
MetaCores: Design and Optimization Techniques
Seapahn Meguerdichian1, Farinaz Koushanfar2, Advait Mogre3, Dusan Petranovic3, Miodrag Potkonjak1

1 Computer Science Department, University of California, Los Angeles
2 Department of EE and CS, University of California, Berkeley

3 LSI Logic Corporation, Milpitas, California
{seapahn, farinaz, miodrag}@cs.ucla.edu

{dusan, advait}@lsil.com

ABSTRACT
Currently, hardware intellectual property (IP) is delivered at

three levels of abstraction: hard, firm, and soft. In order to further
enhance performance, efficiency, and flexibility of IP design, we
have developed a new approach for designing hardware and soft-
ware IP called MetaCores. The new design approach starts at the
algorithm level and leverages on the algorithm’s intrinsic optimiza-
tion degrees of freedom. The approach has four main components:
(i) problem formulation and identification of optimization degrees
of freedom, (ii) objective functions and constraints, (iii) cost
evaluation engine, and (iv) multiresolution design space search.
From the algorithmic viewpoint, the main contribution is the intro-
duction of multiresolution search in algorithm optimization and
synthesis process. We have applied the approach to the develop-
ment of Viterbi and IIR MetaCores. Experimental results demon-
strate the effectiveness of the new approach.

1. INTRODUCTION
The rapidly growing gap between silicon capacity and design

productivity has resulted in a pressing need for design reuse.
Hardware building blocks, usually under the name of cores, have
become increasingly popular as the most efficient way of reusing
design intellectual property (IP). While there exist several potential
classification schemes for integrated circuits (IC) IP, the classifica-
tion of cores according to their level of implementation details is
by far the most popular.

Hard cores are IPs completely implemented using a particular
physical design library. Firm cores are also completely imple-
mented, including physical design, but are targeted at a symbolic
library. Finally, soft cores are described in high level languages
such as VHDL or Verilog. Clearly, while hard cores provide com-
plete information about all relevant design parameters and facili-
tate the highest level of performance and implementation parame-
ter optimization for the selected library, soft cores are superior in
terms of their flexibility and application range. Initially, hard cores
dominated the IP reuse market and practice, but recently there is an
increasing trend toward other types of cores and in particular, soft
cores. Additionally, parameterized, configurable, and programma-
ble cores (such as Tensilica and Improv) have been rapidly gaining
popularity.

We present a new approach to IC IP development. The ap-
proach can be viewed as a natural next step in core evolution be-
cause we consider design optimization and its suitability for effi-
cient implementation at an even higher level than the high-level

language specification. We analyze the algorithm for a particular
application that is the target for creating the core with respect to its
performance, and estimate implementation area and speed. Spe-
cifically, we identify the degrees of freedom for the algorithm
alternations under specific targeted implementation objective func-
tions and constraints. By searching the algorithm solution space,
we identify the algorithm structure that is best suited for the speci-
fied design goals and constraints.
1.1. Trade-offs: Simple Example

Let us consider an example to introduce the key ideas dis-
cussed in this paper. Altering several key parameters in the Viterbi
decoding algorithm used in convolutional forward-error-correction,
can have tremendous impacts on the attributes of the final design.
Although an experienced designer may successfully guess the gen-
eral outcome of changing each parameter, initially, it is not always
clear exactly what configuration is best suited for a specific appli-
cation. As an example, Table 1 presents three different instances of
the Viterbi decoder. Each instance is obtained by altering only a
subset of the parameters that effect the Viterbi algorithm. The three
main metrics that we use to evaluate the performance of the Viterbi
decoder are bit-error-rate, throughput, and chip area. Table 1 lists
the specific parameters used and the estimated area requirements
for each instance when the desired throughput is fixed at 1 Mbps.
Figure 1 shows the bit-error-rate (BER) curves obtained by soft-
ware simulation for each case, under varying signal-to-noise ratios.

