
Model Checking of S3C2400X Industrial Embedded SOC Product

Hoon Choi, Byeongwhee Yun, Yuntae Lee, and Hyunglae Roh
SOC Development Group, System LSI, Samsung Electronics, Yongin-City, Kyunggi-Do, Korea

hchoi@ieee.org, {bwyun, yuntaelee, shlroh}@samsung.co.kr

ABSTRACT
This paper describes our experience and methodology used in

the model checking of S3C2400X industrial embedded SOC prod-
uct. We employed model checking to verify the RTL implementa-
tion. We describe how to model the multiple clocks, gated clocks,
unsynchronized clocks, and synchronization logics in model
checking. Detailed case studies of real designs show the applica-
tion of the proposed modeling techniques, environment modeling,
and the properties we checked. The verification results validate
the proposed techniques by finding real bugs.

1. INTRODUCTION
This paper describes our experience and methodology used in

the intensive use of formal verification in the design of S3C2400X
embedded SOC product. The overview of S3C2400X is shown in
Fig. 1. It is composed of an ARM920T processor and 16 function
modules, i.e., IPs.

7LPHU�3:0

:'7

00&

,�&

,�6

57&

*3,2

8$57

$'&

$
3
%
%
X
V

$
+
%
%
X
V

0HPRU\ &RQWUROOHU

/&' &RQWUROOHU

,QWHUUXSW &RQWUROOHU

$50���7

%XV &RQWUROOHU

$UELWHU�'HFRGHU
%
ULG

J
H

'
0
$
��
�&
+
�

%XV &RQWUROOHU

$UELWHU�'HFRGHU

86% +RVW

7,&

7LPHU�3:0

:'7

00&

,�&

,�6

57&

*3,2

8$57

$'&

$
3
%
%
X
V

$
+
%
%
X
V

0HPRU\ &RQWUROOHU

/&' &RQWUROOHU

,QWHUUXSW &RQWUROOHU

$50���7

%XV &RQWUROOHU

$UELWHU�'HFRGHU
%
ULG

J
H

'
0
$
��
�&
+
�

%XV &RQWUROOHU

$UELWHU�'HFRGHU

86% +RVW

7,&

Fig. 1: Block diagram of S3C2400X SOC product

We can classify the IPs into three groups in the verification
point of view. First, many IPs have been used in the previous
products and verified in silicon, e.g., memory controller, UART,
I2S, etc. We just changed the interface logic for new bus systems,
i.e., from SSB/SPB to AHB/APB [8]. In this case, those bus sys-
tems were so similar to each other that we could verify the inter-
face logic easily with just a simulation. Second, some IPs were
newly designed for the new bus systems, e.g., bus controllers,
DMA, etc. We used model checking to verify the correctness of
those IPs. Last, we bought USB host controller (UHOST) as an IP
[9] and designed interface logic to attach it to the AHB bus. In
this case, the interface protocol of UHOST is significantly differ-
ent from that of AHB system. Specifically, the former one uses
FIFO based protocol (HCI protocol), while the latter one uses a
pipelined bus protocol. Furthermore, they run at different unsyn-
chronized clocks. This led us to use model checking to guarantee

the correct operation of the designed interface in all the possible
cases, e.g., various combinations of different clocks.

In this paper, we describe the model checking techniques used
for the second and the third classes. We employed model checking
to verify the RTL implementation. The rest of this paper is organ-
ized as follows: In Section 2, we briefly present the selection of a
model checker and a modeling language and the overview of our
design/verification flow. The modeling details, i.e., how to model
the multiple clocks, gated clocks, unsynchronized clocks, and
synchronization logics are covered in Section 3. Section 4 de-
scribes the details of actual verifications, i.e., case studies, with
verification results. Discussions and conclusions are given in Sec-
tion 5 and Section 6, respectively.

2. MODEL CHECKER AND LANGUAGE
We used SMV [1] as our model checker because it has many

good features to support real designs and there are many success
stories from the industry [2][3][4][5][6][7]. SMV supports vari-
ous features to reduce the problem size, i.e., the scalarset data
type for symmetric reduction, the ordset data type for induction,
the subclass structure for case-splitting, the layer structure for the
compositional assume-guarantee verification, and the property
based reduction capability.

SMV supports SMV language (SMVL) and Verilog (actually it
is translated into SMVL before verification) as the modeling lan-
guage. SMVL is better than Verilog in controlling and exploiting
the full power of SMV, especially in problem size reduction. In
addition, its macro definition capability is very useful in handling
multiple clocks conveniently. Hence, we used SMVL as our main
modeling language. The environment (i.e., abstracted models of
other modules needed for the verification of a module) is also
modeled in SMVL using non-deterministic values. It can signifi-
cantly abstract out the details of the environment so that the com-
plexity of the environment as well as the amount of modeling
work can be significantly reduced.

Now, we briefly describe our design/verification flow shown in
Fig. 2. Each module is designed in either the SMVL or the Ver-
ilog. The modules written in Verilog are translated into those in
SMVL using vl2smv utility. The modules in SMVL and the prop-
erties (to be checked) written in CTL are processed by the model
checker. If the model checking is passed without any failure, we
become to get the golden models. The SMVL golden model is
translated into the Verilog golden model. Since, to the best of our
knowledge, there is no available SMVL to Verilog translator, we
manually perform this translation. However, since almost all the
syntax of SMVL has its corresponding part in Verilog, the transla-
tion is relatively an easy task (This is especially true for the subset
of Verilog used for the synthesis, and we guided to use only the
subset of SMVL that has its corresponding part in that subset of
Verilog.). We verify the correctness of the translated code by
translating it back to SMVL and then performing the model
checking.

