
Abstract: This paper presents a formal technique for system-
level power/performance analysis that can help the designer to
select the right platform starting from a set of target applications.
By platform we mean a family of heterogeneous architectures that
satisfy a set of architectural constraints imposed to allow re-use of
hardware and software components. More precisely, we introduce
the Stochastic Automata Networks (SANs) as an effective formalism
for average-case analysis that can be used early in the design cycle
to identify the best power/performance figure among several appli-
cation-architecture combinations. This information not only helps
avoid lengthy profiling simulations, but also enables efficient map-
pings of the applications onto the chosen platform. We illustrate the
features of our technique through the design of an MPEG-2 video
decoder application.

Keywords: platform-based design, system-level analysis, sto-
chastic automata networks, multimedia systems.

1. Introduction and objectives
This paper presents a technique for system-level power/perfor-
mance analysis that can be used in platform-based design [1,2]. By
platform we mean a family of heterogeneous architectures that sat-
isfy a set of architectural constraints imposed to allow re-use of
hardware and software components. While the technique that we
propose is completely general and therefore can be used with any
embedded application, we focus our presentation on portable
embedded multimedia systems. These systems are characterized by
“soft” real-time constraints, and hence, as opposed to safety critical
systems, their average behavior is far more important than the
worst-case behavior. Indeed, due to data dependencies, their com-
putational requirements show such a large spectrum of statistical
variations that designing them based on the worst-case behavior
(typically, orders of magnitude larger than the actual execution time
[3]) would result in completely inefficient systems.

Typically, the design of heterogeneous architectures, follows the Y-
chart scheme [4]. In this scheme, the designer first characterizes the
set of target applications and chooses a family of candidate archi-
tectures to run that set. Then, the application is mapped onto the
architectural components and the performance of the system is
evaluated. Based on the resulting performance numbers, one may
decide to go ahead with the chosen architecture. Otherwise, if the
performance figures are not satisfactory, the designer may restruc-
ture the application, or modify the mapping of the application to get
better performance numbers. Relying upon this Y-chart design
methodology, we focus on the application-architecture modeling
process for embedded multimedia systems.

Our global vision is presented in Fig.1. Following the principle of
orthogonalization of concerns during the design process [2], we
build separate models for applications and architectures. Next, we
map the abstract model of an application onto a family of architec-
tures (platform) and evaluate the power/performance figures to see
how suited is the platform (and the chosen set of design parameters)
for the target application. This process can be re-iterated with a dif-

ferent set of parameters until convergence.

Our vision has several unique features: First, our methodology is
based on integrating the power/performance metrics into system-
level design. Indeed, the performance metrics that we develop in
the application and platform modeling step become an integral part
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Fig. 1: Our vision for system-level performance analysis
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of the design process; this helps the system designer to quickly find
the right architecture for the target application. Second, using the
same unique representation based on Stochastic Automata Net-
works SANs (for both application and architecture) gives the ability
to smoothly translate a performance model into an architecture
(obtain real numbers on performance), and reflect architectural
changes back to the performance model.

1.1. Contribution of the paper
The key contribution of this paper is the new idea of using SANs
[5,18] as an effective formalism in system-level analysis. SANs are
a very powerful Markovian formalism belonging to the class of pro-
cess algebras which are very efficient in modeling communicating
concurrent processes. A major advantage of SANs over other for-
malisms is that the state space explosion problem associated with
the Markov models (or Petri nets) is partially mitigated by the fact
that the state transition matrix is not stored, nor even generated.

The models that we build for applications are process-level func-
tional models that are free of any architectural details. The pro-
cesses communicate and interact among them defining what the
application should do and not how it will be implemented. On the
other hand, the architecture models represent behavioral descrip-
tions of the architectural building blocks. Typically, these building
blocks may consist of several programmable cores or dedicated
hardware units, communication resources (buses) and memory
resources (RAMs, FIFO buffers). A separation of concerns between
application and architecture, enables reuse of both application and
architecture models and facilitates an explorative design process in
which application models are subsequently mapped onto architec-
ture models.

