
Model Checking of S3C2400X Industrial Embedded SOC Product 
 

Hoon Choi, Byeongwhee Yun, Yuntae Lee, and Hyunglae Roh 
SOC Development Group, System LSI, Samsung Electronics, Yongin-City, Kyunggi-Do, Korea 

hchoi@ieee.org, {bwyun, yuntaelee, shlroh}@samsung.co.kr 
 

ABSTRACT 
This paper describes our experience and methodology used in 

the model checking of S3C2400X industrial embedded SOC prod-
uct. We employed model checking to verify the RTL implementa-
tion. We describe how to model the multiple clocks, gated clocks, 
unsynchronized clocks, and synchronization logics in model 
checking. Detailed case studies of real designs show the applica-
tion of the proposed modeling techniques, environment modeling, 
and the properties we checked. The verification results validate 
the proposed techniques by finding real bugs. 

 

1. INTRODUCTION 
This paper describes our experience and methodology used in 

the intensive use of formal verification in the design of S3C2400X 
embedded SOC product. The overview of S3C2400X is shown in 
Fig. 1. It is composed of an ARM920T processor and 16 function 
modules, i.e., IPs.  

7LPHU�3:0

:'7

00&

,�&

,�6

57&

*3,2

8$57

$'&

$
3
%
%
X
V

$
+
%
%
X
V

0HPRU\ &RQWUROOHU

/&' &RQWUROOHU

,QWHUUXSW &RQWUROOHU

$50���7

%XV &RQWUROOHU

$UELWHU�'HFRGHU
%
ULG

J
H

'
0
$
��
�&
+
�

%XV &RQWUROOHU

$UELWHU�'HFRGHU

86% +RVW

7,&

7LPHU�3:0

:'7

00&

,�&

,�6

57&

*3,2

8$57

$'&

$
3
%
%
X
V

$
+
%
%
X
V

0HPRU\ &RQWUROOHU

/&' &RQWUROOHU

,QWHUUXSW &RQWUROOHU

$50���7

%XV &RQWUROOHU

$UELWHU�'HFRGHU
%
ULG

J
H

'
0
$
��
�&
+
�

%XV &RQWUROOHU

$UELWHU�'HFRGHU

86% +RVW

7,&

 
Fig. 1: Block diagram of S3C2400X SOC product 

We can classify the IPs into three groups in the verification 
point of view. First, many IPs have been used in the previous 
products and verified in silicon, e.g., memory controller, UART, 
I2S, etc. We just changed the interface logic for new bus systems, 
i.e., from SSB/SPB to AHB/APB [8]. In this case, those bus sys-
tems were so similar to each other that we could verify the inter-
face logic easily with just a simulation. Second, some IPs were 
newly designed for the new bus systems, e.g., bus controllers, 
DMA, etc. We used model checking to verify the correctness of 
those IPs. Last, we bought USB host controller (UHOST) as an IP 
[9] and designed interface logic to attach it to the AHB bus. In 
this case, the interface protocol of UHOST is significantly differ-
ent from that of AHB system. Specifically, the former one uses 
FIFO based protocol (HCI protocol), while the latter one uses a 
pipelined bus protocol. Furthermore, they run at different unsyn-
chronized clocks. This led us to use model checking to guarantee 

the correct operation of the designed interface in all the possible 
cases, e.g., various combinations of different clocks. 

In this paper, we describe the model checking techniques used 
for the second and the third classes. We employed model checking 
to verify the RTL implementation. The rest of this paper is organ-
ized as follows: In Section 2, we briefly present the selection of a 
model checker and a modeling language and the overview of our 
design/verification flow. The modeling details, i.e., how to model 
the multiple clocks, gated clocks, unsynchronized clocks, and 
synchronization logics are covered in Section 3. Section 4 de-
scribes the details of actual verifications, i.e., case studies, with 
verification results. Discussions and conclusions are given in Sec-
tion 5 and Section 6, respectively. 

2. MODEL CHECKER AND LANGUAGE 
We used SMV [1] as our model checker because it has many 

good features to support real designs and there are many success 
stories from the industry [2][3][4][5][6][7]. SMV supports vari-
ous features to reduce the problem size, i.e., the scalarset data 
type for symmetric reduction, the ordset data type for induction, 
the subclass structure for case-splitting, the layer structure for the 
compositional assume-guarantee verification, and the property 
based reduction capability. 