After obtaining the golden model, we refine the RTL code for

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
38th DAC, June 18-22, 2001, Las Vegas, Nevada, USA.
Copyright 2001 ACM 1-58113-297-2/01/0006…$5.00.

more efficient synthesis. To verify the correctness of these refine-
ments, we use the equivalence checker. The conventional simula-
tion and the synthesis follow the refinement step. Optionally we
may perform the final check by model checking the compiled
gate-level netlist.

0RGHO FKHFN

)DLO

6\QWKHVLV

1HWOLVW��Y�

)DLO

Y
VPY

VPY
Y

609

(TXLY� FKHFN/LEUDU\

� WR �

WUDQVIRUP

'HVLJQ

FRPSLOHU

3URSHUWLHV

6XFFHVV

8QRSWLPL]HG

GHVLJQ
Y

2SW� IRU

6\QWKHVLV Y
2SWLPL]HG

V\QWKHVL]DEOH GHVLJQ

*DWH OLEUDU\

�RQO\ IXQFWLRQ�

��VPY�

0RGHO FKHFN

1HWOLVW

609

)DLO

YO�VPY

)LQDO FKHFN

VPY
Y

YO�VPY

0RGHO FKHFN
)DLO

*ROGHQ 57/

YO�VPY

Y
VPY

0RGXOH

GHVLJQV

VPY

0RGXOH

GHVLJQV

&7/Y

VPY

&7/

9HULORJ FRGH

609/ FRGH

&7/ SURSHUWLHV

2SWLRQDO

0RGHO FKHFN

)DLO

6\QWKHVLV

1HWOLVW��Y�

)DLO

Y
VPY

Y
VPY

VPY
Y

VPY
Y

609

(TXLY� FKHFN/LEUDU\

� WR �

WUDQVIRUP

'HVLJQ

FRPSLOHU

3URSHUWLHV

6XFFHVV

8QRSWLPL]HG

GHVLJQ
Y

2SW� IRU

6\QWKHVLV YY
2SWLPL]HG

V\QWKHVL]DEOH GHVLJQ

*DWH OLEUDU\

�RQO\ IXQFWLRQ�

��VPY�

0RGHO FKHFN

1HWOLVW

609

)DLO

YO�VPY

)LQDO FKHFN

VPY
Y

VPY
Y

YO�VPY

0RGHO FKHFN
)DLO

*ROGHQ 57/

YO�VPY

Y
VPY

0RGXOH

GHVLJQV

VPY

0RGXOH

GHVLJQV

&7/Y

VPY

&7/

9HULORJ FRGH

609/ FRGH

&7/ SURSHUWLHV

Y

VPY

&7/

9HULORJ FRGH

609/ FRGH

&7/ SURSHUWLHV

2SWLRQDO

Fig. 2: Overview of design/verification flow

In our design flow, the formal verification is tightly coupled
with the RTL design procedure. It is used to get the correct and
verified RTL designs by our RTL designers, not for a separate
verification procedure performed by a separate verification team.
This use of formal verification enabled our designers to detect and
eliminate many design errors (even very complex ones) easily at
the very early stage of our RTL design. The verification time itself
for a module with appropriately abstracted environments was
almost comparable to the simulation time using a large number of
vectors. In short, the use of the formal verification gave us not
only the high confidence on the correctness but also the reduced
design time.

3. MODELING DETAILS
In this section, we describe the modeling details: multiple

clocks and gated clocks that are very common in RTL designs,
unsynchronized clocks and synchronization logics that are used in
the UHOST interface.

3.1 Multiple clocks
In the modeling, we have to handle two different clocks, i.e.,

AHB clock and APB clock. However, SMV supports only one
implicit clock and SMVL does not support any syntax to describe
explicit multiple clocks. This is also true for the Verilog code
translated into SMVL: All the always statements using posedge
and/or negedge are converted such that the registers are updated at
the same next time step of a single implicit clock.

To circumvent this problem, we use the following techniques.
The AHB clock, i.e., HCLK, having both edges is generated as
follows: init(HCLK) := 0; next(HCLK) := ~HCLK. And we de-
fine PNEXT macro for the update at the positive edge such that
PNEXT(HCLK, d) := s is converted into if(~HCLK) next(d) := s.
Then signal d is updated to the value of s at the next implicit clock
where HCLK makes a low-to-high transition. Similarly, we define
NNEXT macro for the update at the negative edge.

For the APB clock (i.e., PCLK) that runs at a half frequency of
HCLK, we cannot use the same approach. If we generate PCLK as
init(PCLK) := 0; PNEXT(HCLK, PCLK) := ~PCLK, the PCLK
has two cycles of high and two cycles of low as shown in the Fig.
3-(a). However, in this case we cannot use PNEXT(PCLK, d) := s
because there are two implicit time steps, i.e., ta and tb, in the low
phase of PCLK, which makes d updated twice at ta and tb while we

actually want it to happen only once at tb. This may result in in-
correct results (e.g., PNEXT(PCLK, s) := s + 1 may increase s
twice in one cycle). To handle this problem, we use an asymmetric
PCLK, i.e., three cycles of high and one cycle of low for the posi-
tive edge of PCLK as shown in Fig. 3-(b), and one cycle of high
and three cycles of low for the negative edge. Then the signal s is
updated only at tb as we want. (Note that this method is possible
partially because the AHB modules in our design get the data
from APB modules only at the rising edge of HCLK.)

