High-level Software Energy Macro-modeling

T. K. Tanf, A. Raghunathan?, G. Lakshminarayana!, N. K. Jha'

1 Dept. of Electrical Eng., Princeton University, NJ 08544
i NEC, C&C Research Labs, Princeton, NJ 08540

Abstract

This paper presents an efficient and accurate high-level soft-
ware energy estimation methodology using the concept of
characterization-based macro-modeling. In characterization-
based macro-modeling, a function or sub-routine is charac-
terized using an accurate lower-level energy model of the
target processor, to construct a macro-model that relates
the energy consumed in the function under consideration
to various parameters that can be easily observed or calcu-
lated from a high-level programming language description.
The constructed macro-models eliminate the need for signif-
icantly slower instruction-level interpretation or hardware
simulation that is required in conventional approaches to
software energy estimation.

We present two different approaches to macro-modeling
for embedded software that offer distinct efficiency-accuracy
characteristics: (i) complexity-based macro-modeling, where
the variables that determine the algorithmic complexity of
the function under consideration are used as macro-modeling
parameters, and (ii) profiling-based macro-modeling, where
internal profiling statistics for the functions are used as pa-
rameters in the energy macro-models. We have experimen-
tally validated our software energy macro-modeling tech-
niques on a wide range of embedded software routines and
two different target processor architectures. Our experi-
ments demonstrate that high-level macro-models construct-
ed using the proposed techniques are able to estimate the
energy consumption to within 95% accuracy on the average,
while commanding speedups of one to five orders-of-magnit-
ude over current instruction-level and architectural energy
estimation techniques.

1. Introduction

In systems or sub-systems implemented as software run-
ning on dedicated processors, power consumption depends
significantly on the software being executed. Therefore, a
paradigm shift towards power estimation from the software
standpoint is natural. While power dissipation is a phe-
nomenon that physically occurs in the underlying system
hardware, software power (or energy) estimation techniques

Acknowledgments: This work was supported in part by
Army CECOM and in part by DAPRA under contract
no. DAAB07-00-C-L516.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

DAC 2001, June 18-22, 2001, Las Vegas, Nevada, USA.

Copyright 2001 ACM 1-58113-297-2/01/0006 ...$5.00.

model it as a function of the software being executed, effec-
tively abstracting out many of the hardware details.

Previous work on power analysis of embedded software is
largely based on either instruction-level modeling or struc-
tural modeling of the underlying hardware architecture. In
order to apply embedded software power analysis to large
systems, or in an iterative manner for design space explo-
ration (e.g., in the context of system synthesis tasks such as
hardware-software partitioning and mapping), it is neces-
sary to develop estimation techniques that demonstrate sig-
nificantly higher efficiency while maintaining high accuracy
or fidelity of estimation. In this paper, we propose an em-
bedded software energy estimation methodology to address
the above issues, based on the use of characterization-based
macro-modeling.

1.1 Related Work

Power analysis techniques have been proposed for embed-
ded software based on instruction-level characterization [3,
6, 14, 15, 18] and simulation of the processor architecture [4,
11, 16, 19]. Initial work on instruction-level power modeling
and analysis was done in [18], where energy consumption of
an embedded software program was computed by summing
base energy costs for individual instructions, circuit-state
overhead costs for consecutive instruction pairs, and addi-
tional penalties due to effects such as pipeline stalls and
cache misses. The accuracy of this method was improved
by accounting for data dependencies including the effects of
instruction and data addresses, register IDs, and operand
values [6, 15]. Its efficiency was improved by performing
measurements on a limited subset of instructions and in-
struction sequences [3, 15].

A complementary set of approaches to embedded soft-
ware power analysis is based on the use of cycle-accurate
and structure-aware architectural simulators. Such simu-
lators can identify the architectural blocks that are active
in each clock cycle during a program’s execution, as well
as record the stream of input operands seen by each ar-
chitectural block. Early work using this approach charac-
terized the power consumption of each architectural block
as a single number [11], while subsequent work used macro-
modeling concepts from RT-level power estimation to model
the power consumption of architectural blocks as functions
of their input data values [19]. Structure-aware architectural
simulation approaches have been shown to be applicable to
modern processor architectures (with deep pipelines; super-
scalar and out-of-order execution, and branch prediction and
speculative execution) [4], and to VLIW processors [16].