SMV supports SMV language (SMVL) and Verilog (actually it 
is translated into SMVL before verification) as the modeling lan-
guage. SMVL is better than Verilog in controlling and exploiting 
the full power of SMV, especially in problem size reduction. In 
addition, its macro definition capability is very useful in handling 
multiple clocks conveniently. Hence, we used SMVL as our main 
modeling language. The environment (i.e., abstracted models of 
other modules needed for the verification of a module) is also 
modeled in SMVL using non-deterministic values. It can signifi-
cantly abstract out the details of the environment so that the com-
plexity of the environment as well as the amount of modeling 
work can be significantly reduced. 

Now, we briefly describe our design/verification flow shown in 
Fig. 2. Each module is designed in either the SMVL or the Ver-
ilog. The modules written in Verilog are translated into those in 
SMVL using vl2smv utility. The modules in SMVL and the prop-
erties (to be checked) written in CTL are processed by the model 
checker. If the model checking is passed without any failure, we 
become to get the golden models. The SMVL golden model is 
translated into the Verilog golden model. Since, to the best of our 
knowledge, there is no available SMVL to Verilog translator, we 
manually perform this translation. However, since almost all the 
syntax of SMVL has its corresponding part in Verilog, the transla-
tion is relatively an easy task (This is especially true for the subset 
of Verilog used for the synthesis, and we guided to use only the 
subset of SMVL that has its corresponding part in that subset of 
Verilog.). We verify the correctness of the translated code by 
translating it back to SMVL and then performing the model 
checking. 

After obtaining the golden model, we refine the RTL code for 
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more efficient synthesis. To verify the correctness of these refine-
ments, we use the equivalence checker. The conventional simula-
tion and the synthesis follow the refinement step. Optionally we 
may perform the final check by model checking the compiled 
gate-level netlist. 
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Fig. 2: Overview of design/verification flow 

In our design flow, the formal verification is tightly coupled 
with the RTL design procedure. It is used to get the correct and 
verified RTL designs by our RTL designers, not for a separate 
verification procedure performed by a separate verification team. 
This use of formal verification enabled our designers to detect and 
eliminate many design errors (even very complex ones) easily at 
the very early stage of our RTL design. The verification time itself 
for a module with appropriately abstracted environments was 
almost comparable to the simulation time using a large number of 
vectors. In short, the use of the formal verification gave us not 
only the high confidence on the correctness but also the reduced 
design time. 

3. MODELING DETAILS 
In this section, we describe the modeling details: multiple 

clocks and gated clocks that are very common in RTL designs, 
unsynchronized clocks and synchronization logics that are used in 
the UHOST interface. 

3.1 Multiple clocks 
In the modeling, we have to handle two different clocks, i.e., 

AHB clock and APB clock. However, SMV supports only one 
implicit clock and SMVL does not support any syntax to describe 
explicit multiple clocks. This is also true for the Verilog code 
translated into SMVL: All the always statements using posedge 
and/or negedge are converted such that the registers are updated at 
the same next time step of a single implicit clock. 

To circumvent this problem, we use the following techniques. 
The AHB clock, i.e., HCLK, having both edges is generated as 
follows: init(HCLK) := 0; next(HCLK) := ~HCLK. And we de-
fine PNEXT macro for the update at the positive edge such that 
PNEXT(HCLK, d) := s is converted into if(~HCLK) next(d) := s. 
Then signal d is updated to the value of s at the next implicit clock 
where HCLK makes a low-to-high transition. Similarly, we define 
NNEXT macro for the update at the negative edge. 

For the APB clock (i.e., PCLK) that runs at a half frequency of 
HCLK, we cannot use the same approach. If we generate PCLK as 
init(PCLK) := 0; PNEXT(HCLK, PCLK) := ~PCLK, the PCLK 
has two cycles of high and two cycles of low as shown in the Fig. 
3-(a). However, in this case we cannot use PNEXT(PCLK, d) := s 
because there are two implicit time steps, i.e., ta and tb, in the low 
phase of PCLK, which makes d updated twice at ta and tb while we 

actually want it to happen only once at tb. This may result in in-
correct results (e.g., PNEXT(PCLK, s) := s + 1 may increase s 
twice in one cycle). To handle this problem, we use an asymmetric 
PCLK, i.e., three cycles of high and one cycle of low for the posi-
tive edge of PCLK as shown in Fig. 3-(b), and one cycle of high 
and three cycles of low for the negative edge. Then the signal s is 
updated only at tb as we want. (Note that this method is possible 
partially because the AHB modules in our design get the data 
from APB modules only at the rising edge of HCLK.) 
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Fig. 3: Handling multiple clocks 