,PSOLFLW &/.

+&/.

3&/.

�D�

�E�

� � � � � � � �

W
D

W
E

,PSOLFLW &/.

+&/.

3&/.

�D�

�E�

� � � � � � � �

W
D

W
E

Fig. 3: Handling multiple clocks

3.2 Gated clocks
The use of gated clocks also causes similar problems as the

multiple clocks. For example, if we use PNEXT macro for the
gated clock shown in Fig. 4, data will be latched not only at te
where we actually want but also at ta~td because the gated clock is
low at those time instances. We have to solve this problem for the
correct verification.

,PSOLFLW &/.

&/.

� � � � � � � �

W
D

W
F

*DWHG &/.
W
E

W
G

W
H

,PSOLFLW &/.

&/.

� � � � � � � �

W
D

W
F

*DWHG &/.
W
E

W
G

W
H

Fig. 4: Problem of gated clocks

In our design, gated clocks are used for two purposes. First, we
use gated clocks for low-power consumption. In this case, the
clock gating is performed at a module-granularity, i.e., entire
blocks of a module are clock gated, and we usually keep the gat-
ing logic in a separate module, i.e., the gating logic does not re-
side in the module under test. Furthermore, in the functional veri-
fication we mainly concern the normal operation mode, not the
power down mode. Therefore, we could verify those clock-gated
modules without considering the clock gating effect.

Second, the gated clock is used for data transfers, e.g., MMC
controller. In the transfer of data to the MMC card, MMC control-
ler uses gated clocks to indicate the time instances for the card to
get the data. Here, the MMC controller gates out the clock edge if
there is no valid data on the data bus. For example, in Fig. 5 the
rising edges of GCLK1 (generated by MMC controller) indicate
the time instances at which the valid data can be obtained from the
bus. The missed rising edge of GCLK1 means that data is not
available at that time instance, i.e., time 5 and 6.

,PSOLFLW

&/.

&/.

� � � � � � � �

'� '� '�

*&/.�

*&/.�

'DWD

*&/.�

*&/.�

,PSOLFLW

&/.

&/.

� � � � � � � �

'� '� '�

*&/.�

*&/.�

'DWD

*&/.�

*&/.�

Fig. 5: Handling gated clocks

However, we cannot use the GCLK1 as it is in SMV because

the low value of GCLK1 at time 5 makes the data latched at time
instance between 5 and 6. To circumvent this problem, we
changed MMC controller to generate GCLK2 instead of GCLK1.
As we see, the high value of GCLK2 at time 5 and 6 solve the
problem of GCLK1. Similarly, we use GCLK4 in place of GCLK3
for the falling edge. Note that such a change requires not only the
AND gate to OR gate replacement in the gating logic but also the
change of gating timing. In our case, such a change was possible,
thus we could use this approach.

3.3 Unsynchronized clocks
The two unsynchronized clocks of UHOST interface have to be

modeled in such a way that all the possible cases are covered. The
modeling should not restrict the covering of possible cases.

We first considered the use of a fine clock and two counters.
For example, given HCLK running at 100MHz and UHOST clock
(UCLK) running at 12MHz, two counters counting 3 and 25, re-
spectively, can mimic those clocks: When each counter reaches its
own limit, it inverts its output. However, this approach has two
problems: First, these predefined clocks cannot guarantee the
covering of all the possible cases such as the speed change of
HCLK in different operation modes. Second, the two counters
increase the number of state variables, thus slow down the verifi-
cation. Thus, we use a different approach.

1'9 &/.

,PSOLFLW &/. � � � � � � � �

W
D

W
E

&RUUHFW &/.

1'9 &/.

,PSOLFLW &/. � � � � � � � �

W
D

W
E

&RUUHFW &/.
Fig. 6: Clock modeling using non-deterministic values

We use non-deterministic values in modeling clocks. However,
we do not use the non-deterministic value directly as a clock. For
example, NDV CLK in Fig. 6 shows the clock modeled directly by
a non-deterministic value. In time 6 and 7, NDV CLK is consecu-
tively low, thus problems happen at those points as the gated
clocks. To solve this problem, we have to force NDV CLK to have
only one cycle of consecutive lows at the maximum as shown in
Correct CLK. To make such a clock, we use a FSM shown in Fig.
7 where ndv represents a non-deterministic value. The fairness
constraint prevents CLK from staying at 1 forever. We use two
copies of this FSM, one for each clock.

V�

V�

QGY �

QGY �

)DLUQHVV � $* $) �QGY ���

&ON � �VWDWH V���

V�

V�

QGY �

QGY �

)DLUQHVV � $* $) �QGY ���

&ON � �VWDWH V���

Fig. 7: FSM modeling an unsynchronized clock

3.4 Synchronization logic
We use double synchronization FFs (DS-FFs) shown in Fig. 8

in the UHOST interface. If In meets the setup time of the first FF,
the Out’ and Out become stabilized as shown in (a). However, if it
is not the case, Out’ and Out are delayed by one clock cycle as
shown in (b).