Although all three cases exhibit comparable BER curves as
shown in Figure 2, each can have drastically different area re-
quirements when the desired throughput is fixed as shown in Table
1. Here we have selected only a few parameters while in general,
the solution space is very large and complex.

K Trellis
Depth

Quantization Bits
Low / high

Multi-res.
Paths

Area
mm2

3 2 3 / NA NA 0.26
5 5 1 / 3 8 0.56
7 5 1 / 3 4 1.73

Table 1. Area Estimates of Three Instances of the Viterbi
Decoder Under Fixed Throughput (1Mbps)

1.E-07
1.E-06
1.E-05
1.E-04
1.E-03
1.E-02
1.E-01

0 1 2 3 4Es/No (dB)

B
ER

7/5/4
3/2/S
5/5/8

Figure 1. Viterbi Decoder BER vs. Signal-to-Noise Ratio

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
DAC 2001, June 18-22, 2001, Las Vegas, Nevada, USA
© 2001 ACM 1-58113-297-2/01/0006..$5.00.

1.2. Goals
Our primary objective is to demonstrate the importance and

effectiveness of leveraging the potential of algorithm design
through performance simulation and area and speed estimation.
Note that performance indicates quantified qualities from the ap-
plication point of view. For example, in error correction, algorithm
performance is measured by the bit error rate while in lossy com-
pression, the level of compression and loss rate are used to meas-
ure performance.

We also introduce and demonstrate the first effective quantita-
tive algorithm design technique. Also, the study of algorithmic
degrees of freedom of the Viterbi decoder has an interesting and
potentially important side result: a new multiresolution Viterbi
decoding algorithm. Our final objective and result is to produce a
high performance, low cost, Viterbi decoder implementation for a
variety of bit error rates (BER) and throughput requirements.
While the Viterbi is the primary driver in our discussions, we also
demonstrate the methodology when applied to an IIR filter as a
validation example.
1.3. Paper Organization

The reminder of the paper is organized as follows. We first
summarize the related work. Then, we survey all preliminary mate-
rial about the Viterbi algorithm and IIR filters, the targets of our
case studies, and discuss area and timing models. Section 4 is the
backbone of the paper and presents detailed description of the
problem formulation, objectives, and the new multi-resolution
design space search technique. Finally, we demonstrate the effec-
tiveness of the meta-core design approach using the Viterbi de-
coder driver example.

2. RELATED WORK
Although, IC component reuse has been widely practiced at

many design centers since the beginnings of silicon designs, in the
last few years a strong consensus has formed that IP reuse will be a
dominant enabling force for the future generation of designs. A
number of design companies have been making strong efforts to
develop their IP portfolio, often mainly for internal use. There are
also several companies (e.g. Artisan) who have completely based
their business model on providing design IP. Thus, IP creation,
assembly, and testing have received significant recent research
attention [Sch99, Del99, Zor99].

The Viterbi decoding algorithm has by far been the most
widely studied and used convolutional error correction code in
both wired and wireless communication. It is considered a funda-
mental DSP algorithm and the performances of modern DSP chips
are often quoted in terms of their Viterbi decoding speed. The al-
gorithm is well described in the classical papers. Several hard and
soft Viterbi decoder cores have been reported in [Smi98, Bur99].

Filtering (processing) on streams of data is a fundamental task
widely used in digital signal processing, communication, and con-
trol applications [Opp89]. Infinite Impulse Response (IIR) filters
are particularly attractive due to their relatively low implementa-
tion complexity. A variety of different topological structures have
been proposed for the realization of IIR filters, including direct
form, cascade, parallel, continued fraction, ladder, Wave digital,
state-space digital, orthogonal and multi variable digital lattice.
Today, in addition to many public domain IIR filter design pro-
grams, there are also well-supported commercial design tools for
synthesis of IIR filters including MATLAB and SPW.