3.2 Gated clocks 
The use of gated clocks also causes similar problems as the 

multiple clocks. For example, if we use PNEXT macro for the 
gated clock shown in Fig. 4, data will be latched not only at te 
where we actually want but also at ta~td because the gated clock is 
low at those time instances. We have to solve this problem for the 
correct verification. 
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Fig. 4: Problem of gated clocks 

In our design, gated clocks are used for two purposes. First, we 
use gated clocks for low-power consumption. In this case, the 
clock gating is performed at a module-granularity, i.e., entire 
blocks of a module are clock gated, and we usually keep the gat-
ing logic in a separate module, i.e., the gating logic does not re-
side in the module under test. Furthermore, in the functional veri-
fication we mainly concern the normal operation mode, not the 
power down mode. Therefore, we could verify those clock-gated 
modules without considering the clock gating effect. 

Second, the gated clock is used for data transfers, e.g., MMC 
controller. In the transfer of data to the MMC card, MMC control-
ler uses gated clocks to indicate the time instances for the card to 
get the data. Here, the MMC controller gates out the clock edge if 
there is no valid data on the data bus. For example, in Fig. 5 the 
rising edges of GCLK1 (generated by MMC controller) indicate 
the time instances at which the valid data can be obtained from the 
bus. The missed rising edge of GCLK1 means that data is not 
available at that time instance, i.e., time 5 and 6. 

,PSOLFLW

&/.

&/.

� � � � � � � �

'� '� '�

*&/.�

*&/.�

'DWD

*&/.�

*&/.�

,PSOLFLW

&/.

&/.

� � � � � � � �

'� '� '�

*&/.�

*&/.�

'DWD

*&/.�

*&/.�

 
Fig. 5: Handling gated clocks 

However, we cannot use the GCLK1 as it is in SMV because 



the low value of GCLK1 at time 5 makes the data latched at time 
instance between 5 and 6. To circumvent this problem, we 
changed MMC controller to generate GCLK2 instead of GCLK1. 
As we see, the high value of GCLK2 at time 5 and 6 solve the 
problem of GCLK1. Similarly, we use GCLK4 in place of GCLK3 
for the falling edge. Note that such a change requires not only the 
AND gate to OR gate replacement in the gating logic but also the 
change of gating timing. In our case, such a change was possible, 
thus we could use this approach. 

3.3 Unsynchronized clocks 
The two unsynchronized clocks of UHOST interface have to be 

modeled in such a way that all the possible cases are covered. The 
modeling should not restrict the covering of possible cases. 

We first considered the use of a fine clock and two counters. 
For example, given HCLK running at 100MHz and UHOST clock 
(UCLK) running at 12MHz, two counters counting 3 and 25, re-
spectively, can mimic those clocks: When each counter reaches its 
own limit, it inverts its output. However, this approach has two 
problems: First, these predefined clocks cannot guarantee the 
covering of all the possible cases such as the speed change of 
HCLK in different operation modes. Second, the two counters 
increase the number of state variables, thus slow down the verifi-
cation. Thus, we use a different approach. 
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We use non-deterministic values in modeling clocks. However, 
we do not use the non-deterministic value directly as a clock. For 
example, NDV CLK in Fig. 6 shows the clock modeled directly by 
a non-deterministic value. In time 6 and 7, NDV CLK is consecu-
tively low, thus problems happen at those points as the gated 
clocks. To solve this problem, we have to force NDV CLK to have 
only one cycle of consecutive lows at the maximum as shown in 
Correct CLK. To make such a clock, we use a FSM shown in Fig. 
7 where ndv represents a non-deterministic value. The fairness 
constraint prevents CLK from staying at 1 forever. We use two 
copies of this FSM, one for each clock. 
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Fig. 7: FSM modeling an unsynchronized clock 

3.4 Synchronization logic 
We use double synchronization FFs (DS-FFs) shown in Fig. 8 

in the UHOST interface. If In meets the setup time of the first FF, 
the Out’ and Out become stabilized as shown in (a). However, if it 
is not the case, Out’ and Out are delayed by one clock cycle as 
shown in (b). 
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Fig. 8: Double synchronization flip-flops 

To model this effect, we first considered the use of a sequence 
of internal FFs (running at a fine clock) and some gates: if and 
only if all the internal FFs have the same value, the setup time is 
regarded as being met, and the output reflects the input. However, 
this model increases the number of FFs significantly, which de-
grades the verification performance. In addition, this model re-
quires the fine clock (mentioned in Section 3.3). Hence, we use a 
different approach using non-deterministic values. 