In order to estimate and minimize the energy consumption
of embedded systems, it is necessary to combine energy es-
timation tools for the embedded processors sub-system with
models and tools for other system components. Tools in

[2, 7, 8, 17] can be applied to various system-level design
tasks, including hardware-software partitioning, configuring
parameterizable cores, design of system memory hierarchies,;
improving battery usage efficiency, operating system power
reduction, power-conscious source coding styles, etc.

Recent research has recognized the need for efficient power
estimation techniques for embedded software (8, 13]. In [8],
techniques such as caching (re-using the result of a previous
invocation of the instruction set simulator for the same pro-
gram segment) were used to accelerate system-level power
estimation. However, the inherent speed of instruction-set
simulation is still a bottleneck. A “power data bank” ap-
proach to software energy estimation was proposed in [13].
It exploits the fact that many embedded software programs
are constructed using significant use of pre-defined library
packages, and some “glue code”. The power data bank for a
processor contains energy consumption and execution time
values for basic instructions, as well as library functions.
While it is mentioned in [13] that different instances of a
function may have different energy consumption (e.g., due
to cache and pipeline effects), their solution is to store a sin-
gle statistic such as the average observed over all instances
of a function, in the power data bank.

1.2 Paper Overview and Contributions

In this paper, we present two different approaches to en-
ergy macro-modeling for embedded software that offer dis-
tinct efficiency-accuracy characteristics.

e For functions whose computational or algorithmic com-
plexity can be easily expressed in terms of some pa-
rameters (e.g., data-intensive functions), we propose
complexity-based macro-modeling, where the variables
that determine the algorithmic complexity of the func-
tion under consideration are used as the macro-model-
ing parameters. Such energy macro-models require
only “black-box” parameters and thus result in highly
computationally efficient energy estimation.

e For functions that are not amenable to the complexity-
based macro-modeling (e.g., control-intensive functions
with highly data-dependent loops and branches), we
propose a more general technique, namely, profiling-
based macro-modeling where internal profiling statis-
tics for the functions are used as parameters in the
energy macro-models. We present several variants of
profiling-based macro-modeling, starting from simple
basic-block profiling, to different lengths of basic-block
correlation profiling and Ball-Larus path correlation
profiling.

We have experimentally validated our energy macro-model-
ing techniques using several embedded software routines on
two different processor architectures. They have been evalu-
ated for accuracy and speedup with respect to the low-level
power estimator used to construct the macro-models. High-
level macro-models constructed using the proposed tech-
niques are able to estimate the energy consumption to within
95% accuracy on the average, while commanding speedups
of one to five orders-of-magnitude over current instruction-
level and architectural energy estimation techniques.

2. General Approach

Our software energy macro-modeling approach uses re-
gression analysis. The idea is to model the software energy

consumption using a linear formula:
. P
E=Y ¢P (1)
j=1

where P;’s are the parameters of the macro-model, ¢;’s are
the corresponding coefficients and p is the number of param-
eters.

The first step in the construction of the macro-model is to
determine what parameters are needed to sufficiently model
the energy consumption. This step is usually difficult and
involves many tradeoffs. We devote Sections 3 and 4 to
discuss this problem.

Once the required set of parameters is determined, the
next step is to find the corresponding coefficients c;’s. This
step can be broken down into a few sub-steps:

1. First, we determine the set of typical input data which
is characteristic of the function and the application
area of the function. We denote the set of n typical
input data for the function as S = {Iy, I», .., I, }. Usu-
ally, n is large enough such that S is representative
of the actual application. We then evaluate P;’s for
every I; in S. From this evaluation, we can form a
parameter matrix:

P1,1 P1,2 .. P1,p
Py Py .. Py

P= : ()
Pn,l Pn,2 . Pn,p

where P;; is the j-th parameter value evaluated for
input data I;.

2. We also obtain the energy consumption of the func-
tion for every I; in S, possibly using a low-level soft-
ware energy estimator. This step is time-consuming.
However, this needs to be carried out only once in the
process of characterization. We can now form an en-
ergy vector: E = (E, E> E,)T, where E; is
the simulated energy consumption of the function for
input data I;.

3. From Equation. (1), we know that E and P are related
as follows:

E =PC (3)
where coefficient vector C=(¢1 ca .. ¢)T.
4. C is obtained using regression analysis [10]:
Cc= [PTP]_1 P'E (4)
Evaluation of the error is important to justify the applica-

bility of the macro-models. We use the following relative
error metric:

Z (i — fji)/EiV (5)

where E;’s are the energy data values and E;’s are the values
given by the macro-model.