Algorithm selection and design has been a popular research
topic in a number of research fields, particularly in artificial intel-
ligence where four main directions have emerged: first order logic-
based methods [Gre69], rewrite systems [Der85], transformational

approaches [Dar81] and schema-based programming [Wil83].
While the proposed techniques are strategically and algorithmi-
cally very different, they all share a common weakness in their
inability to scale to problems of practical importance. Several
VLSI DSP efforts have also addressed the algorithm selection and
design process [Opp92, Bro97, Pro96]. In a sense, the algorithm
design aspect of our approach is most similar to one presented in
[Pot99]. However, while their approaches are limited just to the
algorithm selection process, we explore the much richer design
space where a number of vital algorithm parameters are consid-
ered. Furthermore, a major distinction of this approach with re-
spect to all surveyed work is that our main goal is the development
of IP creation techniques at the higher level of abstraction.

Multiresolution techniques have been popular for a long time,
in particular in image, video, and in general, digital signal process-
ing. The popularity of multiresolution techniques in DSP has been
further amplified with the introduction of wavelet transforms
[Mal98]. Multiresolution techniques have also been widely used in
numerical algorithms and in mesh-based finite element techniques.

3. PRELIMINARIES
3.1. Viterbi Algorithm

In most modern communication systems, channel coding is
used to increase bandwidth, add error detection and correction
capabilities, and provide a systematic way to translate logical bits
of information to analog channel symbols used in transmission.
Convolutional coding and block coding are the two major forms of
channel coding used today. As their names imply, in convolutional
coding the algorithms work on a few bits at a time while in block
coding big chunks of data are processed together. Generally, con-
volutional coding is better suited for processing continuous data
streams with relatively small latencies. Also, since convolutional
forward error correction (FEC) works well with data streams af-
fected by the atmospheric and environmental noise (Additive
White Gaussian Noise) encountered in satellite and cable commu-
nications, they have found widespread use in many advanced
communication systems. Viterbi decoding is one of the most popu-
lar FEC technique used today and is therefore the main focus of
our discussion.

Convolutional codes are usually defined using the two pa-
rameters, code rate (k/n) and constraint length (K). The code rate of
the convolutional encoder is calculated as the ratio k/n where k is
the number of input data bits and n is the number of channel sym-
bols output by the encoder. The constraint length K is directly re-
lated to the number of registers in the encoder. These (shift) regis-
ters hold the previous data values that are systematically convolved
with the incoming data bits. This redundancy of information in the
final transmission stream is the key factor enabling the error cor-
rection capabilities that are necessary when dealing with transmis-
sion errors. Figure 2 shows an example of a ½ rate encoder with
K=3 (4 states).

R1 R2
Input

S1

S2

Figure 2. Convolutional Encoder

The simple encoder in Figure 2 generates two channel sym-
bols as each incoming data bit is shifted into register R1. The con-
nections from the registers to the output XOR gates are defined by
the polynomial G. There are many studies that show the optimal K
and G in different situations [Lar73, Ode70]. It is interesting to
note that although the ½ rate encoding effectively reduces the

channel bandwidth by a factor of two, the power savings that are
gained due to the increased reliability of the channel offset the
negative effects of the reduced bandwidth and overall, the tech-
nique improves the efficiency of the channel.

Viterbi decoding and sequential decoding are the two main
types of algorithms used with convolutional codes. Although se-
quential decoding performs very well with long-constraint based
convolutional codes, it has a variable decoding time and is less
suited for hardware implementations. On the other hand, the
Viterbi decoding algorithm developed by Andrew J. Viterbi, one of
the founders of Qualcomm Corporation [Vit67], has fixed decod-
ing times and is well suited for hardware implementations. The
exponentially increasing computation requirements as a function of
constraint length (K) limit current implementations of the Viterbi
decoder to about K=9.
3.2. Viterbi Decoder

Viterbi decoding, also known as maximum-likelihood decod-
ing, is comprised of the two main tasks of updating the trellis and
trace-back. The trellis used in Viterbi decoding is essentially the
convolutional encoder state transition diagram with an extra time
dimension. Figure 3 shows an example of a trellis diagram for the
4-state (K=3) Viterbi decoder. The four possible convolutional
encoder states are depicted as four rows in the trellis. The solid
edges represent transitions based on 1 inputs and the dashed lines
represent transitions based on 0 inputs. There are two channel
symbols produced by the encoder associated with each branch in
the trellis.