' 4 ' 4,Q 2XW
2XW·

&/.

' 4' 4 ' 4' 4,Q 2XW
2XW·

&/.

&/.

,Q

2XW·
2XW

�D�

�E� 2XW·
2XW

&/.

,Q

2XW·
2XW

�D�

�E� 2XW·
2XW

Fig. 8: Double synchronization flip-flops

To model this effect, we first considered the use of a sequence
of internal FFs (running at a fine clock) and some gates: if and
only if all the internal FFs have the same value, the setup time is
regarded as being met, and the output reflects the input. However,
this model increases the number of FFs significantly, which de-
grades the verification performance. In addition, this model re-
quires the fine clock (mentioned in Section 3.3). Hence, we use a
different approach using non-deterministic values.

We use a FSM shown in Fig. 9 where Get is a non-
deterministic value. This FSM is based on the fact that Out’ gets
the input data at the maximum of one clock cycle delay, i.e., Fig.
8-(b) case. Note that we do not use this FSM for each communica-
tion signal. Instead, we use only two, one for signals from HCLK
to UCLK, and the other for those from UCLK to HCLK. This is
because if we use separate FSMs for each signal, some signals
may reach receiver’s domain while others may not, even if all of
them have waited at the input of DS-FFs concurrently. This is not
the case in real circuits.

*HW � 2XW· � ,Q

a*HW� 2XW· � ,Q

31(;7�&/.� 2XW� � 2XW·

*HW � 2XW· � ,Q

a*HW� 2XW· � ,Q

31(;7�&/.� 2XW� � 2XW·
Fig. 9: FSM modeling DS-FFs

4. CASE STUDY
4.1 Verification of DMA

DMA contains AHB slave part (for accessing control registers,
CRs), AHB master part, and APB master part. It performs AHB to
APB, APB to AHB, and AHB to AHB DMA operations. We di-
vided the verification into two modes for the reduction of problem
size: One was the ARM to CR access mode and the other was the
DMA operation mode. In ARM to CR access mode, we checked
only the CR read/write accesses of the ARM core. On the other
hand, in the DMA operation mode, we checked the DMA opera-
tion itself with assuming some fixed CR values.

Among the seven CRs, three can be written only by the ARM
core, other three only by the DMA core, and another one by both
of them, while all the CRs can be read by the ARM core. Hence,
the write to the first three could be thoroughly verified in the ARM
to CR access mode. On the other hand, the write access to the
other three could only be verified in the DMA operation mode,
and the last one partially in both of the verification modes.

The verification environment for ARM to CR access mode is
shown in Fig. 10. It is composed of a simple model of ARM core
(a simple FSM to test only the CR accesses), a simple AHB arbi-
ter, and a simple AHB decoder. The shaded area represents the
blocks that are not verified in this mode. Those blocks were mod-
eled very simply using non-deterministic values. The clear block
boundary between the ARM to CR access blocks and the DMA
operation blocks were very helpful in this abstraction, thus we
believe that we should consider this kind of verification require-
ment from the start of the design.

6
LP

S
OH

G
H
F
R
G
H
U

$+% EXV

6LPSOH $50 PRGHO

IRU DFFHVVLQJ &5

6
LP

S
OH

D
UE
LWH

U

$+%

PDVWHU

$3%

PDVWHU

'0$ FRUH+0 30

&5+6

$+% VODYH IRU

&5 DFFHVV

'0$

6
LP

S
OH

G
H
F
R
G
H
U

$+% EXV

6LPSOH $50 PRGHO

IRU DFFHVVLQJ &5

6
LP

S
OH

D
UE
LWH

U

$+%

PDVWHU

$3%

PDVWHU

'0$ FRUH+0 30

&5+6

$+% VODYH IRU

&5 DFFHVV

'0$

Fig. 10: Environment for ARM to CR access mode

In this environment, we tested 12 CTLs including 5 vacuous

checks. The execution time was about two minutes. Here we
found one critical design bug that could occur during the burst
access of CRs. The change of allowed access modes during the
design caused this bug.

6
LP

S
OH

D
UE
LWH

U

$+% EXV

6
LP

S
OH

G
H
F
R
G
H
U

$+%

PDVWHU

$3%

PDVWHU

'0$ FRUH+0 30

&5+6

$+% VODYH IRU

&5 DFFHVV

6
OD
Y
H

'0$

6
LP

S
OH

G
H
F
R
G
H
U

$3% EXV

6
LP

S
OH

D
UE
LWH

U

6
OD
Y
H

([W�

'0$ 5(4V6
LP

S
OH

D
UE
LWH

U

$+% EXV

6
LP

S
OH

G
H
F
R
G
H
U

$+%

PDVWHU

$3%

PDVWHU

'0$ FRUH+0 30

&5+6

$+% VODYH IRU

&5 DFFHVV

6
OD
Y
H

'0$

6
LP

S
OH

G
H
F
R
G
H
U

$3% EXV

6
LP

S
OH

D
UE
LWH

U

6
OD
Y
H

([W�

'0$ 5(4V

Fig. 11: Environment for DMA operation mode

The verification of DMA operation mode started with assuming
CRs to have some fixed values for a specific DMA operation
mode. Here we applied the case-splitting technique. In short, we
tested each of DMA operation modes, separately. In addition, we
also applied the compositional verification: For each mode of the
operation, we assumed the correctness of AHB arbiter, AHB de-
coder, APB arbiter, and APB decoder. This enabled us to use a
simple verification environment shown in Fig. 11. The slave was
used to check the correctness of the transfer. Though we could do
this by directly looking at the bus signals, to know the bus signal
sampling time we needed a FSM knowing the bus protocol. The
slave was used as the FSM in our verification. The shaded CR
access blocks were modeled using non-deterministic values such
that all the possible cases were covered.