Usage of the software energy macro-model to find the
energy consumption of a function is essentially a sub-step

of the characterization process. Basically, given a partic-
ular input data for the function, we evaluate all the pa-
rameters P;’s corresponding to it. The estimated energy
is then calculated using Equation (1). Suppose the time it
takes to obtain the energy estimate using the macro-model
iS Thodei- The whole idea of obtaining the energy estimate
using the macro-modeling approach is only meaningful if
Tmodet << Tsimulate, Where Tsimulate 1S the time it takes to
obtain the energy estimate using a low-level simulator. A
key factor to consider is the speedup, where

Tsimulata (6)

speedup = T
moae

3. Complexity-based Energy Macro-modeling

Many frequently used functions in multimedia or other
data processing applications make use of some algorithms
with known average-case algorithmic complexities. For these
types of functions, we can actually base the energy macro-
models on these complexities. For example, consider a func-
tion that sorts an integer array of size m using the inser-
tion sort algorithm, which has an average-case complexity
of ©(n?). We propose the energy macro-model for this func-
tion to be:

E =c1 + c25 + 38> (7)

where s is the size of the array. As explained in the previous
section, we use regression analysis to obtain the unknown
coefficients ¢;’s. First, we use n different arrays as input
data to the function and obtain the corresponding energy
consumption values of the function using a low-level soft-
ware energy simulator. Second, we set up a matrix equation
similar to Equation (3) based on the input data:

E; 1 s 2 .

2 1
Es _ 1 s2 s3 P ®)
E, 1 s, si c3

where E; and s; are the energy consumption of the function
and the array size, respectively, for input array . The opti-
mal set of ¢;’s (j = 1,2,3) can be obtained using regression
analysis as in Equation (4). We evaluate the accuracy of the
macro-model using the error metric defined in Equation (5).

The advantage of the complexity-based energy macro-mo-
del is the ease of use. In the above example, we only need
to know the size of the array and the energy consumption
of the function can be calculated quickly. In many cases,
however, the average-case complexity of the function may
not be known. In that case, we need a more general energy
macro-modeling technique. Moreover, if the error in the
prediction of the macro-model with respect to the modeled
data is too large, we know that the average-case algorithmic
complexity of the function is not representative of the typical
function execution. In this case, we should also resort to a
more general macro-modeling technique.

4. Profiling-based Energy Macro-modeling

In this section, we introduce the profiling-based energy
macro-modeling technique which is much more general than
complexity-based energy macro-modeling.

4.1 Basic-block Profiling

Energy estimation for a software program based on basic-
block profiling has been proposed by Tiwari et al. [18]. Ba-

sically, the estimated energy is computed as,
E= eib1 +eba+ ...+ Q 9)

where b;’s are the basic-block execution counts, e;’s are the
instruction energy contribution of the basic blocks, and @ is
the extra energy consumed due to cache misses or pipeline
stalls. @ is usually not linearly dependent on any of the
basic-block execution counts because branch mispredictions
and cache misses do not usually occur in a fixed proportion-
ality to the basic-block execution counts. In the prior work,
exact cycle-accurate simulation is employed to include () in
the total energy estimate.

The advantage of the regression-based macro-modeling
methodology becomes obvious when we want to abstract
away all the above details from the high-level energy macro-
models. Using basic-block execution counts as the param-
eters in a linear regression model, the statistical average of
the extra energy can be accounted for using basic-block pro-
filing:

E = c1by + cabs + ... (10)

where b;’s are the basic-block execution counts and ¢;’s are
the regression coefficients to be determined. However, the
fitting error can be large (around 10%), depending on the
irregularity of the extra energy compared to the instruction
energy portion of the basic-block energy.

In some applications, a 10% error in high-level software
energy estimation may be acceptable. Therefore, we include
the regression-based software energy model based on basic-
block profiling in the set of models we propose in this section.
The alternative models presented next reduce the errors by
partially accounting for the irregularities of the extra en-
ergy using a more sophisticated profiling technique called
correlation profiling.