Once built, the application-architecture model is evaluated to ana-
lyze the characteristics of the processes for different input parame-
ters. While model evaluation is a challenging problem by itself,
analytical performance model evaluation presents additional chal-
lenges. No other proposed evaluation strategy for platform-based
design supports analytical calculations for communicating and
interacting processes that represent multimedia applications. To this
end, we develop a fully analytical framework using SANs to avoid
lengthy simulations for predicting power and performance figures.
This is important for multimedia systems where thousands of runs
are typically required to gather relevant statistics for average-case
behavior. Considering that 5 min. of compressed MPEG-2 video
needs roughly 1.2 Gbits of input vectors to simulate, the impact of
having such a tool to evaluate power/performance estimates
becomes evident.

1.2. Related work
Most of the research in performance analysis was geared so far
towards the worst-case analysis, where the correctness of the sys-
tem depends not only on the logical results of computation, but also
on the time at which the results are produced [7,8]. Despite the
great potential for embedded system design, the area of average-
case analysis received little attention [3,9,10]. The target of our
research is to investigate this very issue and, using abstract repre-
sentations, provide quantitative measures of power/performance
estimates. Our effort complements the existing results for worst-
case time analysis and is distinct from other approaches for perfor-
mance analysis based rate analysis [11], and adaptation process [3].
Compared to our approach, none of these approaches handles appli-

cations at process-level using communicating and interacting pro-
cesses and yet provides performance metrics that can be used in
platform-based design. We note that existing tools for high-level
performance modeling that can be used in embedded systems
design, like Ptolemy [12] and Polis[13], use simulation for perfor-
mance evaluation.

In summary, we propose a completely analytic solution for applica-
tion-architecture modeling for performance evaluation of net-
worked multimedia systems. What makes this unique is the
potential to significantly shorten the design cycle, while still pro-
viding the ability to explore thoroughly the design space.

1.3. Organization of the paper
Section 2, presents some background information on SAN model-
ing paradigm. In Section 3, we present the details of our modeling
technique and show how this can be used in practice to analyze the
MPEG-2 video decoder. In Section 4 we discuss the power/perfor-
mance results for several scenarios and illustrate the possible impli-
cations of the analysis results in the design process. Finally, we
conclude by summarizing our main contribution.

2. The SAN modeling Paradigm
SANs present a modular state-transition representation for highly
concurrent systems. The main objective of SAN analysis is the
computation of the stationary probability distribution π for an N-
dimensional system consisting of N stochastic automata that oper-
ate more or less independently. This involves two major steps: 1)
SAN model construction and 2) SAN model evaluation. The fol-
lowing sections briefly describe these two steps. For more details,
the reader is referred to [5].

2.1 The SAN model construction
The SAN model can be described using continuous-time Markov
processes which are based on infinitesimal generators:

(1)

with ,

, and
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sition probability from state i to state j during time 0 to t, and

is its derivative. Each entry σij in the infinitesimal genera-

tor is the execution rate of the process in that particular state [3,11].
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• A transition in one automaton may force a transition to occur in
one or more other automata. These are called synchronizing transi-
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• The rate at which a transition may occur in one automaton may be
a function of the state of other automata. These transitions that
depend on other external conditions are called functional transitions
as opposed to constant-rate (non-functional) transitions.

Given N stochastic automata (with associated infinitesimal genera-

tors ) that interact via E synchronizing events
(and no functional transition rates), the infinitesimal generator of
the system can be written as:

(3)

This quantity is also called the global descriptor of the SAN and it

is written as a sum of tensorial1 products. On introducing functional
transition rates this descriptor can still be written as in eqn. (3), but

now the elements of may be functions. Thus eqn. (3) becomes

, where Q contains only numerical values and

the size of T depends on and on , where F is the

set of automata whose state variables are arguments in functional
transition rates.

2.2 Performance model evaluation
Once we have the SAN model, we need to find out its steady-state
behavior. This is simply expressed by the solution of the equation

π⋅Q = 0 (4)

with the normalization condition π⋅e =1, where π is steady-state

probability distribution and eT= (1,1,...,1).

We solve eqn. (4) using numerical methods that do not require the
explicit construction of the matrix Q but can work with the descrip-
tor in its compact form (namely, iterative methods). This can be

done using multiplications, where ni is the num-

bers of states in the i-th automaton [5,6].