The properties were also written in such a way that each differ-
ent mode of operation was verified separately. The problem here
was the large number of variables (i.e., 16) whose combinations
decide different modes of operations. To solve this problem, we
exploited the fact that operations initiated by some variables do
not depend on those initiated by other variables. For example,
interrupt requesting at the end of transfers initiated by the inter-
rupt/polling variable has nothing to do with specific bus transfers
initiated by other variables such as the source selector. For such
variables, we do not need to test all the possible combinations of
them. We built a graph showing such a relation among the vari-
ables, and then elicited the minimum set of properties to test.

In this verification, we verified 67 properties (including 6
vacuous checks) each of which have about 100 state variables.
The execution time was about 7 hours and 20 minutes. We found
one critical design error (i.e., HTRANS was not returned to IDLE
after a burst transfer in some situations) and fixed it.

One of the interesting verification was the deadlock checking.
The operations of DMA and bridge use both of busses (i.e., AHB
and APB) as masters, thus there is a possibility of a deadlock.
Hence, to prevent such a deadlock we use some mechanisms in
the design and have to verify them.

The environment for this checking requires both the DMA and
the bridge. However, we could use a very simplified version of the
bridge instead of the full complexity one by modeling the bridge
as a simple FSM having four states. This FSM models the bus
requesting behavior of the bridge that is relevant to the deadlock
verification. It requests AHB bus, and if granted it requests APB
bus. It uses three non-deterministic values to model the various
kinds of transfers and to decide the bus release time.

The AHB arbiter was also modeled using a simple FSM having
five stages. It models the behavior of the arbiter only for the two
request sources, i.e., DMA and bridge. It gives a grant to one of
DMA or bridge, and waits for the release signal from the granted
master to model the bus ownership. The APB arbiter was also
modeled similarly. Fig. 12 shows the verification environment.

6
LP

S
OH

D
UE
LW
H
U

$+%

PDVWHU

$3%

PDVWHU

'0$ FRUH+0 30

&5+6

'0$

6
LP

S
OH

D
UE
LW
H
U

([W�

'0$ 5(4V
6LPSOH PRGHO

RI EULGJH UHTXHVW 6
LP

S
OH

D
UE
LW
H
U

$+%

PDVWHU

$3%

PDVWHU

'0$ FRUH+0 30

&5+6

'0$

6
LP

S
OH

D
UE
LW
H
U

([W�

'0$ 5(4V
6LPSOH PRGHO

RI EULGJH UHTXHVW

Fig. 12: Verification environment for deadlock

In this environment, we verified 13 properties (including 4
vacuous checks) having about 90 state variables. CPU time was
about 23 minutes, and we could verify the correctness of the dead-
lock preventing mechanisms.

4.2 Verification of UHOST interface
4.2.1 Overview of interface logic

Fig. 13 shows a part of AHB system, interface logic, and USB
host (UHOST). UHOST is composed of a core, a HCI master
interface (read/write), and a HCI slave interface (read/write). Our
interface logic performs interfacing between the HCI I/F of
UHOST and the AHB bus. In the master write operation of
UHOST, master WR I/F of our interface receives a sequence of
data from HCI I/F and then write them to the system memory via
AHB bus. Similarly, in the master read operation our interface
reads in a sequence of data requested by the UHOST HCI I/F from
the system memory, and then gives it to UHOST. In slave opera-
tion, ARM920T writes control-words to the UHOST control
registers via our interface’s slave WR I/F. In read, ARM920T
reads control-words via our slave RD I/F.

$
+
%
%
X
V

0HPRU\ &RQWUROOHU

$UELWHU 	 'HFRGHU

+&, ,�)

0DVWHU ,�)

:5 ,�)

5' ,�)

,QWHUIDFH

$50���7

6ODYH ,�)

:5 ,�)

5' ,�)

+
&
,
%
X
V

0DVWHU

:5

5'

86% +RVW6ODYH

:5

5'

86%
+RVW

&RUH

$
+
%
%
X
V

0HPRU\ &RQWUROOHU

$UELWHU 	 'HFRGHU

+&, ,�)

0DVWHU ,�)

:5 ,�)

5' ,�)

,QWHUIDFH

$50���7

6ODYH ,�)

:5 ,�)

5' ,�)

+
&
,
%
X
V

0DVWHU

:5

5'

86% +RVW6ODYH

:5

5'

86%
+RVW

&RUH

Fig. 13: Interface logic and its environment

4.2.2 Design partitioning for verification
Partitioning of a design for the verification is important in

model checking because the design size is one of the most impor-
tant factors deciding the success of model checking. In our previ-
ous designs, modules designed without a proper partitioning
caused model checking very hard and inefficient, and at the end
we had to redesign those modules considering partitioning for
verification. This experience led us to consider the appropriate
partitioning as soon as the building blocks of our interface were
determined (before the actual coding). The partitioning was
mainly for the ease of verification, not for the ease of design.