We use a FSM shown in Fig. 9 where Get is a non-
deterministic value. This FSM is based on the fact that Out’ gets 
the input data at the maximum of one clock cycle delay, i.e., Fig. 
8-(b) case. Note that we do not use this FSM for each communica-
tion signal. Instead, we use only two, one for signals from HCLK 
to UCLK, and the other for those from UCLK to HCLK. This is 
because if we use separate FSMs for each signal, some signals 
may reach receiver’s domain while others may not, even if all of 
them have waited at the input of DS-FFs concurrently. This is not 
the case in real circuits. 
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Fig. 9: FSM modeling DS-FFs 

4. CASE STUDY 
4.1 Verification of DMA 

DMA contains AHB slave part (for accessing control registers, 
CRs), AHB master part, and APB master part. It performs AHB to 
APB, APB to AHB, and AHB to AHB DMA operations. We di-
vided the verification into two modes for the reduction of problem 
size: One was the ARM to CR access mode and the other was the 
DMA operation mode. In ARM to CR access mode, we checked 
only the CR read/write accesses of the ARM core. On the other 
hand, in the DMA operation mode, we checked the DMA opera-
tion itself with assuming some fixed CR values. 

Among the seven CRs, three can be written only by the ARM 
core, other three only by the DMA core, and another one by both 
of them, while all the CRs can be read by the ARM core. Hence, 
the write to the first three could be thoroughly verified in the ARM 
to CR access mode. On the other hand, the write access to the 
other three could only be verified in the DMA operation mode, 
and the last one partially in both of the verification modes. 

The verification environment for ARM to CR access mode is 
shown in Fig. 10. It is composed of a simple model of ARM core 
(a simple FSM to test only the CR accesses), a simple AHB arbi-
ter, and a simple AHB decoder. The shaded area represents the 
blocks that are not verified in this mode. Those blocks were mod-
eled very simply using non-deterministic values. The clear block 
boundary between the ARM to CR access blocks and the DMA 
operation blocks were very helpful in this abstraction, thus we 
believe that we should consider this kind of verification require-
ment from the start of the design. 
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Fig. 10: Environment for ARM to CR access mode 

In this environment, we tested 12 CTLs including 5 vacuous 



checks. The execution time was about two minutes. Here we 
found one critical design bug that could occur during the burst 
access of CRs. The change of allowed access modes during the 
design caused this bug. 
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Fig. 11: Environment for DMA operation mode 

The verification of DMA operation mode started with assuming 
CRs to have some fixed values for a specific DMA operation 
mode. Here we applied the case-splitting technique. In short, we 
tested each of DMA operation modes, separately. In addition, we 
also applied the compositional verification: For each mode of the 
operation, we assumed the correctness of AHB arbiter, AHB de-
coder, APB arbiter, and APB decoder. This enabled us to use a 
simple verification environment shown in Fig. 11. The slave was 
used to check the correctness of the transfer. Though we could do 
this by directly looking at the bus signals, to know the bus signal 
sampling time we needed a FSM knowing the bus protocol. The 
slave was used as the FSM in our verification. The shaded CR 
access blocks were modeled using non-deterministic values such 
that all the possible cases were covered. 

The properties were also written in such a way that each differ-
ent mode of operation was verified separately. The problem here 
was the large number of variables (i.e., 16) whose combinations 
decide different modes of operations. To solve this problem, we 
exploited the fact that operations initiated by some variables do 
not depend on those initiated by other variables. For example, 
interrupt requesting at the end of transfers initiated by the inter-
rupt/polling variable has nothing to do with specific bus transfers 
initiated by other variables such as the source selector. For such 
variables, we do not need to test all the possible combinations of 
them. We built a graph showing such a relation among the vari-
ables, and then elicited the minimum set of properties to test.  

In this verification, we verified 67 properties (including 6 
vacuous checks) each of which have about 100 state variables. 
The execution time was about 7 hours and 20 minutes. We found 
one critical design error (i.e., HTRANS was not returned to IDLE 
after a burst transfer in some situations) and fixed it. 