4.2 Correlation Profiling

By correlation we mean a consecutive sequence of events.
Correlation-profiling is the counting of such correlations in a
program. The concept of correlation has been used in vari-
ous aspects of performance optimization in microprocessors.
For example, Pan et al. [12] used branch correlation to im-
prove the accuracy of dynamic branch prediction. Their
results show that, as compared with the traditional two-
bit counter-based prediction scheme, the correlation-based
branch prediction achieves up to 11% additional accuracy.
Mowry et al. [9] used control-flow correlation, self corre-
lation and global correlation to predict data cache misses
in non-numeric applications. In particular, the control-flow
correlation proposed in [9] is a sequence of basic blocks.

Since correlation profiling has been proven to be effective
in predicting branch mispredictions and cache misses, one
can expect it to be effective in modeling the extra energy
as well. Using this idea, we rewrite the energy estimate as

E=C1R1 +coRo + ... (11)

where R;’s are the counters for the correlation events and
¢j’s, again, are the regression coefficients to be determined.
Different types of correlation events [9, 12] have been inves-
tigated previously in the context of branch and cache miss
predictions. In this paper, we concentrate on one particular
type, called the control-flow correlation. The basic form of
control-flow correlation we use is similar to the form used
in [9]. We call it basic-block correlation. We also consider

another form of control-flow correlation, which we call Ball-
Larus acyclic path correlation. We discuss them separately
in the next two sub-sections.

BL1: AFGI
BL2: AFHI
BL3: ABCEFGI
BL4: ABCEFHI
BL5: ABDEFGI
BL6: ABDEFHI
BL7: ABCE
BL8: ABDE
BL9: BCE
BL10: BDE
BL11: BCEFGI
BL12: BCEFHI
BL13: BDEFGI
BL14: BDEFHI

(a) CFG (b) All Ball-Larus paths
Figure 1: A CFG with a loop

4.3 Basic-block Correlations

We define an m-block correlation as a sequence of execu-
tion of m basic blocks. Profiling of m-block correlations in-
volves counting of these m-block correlation events. For ex-
ample, profiling of 1-block correlations is actually the same
as basic-block profiling. Profiling of 2-block correlations is
the same as edge profiling (profiling of edges between basic
blocks).

We intend to use fixed-length m-block correlation counts
as parameters to be used in the derivation of software energy
macro-models. In this context, note that the R;’s in Equa-
tion (11) are in fact m-block correlation counts. We use an
example to illustrate this idea. Consider a function with the
control-flow graph (CFG) shown in Figure 1(a) where A, B,
C, ..., I denote basic blocks. A typical set of control-flow
traces for this CFG could be:

Trace 1: AFGI

Trace 2: AFHI

Trace 3: ABCEFGI
Trace4: ABCEBDEFHI
Trace 5: ABDEBDEFGI

Trace n: ...

Suppose we want to use 3-block correlations as the profil-
ing parameters in our energy model for this function, then
we should be counting the occurrence of the following events
in the traces: ABC, ABD, AFG, AFH, BCE, BDE, CEB,
DEB, EFH EFG, ..., etc.

Basically, we enumerate all the 3-block correlations for the
particular set of traces. Assuming that there are p differ-
ent 3-block correlations, then in the same manner as Equa-
tion (3), the following matrix equation can be formed:

Rin Rip .. Rip o E
Ry1 Rap . Roy ¢s Es (12)
Rn,l Rn,2 Rn,p p En

where R; ; is the count for the j-th 3-block correlation in
trace ¢, ¢; is the model coefficient associated with the j-th

correlation, and Ej; is the energy consumption of the function
associated with trace i. E;’s can be obtained using any
low-level software energy estimator [4, 7, 19]. The optimal
set of c;’s can be obtained using regression analysis as in
Equation (4). Again, we evaluate the accuracy of the macro-
model using the error metric defined in Equation (5).

Basic-block correlation profiling can be quite effective in
energy estimation for some functions. Since we are only us-
ing fixed-length correlations in this method, we expect it to
be less effective when the paths through the functions are
generally long. To overcome this limitation, we need a profil-
ing method that can capture the notion of path correlations.
We discuss this issue in the next sub-section.

4.4 Ball-Larus Path Correlations

Though the term Ball-Larus path was coined later, the
concept was first described in [1]. Consider the CFG in
Figure 1(a) for the purpose of path profiling. The method in
[1] considered all possible acyclic paths starting from either
the ENTRY (A) node or the nodes which are the targets of
one or more back edges, and ending with either the EXIT (I)
node or the nodes which are the sources of one or more back
edges. These acyclic paths are called Ball-Larus paths. For
example, the Ball-Larus paths for the CFG in Figure 1(a)
are listed in Figure 1(Db).