The result of partitioning is shown in Fig. 13. The partitioning
was performed to exploit the case splitting technique. For exam-
ple, we divided the interface into two, i.e., one for HCI master
operation and the other for HCI slave operation. Furthermore, we
divided the interface for the master operation further into two, i.e.,
read and write. Similarly, that for the slave operation was also
divided. This partitioning is based on the fact that we can check
the correctness of our interface by checking those four partitions
separately. This partitioning caused the interface logic to have
some duplicated logics, i.e., not an optimal design in area, but the
redundancy was very marginal and the verification became much
easier and efficient. Thus, we believe that such a partitioning for
verification is very important for model checking.
4.2.3 Environment modeling

We used two different verification environments, one for mas-

ter operation and the other for slave operation. The verification
environment for the master operation is shown in Fig. 14. Specifi-
cally, it shows that for master writing operation. Here we model
the memory controller and memory, arbiter, decoder, and HCI I/F
writing master.

Memory controller and memory were modeled using a simple
AHB slave with a depth four buffer. The model was abstracted to
handle only the transfer types generated by our interface logic.
HREADY signal from the memory controller was modeled using
a non-deterministic value and a fairness constraint to mimic the
various different delays of possible different memories.

+:0

$+% ZULWH

PDVWHU

),)2 	 6\QF� &:0

+&, ZULWH

PDVWHU ,�)

+50),)2 	 6\QF� &50

+:6 6\QF� &:6

+56 6\QF� &56

6
LP

S
OH

D
UE
LWH

U

$+% EXV

6
LP

S
OH

G
H
F
R
G
H
U

6
OD
Y
H

0DVWHU ,�)

$+% UHDG

VODYH
+&, UHDG
VODYH ,�)

6ODYH ,�)

6LPSOH PRGHO RI
PHPRU\ FRQ�

	 PHPRU\

+
&
,
,�)

:
0

+&, EXV

86%

+RVW

+&, ,�)
ZULWH

PDVWHU

PRGHO

+:0

$+% ZULWH

PDVWHU

),)2 	 6\QF� &:0

+&, ZULWH

PDVWHU ,�)

+50),)2 	 6\QF� &50

+:6 6\QF� &:6

+56 6\QF� &56

6
LP

S
OH

D
UE
LWH

U

$+% EXV

6
LP

S
OH

G
H
F
R
G
H
U

6
OD
Y
H

0DVWHU ,�)

$+% UHDG

VODYH
+&, UHDG
VODYH ,�)

6ODYH ,�)

6LPSOH PRGHO RI
PHPRU\ FRQ�

	 PHPRU\

+
&
,
,�)

:
0

+&, EXV

86%

+RVW

+&, ,�)
ZULWH

PDVWHU

PRGHO

Fig. 14: Environment for master writing operation

AHB arbiter was modeled using a two state FSM and a non-
deterministic value (NDV). In state s1, if a bus request comes in,
it goes to s2 depending on NDV. If and only if NDV is 1, it goes
to s2. In s2, it asserts a grant signal until the bus request is de-
asserted. Though simple, it can mimic the situation where the
grant is not asserted due to other bus masters. A fairness con-
straint is used to prevent the starving case.

We modeled the HCI I/F writing master efficiently also using
non-deterministic values. For example, the number of data to
transfer, read or write, and byte enables were modeled using
NDVs. Furthermore, the latency between requests was also mod-
eled using NDV. This covered all the possible different delays
between requests that actually depend on the kind of data to be
transferred, e.g., data request requires three cycles of delay while
control-data requires no delay.

$+% EXV

6LPSOH $50 PRGHO

IRU DFFHVVLQJ &5

+:0

$+% ZULWH

PDVWHU

),)2 	 6\QF� &:0

+&, ZULWH

PDVWHU ,�)

+50),)2 	 6\QF� &50

+:6 6\QF� &:6

+56 6\QF� &56

0DVWHU ,�)

$+% UHDG

VODYH

+&, UHDG

VODYH ,�)

6ODYH ,�)

+
&
,
,
�)
:
6

+&, EXV

86%

+RVW

+&, ,�)

ZULWH

VODYH

PRGHO

$+% EXV

6LPSOH $50 PRGHO

IRU DFFHVVLQJ &5

+:0

$+% ZULWH

PDVWHU

),)2 	 6\QF� &:0

+&, ZULWH

PDVWHU ,�)

+50),)2 	 6\QF� &50

+:6 6\QF� &:6

+56 6\QF� &56

0DVWHU ,�)

$+% UHDG

VODYH

+&, UHDG

VODYH ,�)

6ODYH ,�)

+
&
,
,
�)
:
6

+&, EXV

86%

+RVW

+&, ,�)

ZULWH

VODYH

PRGHO

Fig. 15: Environment for slave writing operation

The environment for verifying the slave operation is shown in
Fig. 15. Specifically, it shows that for slave writing. Here we need
to model the ARM920T that sets the control registers of USB
host. We modeled the write operation of ARM920T using a sim-
ple FSM. HCI I/F writing slave was also modeled very simply to
check just the correct data and address arrivals.
4.2.4 Verified properties

Properties that we checked can be classified into four groups.
Data and address movement checking

This group checked the correct data and address movements. In
writing CTLs, we used case splitting, e.g., we divided cases de-
pending on the number of data to transfer, various byte enables,
etc. This reduced the number of state variables related to each
CTL. In addition, we did not check the correct transfer from one
end to the other end (i.e., from HCI I/F to memory, and vice
versa) because it involved large number of state variables. Instead,
we checked each consecutive fine step of the transfer separately

using assume and guarantee technique.
HCI bus protocol checking

The USB host IP was delivered with a HCI bus monitor. It was
a set of Verilog modules and originally intended to check whether
the user designed interface complies the HCI I/F protocol or not.