One of the interesting verification was the deadlock checking. 
The operations of DMA and bridge use both of busses (i.e., AHB 
and APB) as masters, thus there is a possibility of a deadlock. 
Hence, to prevent such a deadlock we use some mechanisms in 
the design and have to verify them. 

The environment for this checking requires both the DMA and 
the bridge. However, we could use a very simplified version of the 
bridge instead of the full complexity one by modeling the bridge 
as a simple FSM having four states. This FSM models the bus 
requesting behavior of the bridge that is relevant to the deadlock 
verification. It requests AHB bus, and if granted it requests APB 
bus. It uses three non-deterministic values to model the various 
kinds of transfers and to decide the bus release time.  

The AHB arbiter was also modeled using a simple FSM having 
five stages. It models the behavior of the arbiter only for the two 
request sources, i.e., DMA and bridge. It gives a grant to one of 
DMA or bridge, and waits for the release signal from the granted 
master to model the bus ownership. The APB arbiter was also 
modeled similarly. Fig. 12 shows the verification environment. 
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Fig. 12: Verification environment for deadlock 

In this environment, we verified 13 properties (including 4 
vacuous checks) having about 90 state variables. CPU time was 
about 23 minutes, and we could verify the correctness of the dead-
lock preventing mechanisms. 

4.2 Verification of UHOST interface 
4.2.1 Overview of interface logic 

Fig. 13 shows a part of AHB system, interface logic, and USB 
host (UHOST). UHOST is composed of a core, a HCI master 
interface (read/write), and a HCI slave interface (read/write). Our 
interface logic performs interfacing between the HCI I/F of 
UHOST and the AHB bus. In the master write operation of 
UHOST, master WR I/F of our interface receives a sequence of 
data from HCI I/F and then write them to the system memory via 
AHB bus. Similarly, in the master read operation our interface 
reads in a sequence of data requested by the UHOST HCI I/F from 
the system memory, and then gives it to UHOST. In slave opera-
tion, ARM920T writes control-words to the UHOST control 
registers via our interface’s slave WR I/F. In read, ARM920T 
reads control-words via our slave RD I/F. 
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Fig. 13: Interface logic and its environment 

4.2.2 Design partitioning for verification 
Partitioning of a design for the verification is important in 

model checking because the design size is one of the most impor-
tant factors deciding the success of model checking. In our previ-
ous designs, modules designed without a proper partitioning 
caused model checking very hard and inefficient, and at the end 
we had to redesign those modules considering partitioning for 
verification. This experience led us to consider the appropriate 
partitioning as soon as the building blocks of our interface were 
determined (before the actual coding). The partitioning was 
mainly for the ease of verification, not for the ease of design. 

The result of partitioning is shown in Fig. 13. The partitioning 
was performed to exploit the case splitting technique. For exam-
ple, we divided the interface into two, i.e., one for HCI master 
operation and the other for HCI slave operation. Furthermore, we 
divided the interface for the master operation further into two, i.e., 
read and write. Similarly, that for the slave operation was also 
divided. This partitioning is based on the fact that we can check 
the correctness of our interface by checking those four partitions 
separately. This partitioning caused the interface logic to have 
some duplicated logics, i.e., not an optimal design in area, but the 
redundancy was very marginal and the verification became much 
easier and efficient. Thus, we believe that such a partitioning for 
verification is very important for model checking. 
4.2.3 Environment modeling 

We used two different verification environments, one for mas-



ter operation and the other for slave operation. The verification 
environment for the master operation is shown in Fig. 14. Specifi-
cally, it shows that for master writing operation. Here we model 
the memory controller and memory, arbiter, decoder, and HCI I/F 
writing master. 

Memory controller and memory were modeled using a simple 
AHB slave with a depth four buffer. The model was abstracted to 
handle only the transfer types generated by our interface logic. 
HREADY signal from the memory controller was modeled using 
a non-deterministic value and a fairness constraint to mimic the 
various different delays of possible different memories. 
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Fig. 14: Environment for master writing operation 

AHB arbiter was modeled using a two state FSM and a non-
deterministic value (NDV). In state s1, if a bus request comes in, 
it goes to s2 depending on NDV. If and only if NDV is 1, it goes 
to s2. In s2, it asserts a grant signal until the bus request is de-
asserted. Though simple, it can mimic the situation where the 
grant is not asserted due to other bus masters. A fairness con-
straint is used to prevent the starving case. 

