allow modelling the environment of a design durin
test generation. None of the existing test generation or formal ve
fication tool is able to provide the same facility.

4.2  Future work
Despite some difficulties the Genevieve methodology proved su
cessful and is now being applied to test generation for the DM
controller of ST50, a new general purpose RISC microproces
developed by STMicroelectronics and Hitachi. Like other memo
or memory-related device, the DMA controller challenges form
techniques due to the state explosion problem.

The developing of completely automatic translation tools and we
established verification environment is also envisaged.
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Table 1.  Comparison between Genevieve and manual tests

 Abstract Concrete Manual

Number of tests 293 293 365

Covered corner cases 293 73 53
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