We translated the monitor into CTLs for model checking.
Monitor modules checking simple relations among signals were
translated into the corresponding simple CTLs. On the other hand,
complex monitor modules implemented in FSMs, e.g., checking
whether the number of data pushed into the data FIFO is same to
HCI_MBstCntr, were translated into one of the two forms. First,
in some cases, we could translate it into two or three consecutive
CTLs. Second, in many other cases, the Verilog FSM was trans-
lated into a combination of a SMVL FSM and a CTL. Here, the
SMVL FSM monitors the error condition and sets an error flag,
while the CTL says that the error flag never becomes true, i.e.,
assert AG ~(error_flag). In writing the FSM, abstract variables
[1] were used not to interfere with the design. This group of prop-
erties checked not only our interface design but also the abstracted
model of HCI interface that we assumed to be correct.
Stable signal checking

In our interface design, we use double synchronization FFs for
the communications between FSMs running at unsynchronized
clocks. However, for some signals (mainly data signals) we do not
use such FFs to reduce the number of FFs. Thus, for those signals
we have to guarantee that those signals are stable, i.e., have no
setup time problem, when the receiver latches them.

9DOLG GDWD

V� V�

W�

'DWD ZULWLQJ WLPH

'DWD ODWFKLQJ WLPH

W� W�

&/.�

&/.�

V�

9DOLG GDWD

V�V� V�V�

W�W�

'DWD ZULWLQJ WLPH

'DWD ODWFKLQJ WLPH

W�W� W�W�

&/.�

&/.�

V�V�

Fig. 16: Stable signal condition

The stable signal condition is shown in Fig. 16. We assume that
1) FSM1 running at CLK1 writes data at the transition from state
s1 to s2, and FSM2 running at CLK2 gets the data at the transition
from state t2 to t3. Then, the data is stable in FSM2’s point of
view if and only if the state of FSM1 at one cycle before the latch-
ing time, i.e., between t1 and t2 of CLK2, is s2 or later ones and
the data is not changed until the latching time.

For example, Fig. 17 shows the stable signal checking of
n_valid_wf signal coming from UCLK domain to HCLK domain.
HCI_MadrFinN = 0 in top_idle state means that a data was al-
ready written at the previous rising edge, and ahb_ws_hclk_ok = 1
in wr_idle state describes that data will be latched at the next ris-
ing edge. The CTL to check the stability is shown at the bottom of
Fig. 17. Note that the state of FSM running at UCLK is sampled
at the rising edge of HCLK in the CTL.

9DOLG GDWD

7RSBLGOH

'DWD ZULWLQJ WLPH

LI +&,B0$GU)LQ1 �

'DWD ODWFKLQJ WLPH

LI DKEBZVBKFONBRN �

8&/.

+&/.

7RSBZU7RSBLGOH

:UBLGOH :UBLGOH

31(;7�+&/.� VDPSOH� � �WRSBVWDWH 7RSBLGOH� 	 a+&,B0$GU)LQ1 _

�WRSBVWDWH 7RSBZU��

DVVHUW $* ��ZUBVWDWH :UBLGOH� 	 DKEBZVBKFONBRN �! VDPSOH��

9DOLG GDWD

7RSBLGOH

'DWD ZULWLQJ WLPH

LI +&,B0$GU)LQ1 �

'DWD ODWFKLQJ WLPH

LI DKEBZVBKFONBRN �

8&/.

+&/.

7RSBZU7RSBLGOH

:UBLGOH :UBLGOH

31(;7�+&/.� VDPSOH� � �WRSBVWDWH 7RSBLGOH� 	 a+&,B0$GU)LQ1 _

�WRSBVWDWH 7RSBZU��

DVVHUW $* ��ZUBVWDWH :UBLGOH� 	 DKEBZVBKFONBRN �! VDPSOH��
Fig. 17: Example of stable signal checking

Overrun check
In Fig. 18, a1 of FSM1 fires FSM2 waiting at b1. Assume that

the two FSMs run at different clocks and FSM2 runs very fast so
that it finishes its job, sends the done signal to FSM1, and comes
back to b1. If the start signal of FSM1 that fired FSM2 is not
cleared yet, FSM2 starts its operation again. We call this situation
overrun and have to verify that it never happens in all the cases.

VWDUW
D�

DM

E�

E�

EQ

)60�)60�

GRQH

DN

VWDUW
D�

DM

E�

E�

EQ

)60�)60�

GRQH

DN

Fig. 18: Overrun condition

This can be stated as follows: Given b1 receiving a
communication signal, in all the state paths of FSM2 back to b1,
there should exist a state where the communication signal is
deasserted in FSM2’s point of view. Note that we cannot simply
use U operator of CTL since the start signal can be deasserted and
then reasserted before b1, which is also a valid situation.