We modeled the HCI I/F writing master efficiently also using 
non-deterministic values. For example, the number of data to 
transfer, read or write, and byte enables were modeled using 
NDVs. Furthermore, the latency between requests was also mod-
eled using NDV. This covered all the possible different delays 
between requests that actually depend on the kind of data to be 
transferred, e.g., data request requires three cycles of delay while 
control-data requires no delay. 
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Fig. 15: Environment for slave writing operation 

The environment for verifying the slave operation is shown in 
Fig. 15. Specifically, it shows that for slave writing. Here we need 
to model the ARM920T that sets the control registers of USB 
host. We modeled the write operation of ARM920T using a sim-
ple FSM. HCI I/F writing slave was also modeled very simply to 
check just the correct data and address arrivals. 
4.2.4 Verified properties 

Properties that we checked can be classified into four groups. 
Data and address movement checking 

This group checked the correct data and address movements. In 
writing CTLs, we used case splitting, e.g., we divided cases de-
pending on the number of data to transfer, various byte enables, 
etc. This reduced the number of state variables related to each 
CTL. In addition, we did not check the correct transfer from one 
end to the other end (i.e., from HCI I/F to memory, and vice 
versa) because it involved large number of state variables. Instead, 
we checked each consecutive fine step of the transfer separately 

using assume and guarantee technique.  
HCI bus protocol checking 

The USB host IP was delivered with a HCI bus monitor. It was 
a set of Verilog modules and originally intended to check whether 
the user designed interface complies the HCI I/F protocol or not. 

We translated the monitor into CTLs for model checking. 
Monitor modules checking simple relations among signals were 
translated into the corresponding simple CTLs. On the other hand, 
complex monitor modules implemented in FSMs, e.g., checking 
whether the number of data pushed into the data FIFO is same to 
HCI_MBstCntr, were translated into one of the two forms. First, 
in some cases, we could translate it into two or three consecutive 
CTLs. Second, in many other cases, the Verilog FSM was trans-
lated into a combination of a SMVL FSM and a CTL. Here, the 
SMVL FSM monitors the error condition and sets an error flag, 
while the CTL says that the error flag never becomes true, i.e., 
assert AG ~(error_flag). In writing the FSM, abstract variables 
[1] were used not to interfere with the design. This group of prop-
erties checked not only our interface design but also the abstracted 
model of HCI interface that we assumed to be correct. 
Stable signal checking 

In our interface design, we use double synchronization FFs for 
the communications between FSMs running at unsynchronized 
clocks. However, for some signals (mainly data signals) we do not 
use such FFs to reduce the number of FFs. Thus, for those signals 
we have to guarantee that those signals are stable, i.e., have no 
setup time problem, when the receiver latches them. 
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Fig. 16: Stable signal condition 

The stable signal condition is shown in Fig. 16. We assume that 
1) FSM1 running at CLK1 writes data at the transition from state 
s1 to s2, and FSM2 running at CLK2 gets the data at the transition 
from state t2 to t3. Then, the data is stable in FSM2’s point of 
view if and only if the state of FSM1 at one cycle before the latch-
ing time, i.e., between t1 and t2 of CLK2, is s2 or later ones and 
the data is not changed until the latching time. 

For example, Fig. 17 shows the stable signal checking of 
n_valid_wf signal coming from UCLK domain to HCLK domain. 
HCI_MadrFinN = 0 in top_idle state means that a data was al-
ready written at the previous rising edge, and ahb_ws_hclk_ok = 1 
in wr_idle state describes that data will be latched at the next ris-
ing edge. The CTL to check the stability is shown at the bottom of 
Fig. 17. Note that the state of FSM running at UCLK is sampled 
at the rising edge of HCLK in the CTL. 
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Fig. 17: Example of stable signal checking 



Overrun check 
In Fig. 18, a1 of FSM1 fires FSM2 waiting at b1. Assume that 

the two FSMs run at different clocks and FSM2 runs very fast so 
that it finishes its job, sends the done signal to FSM1, and comes 
back to b1. If the start signal of FSM1 that fired FSM2 is not 
cleared yet, FSM2 starts its operation again. We call this situation 
overrun and have to verify that it never happens in all the cases. 