Once the steady-state distributions are known, performance mea-
sures such as throughput, utilization, average response time can be
easily derived. However, to calculate these performance figures, we
need to find the true rates of the activities. This is because the spec-
ified rate of an activity is not necessarily the rate of that activity in
the equilibrium state, since bottlenecks elsewhere in the system
may slow the activity down. Thus, the true (or equilibrium) rate of
an activity can be obtained by multiplying the given rate with the
probability of the activity being enabled.

3. Modeling the MPEG-2 Video Decoder Appli-
cation

In what follows, we describe the main steps in Fig.1 using the
MPEG-2 video decoder as the driver application.

3.1 System specification
The decoder consists of the baseline unit, the Motion Compensation
(MV) unit, recovery unit, and the associated buffers (Fig.2). The
baseline unit contains the VLD (Variable Length Decoder), IQ/IZZ
(Inverse Quantization and Inverse Zigzag), the IDCT (Inverse Dis-
crete Cosine Transform) and the buffer. During the modeling steps,
we model each of these units as processes, and generate their corre-
sponding SANs.

To specify our system, we chose the Stateflow component of Mat-
lab which uses the semantics of Statecharts [14]. Statecharts extend
the conventional state diagrams with the notion of hierarchy, con-
currency and communication. This is important since we aim to
analyze how the asynchronous nature of concurrent systems can
affect their run-time behavior.

3.2 Application Modeling
To model the applications of interest, we use a process graph,
where each component corresponds to a process in the application.
Communication between processes is achieved using event and
wait synchronization signals. Process graphs are also characterized
by execution rates which, under the hypothesis of exponentially
distributed sojourn times, can be used to generate the underlying
Markov chain [6]. In our SAN-based modeling strategy, each
automaton corresponds to a process in the application. Hence, the
whole process graph specifying the embedded system translates to a
network of automata.

We model the entire process graph that corresponds to MPEG-2 fol-
lowing the Producer-Consumer paradigm [15]. To unravel the com-
plete concurrency of processes that describe the application, we
assume that each process has its own space to run and does not
compete for any computing resource. For the sake of simplicity, we
present in Fig.3, the SAN model just for the baseline unit.

Fig.3 The SAN model of the baseline unit of MPEG-2
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Referring to the Producer process (VLD), we observe a local transi-
tion between produce(item) and wait_buffer states; that is, this tran-
sition occurs at the fixed rate of 1/Tproduce where Tproduce is the

required time to produce one item. The transition from the state
wait_buffer to the state write is a functional transition because it
depends on the state of the other process. More precisely, this tran-
sition happens if and only if the process IDCT is not reading any
data and the buffer is not full. Because of this dependency, we can-
not associate a fixed rate to this transition; the actual rate will
depend on the overall behavior of the system. Finally, once the pro-
ducer gets access to the buffer, it transitions to the initial state (the
local transition rate is 1/Twrite). The same considerations apply to

the Consumer process (IDCT/IQ).

3.3 Architecture modeling
This modeling step starts with an abstract specification of the plat-
form (e.g. Stateflow) and produces a SAN model that reflects the
behavior of that particular specification. We construct a library of
generic blocks that can be combined in a bottom-up fashion to
model sophisticated behaviors. The generic building blocks model
different types of resources in an architecture, such as processors,
communication resources, and memory resources. Defining a com-
plex architecture thus becomes as easy as instantiating building
blocks from a library and interconnecting them. Compared to the
laborious work of writing fully functional architecture models (in
Verilog/VHDL), this can save the designer a significant amount of
time, and therefore enable exploration of alternative architectures.

Architecture modeling shares many ideas with application model-
ing that was just discussed. Without further details, we illustrate in
Fig.4 a few simple generic building blocks.

In Fig.4a, we represent a buffer of max length (n-1), where state 0
corresponds to the empty buffer, while state (n-1) to the full buffer.
Every time when a request for a new insertion occurs, the current
state of buffer changes with one position to the right. Similarly,
every time when there is a request to delete an item from the buffer,
a transition from the current state of the buffer to the left position
occurs. In Fig.4b, we have the generic model of a CPU based on a
power saving architecture. Normal-mode is the normal operating

mode when every on-chip resource is functional. StopClock mode
offers the greatest power savings and consequently the least func-
tionality. Finally, Fig.4c describes a typical memory model.