To facilitate this verification, we restricted our design to use
flip strategy in which all the communication signals are flipped
over (toggled) at the same time of assertion. The receiver also
flips over the decision value as soon as it receives an asserted
communication signal. This reduced the overrun check to verify-
ing only the correct flipping after every communication state in
both the sender and the receiver, which was easily stated and
checked in CTL.
4.2.5 Verification results

We first verified our interface with setting both of clocks, i.e.,
HCLK and UCLK, to a single same clock to detect bugs not re-
lated to the unsynchronized clocks, and then the non-deterministic
clocks to find bugs related to the unsynchronized clocks.

In the verification of the master writing operation, we checked
102 properties for data and address movement checking, 4 for
overrun checking, and 5 for stable signal checking. About a half
of them were used to check the vacuous properties. The verifica-
tion time was about 9 hours for the same single clock and 43
hours for the proposed non-deterministic clock covering all the
possible cases. In this testing we found no bugs.

For the verification of the master reading operation, we used 36
properties for data and address movement, 4 properties for over-
run check, and 2 for stable value check. It took about 2 hours for
the same clock, and about 6 hours for the non-deterministic clock.
Here we found no bugs in the same clock environment. However,
when we used the proposed non-deterministic clock, we could
find one real bug caused by the unsynchronized clocks, i.e., con-
trol of buffers between unsynchronized clocks. It would be
impossible or at least very hard to find this bug if we used only
the same clock or some predefined two clocks. The non-
deterministic clock model found this bug.

For the slave reading and writing operations, we tested total 22
properties: 14 for data and address movement and 8 for overrun
checks. It took about 2 minutes. The HCI monitor was translated
into 23 CTLs and 5 FSMs. Here 15 simple monitor modules were
translated into 18 CTLs, and 5 complex ones into 5 FSMs and 5
CTLs. The verification time was about 3 hours. In this verifica-
tion, we could find one bug in our HCI I/F model: It did not set
the HCI_MBstCntr signal correctly during the burst-writing mode.

5. DISCUSSIONS
• In many cases, SMV verified not only the design but also the

property itself. The incremental design and verification (i.e.,
both the design and the property grow incrementally by add-
ing new features one by one, and the model checker checks
both of them) played an important role in our design.

• At the early stage of our design, we could find real design er-
rors relatively easily using very simple environments. As we
began to use more complicated environment to verify the
complex properties, many errors detected by the model
checker were not the real design errors but the errors in the
environment modeling and the property writing. As the envi-
ronment and the properties were settled, we could find a few
but crucial remaining real design errors. The last one is the
well-known reason of using model checking. However, we
believe that the first one, the early stage use of model check-
ing, is also very important and useful because it enabled us to
find bugs early in the design, thus to reduce the design time.
In addition, the more efficient ways to model the environ-
ment will be very much helpful for the efficient verification.

• The design and verification time was considerably reduced as
we got more experiences in model checking. It is now almost
equal to or even lesser than the conventional Verilog and
simulation based design. Such a speed up was possible due to
the reuse of verified SMVL templates for designs and CTLs.

• Though we use formal verification much intensively than the
past, yet we have to rely on the conventional system-level
simulation to detect the possible bugs in the abstracted envi-
ronments, interfaces between partitions, and the specification
itself. For that purpose, we translate the CTLs into Verilog
monitor modules that run in the simulation with other mod-
ules and inform us if there is any violation.

6. CONCLUSIONS
This paper described our experience and methodology used in

the model checking of our embedded SOC product. We explained
how to model the explicit multiple clocks, gated clocks, unsyn-
chronized clocks, and synchronization logics. Detailed case stud-
ies showed the actual application of the modeling techniques,
environment modeling, and the properties we used. The verifica-
tion results validated the proposed methods by finding real bugs.

Thanks to the proposed methodology, we could get the func-
tionally verified designs in a reasonable time. We now believe that
the model checking is a very useful, mature, and affordable tech-
nology that industries can use for SOC products.

REFERENCES
[1] K. L. McMillan, Cadence SMV, available at http://www-

cad.eecs.berkeley.edu/~kenmcmil.
[2] B. Chen, M. Yamazaki, and M. Fujita, “Bug Identification of

a Real Chip Design by Symbolic Model Checking,” in
ED&TC, pp. 132-136, 1994.

[3] J. Bormann, J. Lohse, M. Payer, and G. Venzl, “Model
Checking in Industrial Hardware Design,” in 32nd DAC, pp.
298-303, 1995.

[4] J. Lu, S. Tahar, D. Voicu, and X. Song, “Model Checking of
a Real ATM Switch,” in ICCD, pp. 195-198, 1998.

[5] A. Th. Eiriksson, “Integrating Formal Verification Methods
with A Conventional Project Design Flow,” in 33rd DAC,
pp. 666-671, 1996.

[6] K. Takayama, T. Satoh, T. Nakata, and F. Hirose, “An Ap-
proach to Verify a Large Scale System-on-a-chip Using
Symbolic Model Checking,” in ICCD, pp. 308-313, 1998.

[7] H. Choi, M.K. Yim, J.Y. Lee, B.W. Yun, and Y.T. Lee,
“Formal Verification of an Industrial System-on-a-chip,” in
ICCD, pp. 453-458, 2000.

[8] AMBA Specification manual, England: ARM, 1999.
[9] USB Host Controller User’s Manual, Phoenix Tech., 1999.

	Main
	DAC01
	Front Matter
	Table of Contents
	Session Index
	Author Index