To go a step further, we also consider the correlations
of different Ball-Larus paths. For example, consider two
typical traces (the differences are highlighted in bold):
Trace : ABCEBCEBDEBCEFHI
Trace 22 ABCEBCEBCEBDEFGI

We can re-write the traces using Ball-Larus paths:

Trace 1: BL7 BL9 BL10 BL12
Trace 2: BL7 BL9 BL9 BL13

In Trace 1, we have two 3-BL-path (3-Ball-Larus-path)
correlations, which are BL7-BL9-BL10 and BL9-BL10-BL12.
In Trace 2, we have BL7-BL9-BL9 and BL9-BL9-BL13. The
energy estimation approach using BL-path correlation pro-
filing is essentially the same as energy estimation using basic-
block correlation profiling. Instead of counting the number
of basic-block correlations in the traces, we count BL-path
correlations.

In the next sub-section, we discuss the considerations we
make to determine the “best” profiling method to use.

4.5 Selection of Profiling Methods

Depending on the accuracy and speedup of the macro-
models required by the designers, different methods may be
chosen. In general, we propose the following procedure:

1. For the function that needs to be characterized, obtain
q different energy macro-models using basic-block cor-
relations, 2-block correlations, .., g-block correlations
as the profiling methods. Similarly, obtain r different
energy macro-models using 1-BL-path correlations, 2-
BL-path correlations, .., r-BL-path correlations as the
profiling methods. ¢ and r are chosen by the designer
who is characterizing the energy macro-model.

2. Pareto-rank the g + r different energy macro-models
based on accuracy and speedup. A solution’s Pareto-
rank is the number of other solutions, in the solution
pool, which do not dominate it. A solution dominates
another solution if it is better than the second one in
both accuracy and speedup. For example, if ¢ = 3

Table 1: Descriptions of the example functions

[_Examples

| Descriptions

Examples | Descriptions I

ged

calculate the greatest common divisor of two numbers

hash_insert | insert an clement into a hash table (linear probing)

hash_search

search for an element in a hash table (linear probing)

igray compute the gray code of a binary number (N bits)

ins_sort insertion sort an array of size N mult multiply two matrices of size L X M and M X N
myqsort quick sort an array of size N sock_find find an element in a linked-list

branch synthetic function with a branch in a loop br.mem synthetic function with nested branches in a loop
br_smem another synthetic function with nested branches in a loop chksum calculate the checksum of an integer array of size N
edgedet edge detection for a gray scale image of size M X N msort merge sort an array of size N

myfrag IP packet fragmentation for a packet of size N

Table 2: Complexity-based macro-modeling results for SPARClite and SimpleScalar

” Examples Models T SPARCIite T SimpleScalar___]|
| Error [Speedup || Error [Speedup ||
chksum 1+ oN 1.4% 1361 1.8% 517
igray c1 + caloga (V) 13.5% 540 16.1% 293
<dgedet L ¥ coM FcgN F caMN 0.3% 673325 0.6% 313500
ins_sort 1+ coN +cgN2 6.9% 30050 6.0% 12473
mult] ¥ oL Fc3LM + c4LMN 2.2% 32213 3.2% 16560
myqsort 1 + coN + cgNlogs(N) 5.6% 38155 3.8% 5419
msort c1 +cagN + cgNlogag(N) 4.0% 126780 5.9% 19627
myfrag c] +caN 4.9% 81517 4.8% 11212

Error

1/Speedup
Figure 2: Multiple energy models

and r = 3, a typical scenario might be as shown in
Figure 2, where the Pareto-ranks of the energy macro-
models are indicated in the circles. The set of solutions
with the highest Pareto-ranks are the solutions that
the designers need to consider. This set is called the
Pareto-optimal set in a loose sense.

5. Experimental Results

To demonstrate the feasibility of our macro-modeling me-
thods, we conducted a series of experiments for two types of
target processor architectures, Fujitsu SPARClite and Sim-
pleScalar [5]. While SPARClite is a single-issue microproces-
sor, SimpleScalar is a superscalar microprocessor. By doing
experiments on both the platforms, we have attempted to
demonstrate the generality of our methods.