00

01

10

11

t-1 t t+1

Figure 3. Viterbi Trellis Diagram

After each time instance t, the elements in the column t con-
tain the accumulated error metric for each encoder state, up-to and
including time t. Every time a pair of channel symbols is received,
the algorithm updates the trellis by computing the branch metric
associated with each transition. In hard decision decoding, the
branch metric is most often defined to be the Hamming distance
between the channel symbols and the symbols associated with each
branch. So for hard decision ½ rate decoding (2 channel symbols
per branch), the possible branch metric values are 0, 1, and 2, de-
pending on the number of mismatched symbols. The total error
associated with taking each branch is the sum of the branch metric
and the accumulated error value of the state from which the branch
initiates. Since there are two possible transitions (branches) into
each state, the smaller of the two accumulated error metrics is used
to replace the current value of each state.

The state with the lowest accumulated error metric is chosen
as the candidate for trace-back. The path created by taking each
branch leading to the candidate state is traced back for a predefined
number of steps. The initial branch in the trace-back path indicates
the most likely transition in the convolutional encoder and can
therefore be used to obtain the actual encoded bit value in the
original data stream.

To make the decoder work, received channel symbols must be
quantized. In hard decision decoding, channel symbols can be
either 0 or 1. Hard decision Viterbi decoders can be extremely fast
due to the small number of bits that are involved in the computa-
tions. However, tremendous BER improvements have been

achieved by increasing the number of bits (resolution) used in
quantizing the channel symbols. Figure 4 shows an example of a
uniform quantizer using 3-bits (8 levels) to represent a symbol
received on the channel [Aha95]. The ratio Es/N0, the energy per
symbol to noise density ratio, is used to calculate D, the decision
level. For a detailed discussion of quantization methods and their
effects on the Viterbi decoding algorithm refer to [Aha95].

+1D +2D +3D-1D-2D-3D

Input

Quantization 7

6

5

4

3

2

1

0

0

2

1
2
1

N
E

D
s⋅

⋅=

Figure 4. Adaptive Soft Quantization

3.3. Multiresolution Viterbi
The benefits of soft decision over hard decision decoding are

offset by the cost of significantly bigger and slower hardware.
Here we propose a new multi-resolution Viterbi decoding algo-
rithm that exhibits the BER performance benefits of higher resolu-
tion soft decoding while maintaining minimal area and delay over-
heads. The multi-resolution Viterbi decoding method is based on
the key observation that at any given time, only a relatively small
number of the trellis states are possible candidates for trace-back
while others with larger accumulated errors are less likely to be
useful. We use this observation and update the trellis using fewer
bits and after each step recalculate the branch metrics for several of
the “better” paths (paths with smaller accumulated errors) using
higher precision.

Since in trace-back the state with the minimum accumulated
error is chosen as the starting point, the algorithm must be de-
signed such that no state is given an unfair advantage over the
others. The higher precision recalculation of branch metrics for the
most likely candidate states improves the probability of selecting
the real best state for trace-back. However, since the quantization
and branch error calculation methods are different for each case, a
correction term must be added to the recalculated branch metrics to
keep the accumulated error values normalized.