VWDUW
D�

DM

E�

E�

EQ

)60� )60�

GRQH

DN

VWDUW
D�

DM

E�

E�

EQ

)60� )60�

GRQH

DN

 
Fig. 18: Overrun condition 

This can be stated as follows: Given b1 receiving a 
communication signal, in all the state paths of FSM2 back to b1, 
there should exist a state where the communication signal is 
deasserted in FSM2’s point of view. Note that we cannot simply 
use U operator of CTL since the start signal can be deasserted and 
then reasserted before b1, which is also a valid situation. 

To facilitate this verification, we restricted our design to use 
flip strategy in which all the communication signals are flipped 
over (toggled) at the same time of assertion. The receiver also 
flips over the decision value as soon as it receives an asserted 
communication signal. This reduced the overrun check to verify-
ing only the correct flipping after every communication state in 
both the sender and the receiver, which was easily stated and 
checked in CTL. 
4.2.5 Verification results 

We first verified our interface with setting both of clocks, i.e., 
HCLK and UCLK, to a single same clock to detect bugs not re-
lated to the unsynchronized clocks, and then the non-deterministic 
clocks to find bugs related to the unsynchronized clocks. 

In the verification of the master writing operation, we checked 
102 properties for data and address movement checking, 4 for 
overrun checking, and 5 for stable signal checking. About a half 
of them were used to check the vacuous properties. The verifica-
tion time was about 9 hours for the same single clock and 43 
hours for the proposed non-deterministic clock covering all the 
possible cases. In this testing we found no bugs. 

For the verification of the master reading operation, we used 36 
properties for data and address movement, 4 properties for over-
run check, and 2 for stable value check. It took about 2 hours for 
the same clock, and about 6 hours for the non-deterministic clock. 
Here we found no bugs in the same clock environment. However, 
when we used the proposed non-deterministic clock, we could 
find one real bug caused by the unsynchronized clocks, i.e., con-
trol of buffers between unsynchronized clocks. It would be 
impossible or at least very hard to find this bug if we used only 
the same clock or some predefined two clocks. The non-
deterministic clock model found this bug. 

For the slave reading and writing operations, we tested total 22 
properties: 14 for data and address movement and 8 for overrun 
checks. It took about 2 minutes. The HCI monitor was translated 
into 23 CTLs and 5 FSMs. Here 15 simple monitor modules were 
translated into 18 CTLs, and 5 complex ones into 5 FSMs and 5 
CTLs. The verification time was about 3 hours. In this verifica-
tion, we could find one bug in our HCI I/F model: It did not set 
the HCI_MBstCntr signal correctly during the burst-writing mode. 

5. DISCUSSIONS 
• In many cases, SMV verified not only the design but also the 

property itself. The incremental design and verification (i.e., 
both the design and the property grow incrementally by add-
ing new features one by one, and the model checker checks 
both of them) played an important role in our design. 

• At the early stage of our design, we could find real design er-
rors relatively easily using very simple environments. As we 
began to use more complicated environment to verify the 
complex properties, many errors detected by the model 
checker were not the real design errors but the errors in the 
environment modeling and the property writing. As the envi-
ronment and the properties were settled, we could find a few 
but crucial remaining real design errors. The last one is the 
well-known reason of using model checking. However, we 
believe that the first one, the early stage use of model check-
ing, is also very important and useful because it enabled us to 
find bugs early in the design, thus to reduce the design time. 
In addition, the more efficient ways to model the environ-
ment will be very much helpful for the efficient verification. 

• The design and verification time was considerably reduced as 
we got more experiences in model checking. It is now almost 
equal to or even lesser than the conventional Verilog and 
simulation based design. Such a speed up was possible due to 
the reuse of verified SMVL templates for designs and CTLs. 

• Though we use formal verification much intensively than the 
past, yet we have to rely on the conventional system-level 
simulation to detect the possible bugs in the abstracted envi-
ronments, interfaces between partitions, and the specification 
itself. For that purpose, we translate the CTLs into Verilog 
monitor modules that run in the simulation with other mod-
ules and inform us if there is any violation. 

6. CONCLUSIONS 
This paper described our experience and methodology used in 

the model checking of our embedded SOC product. We explained 
how to model the explicit multiple clocks, gated clocks, unsyn-
chronized clocks, and synchronization logics. Detailed case stud-
ies showed the actual application of the modeling techniques, 
environment modeling, and the properties we used. The verifica-
tion results validated the proposed methods by finding real bugs. 

Thanks to the proposed methodology, we could get the func-
tionally verified designs in a reasonable time. We now believe that 
the model checking is a very useful, mature, and affordable tech-
nology that industries can use for SOC products. 
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