For programs executed on Fujitsu SPARClite, we used
the instruction-level energy simulator from [7] as our low-
level energy estimation framework. For programs executed
on SimpleScalar, a few low-level power estimation tools [4,
19] are available. We modified the structure-based low-level
power simulator from [4] to make it our low-level software
energy simulation framework for SimpleScalar.

In the next two sub-sections, we show the experiments we
have done for a few example functions. A description of the
functions used in the experiments is given in Table 1.

5.1 Complexity-based Energy Macro-model

We conducted a series of experiments on some software
functions to evaluate the feasibility of our complexity-based
energy macro-modeling technique. Table 2 shows the macro-
model we selected for each of the test functions and the
corresponding error. From the error results, we see that

the error of these macro-models is actually quite accept-
able, considering that we obtain a tremendous speedup over
energy estimation using the low-level technique. Of course,
in case when the error of such a macro-model is too large,
we can conclude that the average-case complexity of the
algorithm used in the function is not representative of its
typical executions. In such an instance, we should resort to
the profiling-based macro-modeling technique.

5.2 Profiling-based Energy Macro-model

We also conducted a series of experiments on some func-
tions to evaluate the feasibility of our profiling-based en-
ergy macro-modeling technique. We selected ¢ = 5 and
r = 5. Tables 3 and 4 show the Pareto-optimal set of energy
macro-models; and the corresponding errors and speedups.
Table 3 shows the results for SPARClite whereas Table 4
shows the results for SimpleScalar. In both the tables, we
denote the m-basic-block profiling method by m-BB, and
m-Ball-Larus-path profiling method by m-BL. 1-BB stays
consistently in the Pareto-optimal sets for all the examples
because it is never dominated by the more sophisticated
methods, which do not always improve accuracy even after
sacrificing in speedup. However, experimental results also
show that, in many cases, improvement in accuracy can be
obtained using more sophisticated profiling methods.

6. Conclusions

We presented two kinds of macro-modeling techniques for
high-level energy estimation for software functions. Both are
based on linear regression models. Complexity-based macro-
modeling uses the algorithmic complexity of the functions as
a hint to the designers to determine the macro-model tem-
plate. Energy estimation using this approach is very efficient
because only easily obtainable information is used in the
energy formula. Profiling-based macro-modeling uses either
the basic-block correlation or the Ball-Larus path correla-
tion counts as parameters in linear regression models to es-
timate the energy. We have shown that correlation profiling
does lead to an improvement in energy estimation accuracy
versus the basic-block profiling method. Our experiments
also demonstrated that the speedup of our energy estima-
tion techniques over the low-level technique ranges from one
to five orders of magnitude. This speedup can be further
improved by optimizing the profiling engine.

Table 3: Profiling-based macro-modeling results for

SPARClite

[[Examples [[Method [Error | Speedup [[Method [Error | Speedup ||
T2 T 155 [oon [o5 I I]
([_hash-insert [[1-BB__ [0.1% | 71.2] | | |]
[hashsearch J| _1.BB_ | 05% | 1767 || 2BB | 02% | 1603 [
T _ew T 155 [oow [o0 I I]
([__ins_sort [1-BB [7.4% [1188 [3-BB | 7.2% | 112.8]
I mult [[1-BB_ [04% [175.1] | |]
[socktind [TBB [33% [sS4z]| T T I
[[_branch] 1-BB [43% | 465 | 3BB [01% | 442 |
[bromem][1-BB_] 62% | 325 | 5BL [42% | 116]
[bresmem [_1-BB_] 32% | 298][4BB] 0.1% | 147 __]

Table 4: Profiling-based

macro-modeling results for

SimpleScalar
[[Examples [[Method [Error | Speedup |[[Method [Error | Speedup ||
god 1-BB 22.1% 14.5 3-BB 11.4% 12.3
1-BB 8.3% 111 5-BB 6.5% 10.2
3-BL 6.0% 5.8 1BL 5.1% 5.1
5-BL 1.6% 1.0
hash_insert [[1-BB_ | 4.6% | 20.3 [5-BB_ | 3.8% | 19.3 ||
[2BL [32% | 60 | 5BL | 22% | 59 |
[[[hash_search [[1-BB_[2.0% [519 [[3-BB | 04% | 502]|
il igray [1BB [13% [247 [3BB [1.2% | 21.1_]
([inssort [1I-BB_[7.0% | 50.0 T | |]
mult [1-BB [24% | 884 [2-BL [23% | 27.0 |
[5BL [16% | 265 || [[1l
sock_find || _1-BB__ | 3.6% | 220 || 5BB [31% | 219 |
[5B [24% | 70 | I I 1l
I branch [1-BB | 25% | 14.4 [3BB [1.7% | 13.8 ||
[bromem [1-BB | 08% | 12.0 [5BL | 7.6% | 42]
[brsmem [1-BB | 4.9% | 106 [4BB | 32% | 54]
References
[1] T. Ball and J. R. Larus. Efficient path profiling. In Proc.