These simple examples were presented for illustrative purposes. We
have no limitation whatsoever, to build much more elaborated mod-
els and use them in real life examples.

3.4 Mapping
Having the application and the architecture models, the next step is
to map the application onto architecture and then evaluate the
model using the analytical procedure in Section 2. To make the dis-
cussion more specific, let us consider the following design problem.

The design problem

Assume that we have to decide how to configure a platform which
can work in four different ways: one which has three identical
CPUs operating at a generic clock frequency f0 (then each process

can run on its own processor) and another three architectures where
we can use only one physical CPU, but have the freedom of choos-
ing its speed among the values f0, 2f0, or 3f0.

Mapping our simple VLD-IDCT/IQ processes in Fig.3 onto a plat-
form with a single CPU is illustrated in Fig.5. Because these pro-

cesses1 have to share now the same CPU, some of the local
transitions become synchronizing/functional transitions (e.g. the
local transitions with rates 1/Tproduce or 1/Tconsume become synchro-

nized). Moreover, some new states (e.g. wait_CPU) have to be
introduced to model the new synchronization relationship.

To complete the mapping, we need another process, namely the
scheduler. This process determines the sequence in which the vari-
ous concurrent processes of the application run on the different

architectural components, particularly if the resource is shared2.
This process can be implemented in software or hardware but since
our SAN representation is uncommitted, we can easily add this new
component to the entire network of automata. This completes all
steps of our the modeling methodology.
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Fig.4 The SAN models of some generic blocks

1. For simplicity, the second consumer process (for the MV unit) was not
explicitly represented in this figure.
2. Our scheduler has now a simple FCFS policy but we plan to incorporate
other scheduling policies, in the near future.
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4. Results and discussion
The input value for TVLD is computed from the MPEG-2 applica-

tion requirements and characteristics of the input traces. More pre-
cisely, for NTSC video, we have (720×480)[pixels]×30[frames/
sec.]; that is, the number of macroblocks/sec is (45×30)×30=40500,
which means 24 µsec necessary to produce one macroblock. For all
the runs, we use the following parameters: n = 5 (one entry in the
buffer represents one block of 64 DCT coefficients that are needed
for one IDCT operation), TVLD = (Tproduce) = 20 µsec, TIDCT =

(Tconsumer1) = 12 µsec, TMV = (Tconsumer2) = 14 µsec, Twrite = 5 µsec

and Tread = 12 µsec.

4.1 Performance results
For the case of having a platform with three separate CPUs, the
analysis is quite simple: the system will essentially run in the CPU-
active state or will either be waiting for the buffer or writing into
the buffer most of the time. The average length values are 1.57 and
0.53 for the MV and baseline unit buffers, respectively. This is in
deep contrast with the worst-case scenario assumption where the
lengths will be 4 across all runs.

In the case of having a platform with a single CPU, the probability
distribution values for all the components of the system are given in
Fig.6. The first column in these diagrams shows the probability of
the processes waiting for their respective packets to arrive. The sec-
ond column shows the probability of the process waiting for the
CPU to become available (because the CPU is shared among all
three processes). The third column represents the probability of the
processes actively using the CPU to accomplish their specific tasks.

The fourth column shows the probability of the process being
blocked because the buffer is not available (either it is full/empty or
used by another process). The fifth column shows the probability of
the processes writing into their corresponding buffers.

Run 1 represents the ‘reference’ case where the CPU operates at
frequency f0, while the second and the third runs represent the cases

when the CPU speed is 2f0 and 3f0, respectively. For instance, in run

1, the Producer (VLD) is waiting with probability 0.01 to get its
packets, waiting for CPU access with probability 0.3, decoding
with probability 0.4, waiting for the buffer with probability 0.27,
and finally writing the data into the buffer with probability 0.02.