(2]

[3]

[4]

[5]

[6]

29th Int. Symp. Microarchitecture, pages 46-57, Dec.
1996.

L. Benini and G. De Micheli. System level power op-
timization: Techniques and tools. ACM Trans. Design
Automation of Electronic Systems, 5(2):115-192, Apr.
2000.

C. Brandolese, W. Fornaciari, F. Salice, and D. Sciuto.
An instruction-level functionality-based energy estima-
tion model for 32-bit microprocessors. In Proc. Design
Automation Conf., pages 346-351, June 2000.

D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A
framework for architectural-level power analysis and
optimizations. In Proc. Int. Symp. Computer Architec-
ture, pages 83-94, June 2000.

D. Burger and T. M. Austin. The SimpleScalar tool
set, version 2.0. Technical Report 1342, University
of Wisconsin-Madison Computer Science Department,
June 1997.

N. Chang, K. Kim, and H. G. Lee. Cycle-accurate
energy consumption measurement and analysis: Case
study of ARM7TDMI. In Proc. Int. Symp. Low Power
Electronics and Design, pages 185-190, Aug. 2000.

[7]

(8]

[9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

R. P. Dick, G. Lakshminarayana, A. Raghunathan, and
N. K. Jha. Power analysis of embedded operating sys-
tems. In Proc. Design Automation Conf., pages 312—
315, June 2000.

M. Lajolo, A. Raghunathan, S. Dey, and L. Lavagno.
Efficient power co-estimation techniques for system-on-
chip design. In Proc. Design € Test Europe, pages 27—
34, Mar. 2000.

T. C. Mowry and C. Luk. Predicting data cache misses
in non-numeric applications through correlation profil-
ing. In Proc. Int. Symp. Microarchitecture, pages 314—
320, Dec. 1997.

R. H. Myers. Classical and Modern Regression with Ap-
plication. Durbury Press, Belmont, CA, 2nd edition,
1989.

P. W. Ong and R. H. Yan. Power-conscious software
design - A framework for modeling software on hard-
ware. In Proc. Int. Symp. Low Power Electronics and
Design, pages 36-37, Oct. 1994.

S. Pan, K. So, and J. T. Rahmeh. Improving the accu-
racy of dynamic branch prediction using branch corre-
lation. In Proc. ASPLOS-V, pages 76-84, Oct. 1992.
G. Qu, N. Kawabe, K. Usami, and M. Potkonjak.
Function-level power estimation methodology for mi-
croprocessors. In Proc. Design Automation Conf., pages
810-813, June 2000.

J. Russell and M. Jacome. Software power estimation
and optimization for high-performance 32-bit embed-
ded processors. In Proc. Int. Conf. Computer Design,
pages 328-333, Oct. 1998.

A. Sama, M. Balakrishnan, and J. F. M. Theeuwen.
Speeding up power estimation of embedded software.
In Proc. Int. Symp. Low Power Electronics and Design,
pages 191-196, Aug. 2000.

M. Sami, D. Sciuto, C. Silvano, and V. Zaccaria.
Instruction-level power estimation for embedded VLIW
cores. In Proc. Int. Wkshp. Hardware/Software Code-
sign, pages 34-38, Mar. 2000.

T. Simunic, L. Benini, and G. De Micheli. Cycle-
accurate simulation of energy consumption in embed-
ded systems. In Proc. Design Automation Conf., pages
867-872, June 1999.

V. Tiwari, S. Malik, and A. Wolfe. Power analysis of
embedded software: A first step towards software power
minimization. IEEE Trans. VLSI Systems, 2(4):437-
445, Dec. 1994.

W. Ye, N. Vijaykrishnan, M. Kandemir, and M. J.
Irwin. The design and use of SimplePower: A cycle-
accurate energy estimation tool. In Proc. Design Au-
tomation Conf., pages 340-345, June 2000.

	Main
	DAC01
	Front Matter
	Table of Contents
	Session Index
	Author Index