Looking at the probability distribution values of MV and baseline

unit buffers1 (Fig.7), we see that the bottleneck may appear because
of the MV buffer. More precisely, the system is overloaded at run1,
balanced at run 2 and under-utilized at run 3. The average buffer
lengths in runs 1, 2 and 3 are: MV buffer: 3.14, 1.52, and 1.15;
baseline unit buffer: 0.81, 0.63, and 0.54, respectively. Since the
average length of the buffers is proportional to the average waiting
time (and therefore directly impacts the system performance), we
can see that, based solely on performance figure, the best choice
would be a single CPU with speed 3f0. Also, we notice how differ-

ent the average values (e.g. 1.15 and 0.54, respectively) are com-
pared to the value 4 provided by a worst-case analysis. Not only
this worst-case length is about 4 times larger than the average one,
but it also occurs in less that 6% of the time. Consequently, design-

1.The columns in the Buffer diagrams show the distribution of the buffer
occupancy ranging from 0 (empty) to 4 (full).

Fig.7 Buffer Length for the (a) MV (b)IDCT/IQ -unit for f0, 2f0, and 3f0

(a) (b)

Fig.8 Comparative Power-consumption
figures for f0, 2f0, and 3f0

Fig.6 Steady-state probability distributions of (a)VLD, (b)MV and (c)IDCT/IQ unit
(a) (b) (c)

Steady-state probability distribution of VLD process Steady-state probability distribution of MV process Steady-state probability distribution of IDCT/IZ process



ing the system based on a worst-case analysis will result in a com-
pletely inefficient implementation.

4.2 Power results
The average system-level power can be obtained by summing up all
the subsystem-level power values. For any subsystem k, the average
power consumed is given by:

(5)

where Pi and Pij represent the power consumption per state and per

transition, respectively, and πi is the steady-state probability and λij

is the transition rate associated with the transitions between states i
and j. Having already determined the solution of eqn. (4), the πi

value (for a particular i) can be found by summing up the appropri-
ate components of the global probability vector π. The Pi and Pij

costs are determined during an off-line pre-characterization step
where other proposed techniques can be successfully applied [16].

To obtain the power values, we simulated the MPEG-2 decoder,
using the Wattch [17] architectural simulator that estimates the
CPU power consumption, based on a suite of parametrized power
modes. More precisely, we monitored the simulation of the MPEG-
2 and extracted the power values for all components of the system.
By specifying a Strong-Arm-like processor, we obtained an average
power value of 4.6W for the VLD, and 4.8W for the IDCT and
5.1W for the MV unit. Using these the power figures, we obtained
the average power characterization for the entire system under
varying loads. This is useful to trade-off performance and power. In
our case, using eqn. (5), we have the (total) average power values of
18.75W, 13.68W, 15.08W for runs 1, 2, and 3, respectively.

For a more detailed analysis, the breakdown of power-consumption
is given in Fig.8. We can see that there is a large variation among
the three runs with respect to both the CPU-active power, and the
power dissipation of the buffers. Furthermore, we can multiply
these power values with the average buffer lengths from Fig.7
(3.14, 1.52, and 1.15, for runs 1, 2 and 3, respectively), and get the
power×delay characterization of the system; that is, 58.9 [µJ/mac-
roblock], 20.8 [µJ/macroblock], and 17.3 [µJ/macroblock] (about
70% less) for runs 1, 2, and 3, respectively. This analysis shows that
the best choice would be to use the third configuration (e.g. CPU
running at 3f0) since, for the given set of parameters, it represents

the best application-architecture combination. (This choice is also
far better than using three separate CPUs all running at speed f0.)

Finally, the CPU time needed for our analysis is several orders of
magnitude better that the active simulation time required to obtain
the same results with blind simulation. Hence, the approach can sig-
nificantly cut down the design cycle time and, at the same time,
enhance the opportunities for better exploration of the design space.

5. Conclusion
We have presented a formal technique for system-level analysis
based on SANs. The proposed methodology complements the exist-
ing techniques for extreme-case performance analysis by incorpo-
rating the environment characteristics into system performance
evaluation. Being targeted at system-level, the results of this analy-
sis are not confined to any particular hardware/software implemen-

tation so they can offer the generality and flexibility designers need
in designing the embedded system. Experimental results have been
presented for an MPEG-2 video decoder showing several orders of
magnitude speedup compared to explicit simulation.
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