There are several methods of normalizing the lower and
higher resolution branch metric values obtained during decoding.
In general, an efficient approach of finding the correction value is
by calculating the difference between the best high resolution and
the best low resolution branch metric at each iteration. We can
further improve on this approach by averaging the differences of
two or more branch metrics. Experimental results show that big
improvements in performance can be achieved over hard decision
decoding by only recalculating a small fraction of the trellis paths.
3.4. Infinite Impulse Response (IIR) Filters

The functionality of IIR filter can be compactly and com-
pletely captured by its transfer function. Figure 5 shows a typical
transfer function for a low-pass IIR filter. There are several pa-
rameters that characterize a filter that include passband and stop-
band frequencies, passband ripple, stopband attenuation, 3-dB
bandwidth, and gain. Note that all of the structures mentioned in
Section 2, can be used to implement an arbitrary transfer function.
However they greatly differ in terms of hardware requirements,
such as number of multiplications, number of additions, word

length, interconnect, and registers. It has been shown that depend-
ing on the required throughput, various structures are the better
options for implementation [Pot99].

Figure 5. Typical transfer function for low pass
IIR filter (Elliptic IIR Filter)

4. DESIGN FLOW
4.1. Problem Formulation and Optimization Degrees of

Freedom – Viterbi Decoder
There are many parameters that can effect the performance of

the Viterbi decoder. Currently, we model the domain of the solu-
tion space as an 8-dimensional matrix. Table 2 lists all parameters
that constitute the degrees of freedom in our solution space.

K Constraint length {3,4,5,6,7,…}
L Trace-back depth {1*K, 2*K, 3*K, 4*K, 5*K, …}
G Encoder Polynomial(s)
R1 Quantization used for low-resolution decoding
R2 Quantization used for high-resolution decoding (multi)
Q Quantization method (hard, fixed, adaptive)
N Normalization method
M Number of multi-resolution paths (1,2,…,2K-1)

Table 2. Viterbi Decoder Parameters
The parameter K is the constraint length of the convolutional

encoder and L is the trace-back depth of the decoder. Although K
and L do not have any theoretic bounds, we limit our search to
current practical values of K<10 and L<30*K. Our experiments
have shown that in most cases, trellis depths larger than 7*K do not
have any significant impact on BER. There are several standard
specifications of the encoder polynomial G for different values of
K. The user has the option of selecting multiple variations of G to
be included in the search, although in most cases G is fixed. The
quantization resolution parameters R1 and R2 indicate the number
of bits used in the calculation of the trellis branch metrics. As we
discussed earlier, higher number of bits (soft decision) translate to
better BER performance. Also, the choice of the quantization reso-
lution parameters R1 and R2, effect the multiresolution normaliza-
tion method N. Currently, N specifies the number of branch metric
values used in the calculation of the multi-resolution correction
factor. For pure hard or soft decoding this parameter is set to 0 and
for multiresolution decoding 1≤N≤M. The parameter M specifies
the number of trellis states (paths) that are recalculated using
higher resolution in multi-resolution decoding.
4.2. Objective Function and Constraints

The performance of each instance of the Viterbi decoder is
quantified in terms of the following three metrics: (i) Bit Error
Rate (BER) (ii) Area, and (iii) Throughput. Software simulation is
used to measure the BER of each instance of the algorithm under
varying signal to noise ratios. Generally, the user defines a thresh-
old curve that serves as a guide for the desired BER performance.

Area and throughput metrics are obtained by simulating the algo-
rithm using Trimaran [Tri99]. Trimaran provides a compiler and
hardware platform for parallel programmable VLIW and Supersca-
lar architectures. We use Trimaran to estimate the area require-
ments of each candidate solution for a fixed throughput. To evalu-
ate each instance, we generate the source code that Trimaran can
compile and optimize and specify the Trimaran hardware architec-
ture parameters such as register file sizes, memory hierarchy,
number of arithmetic logic units (ALU) and others. During the
simulation, Trimaran collects several statistics for each solution
instance including the total number of operations executed (load,
store, ALU, branch, etc.) the total number of cycles required to
complete the decoding task for a fixed number of bits, dynamic
register allocation overhead, and several others. Using our Trima-
ran area models, we then obtain the area requirements of each in-
stance based on the desired throughput (clock rate).
4.3. Hardware Area and Throughput Model

We use the LSI Logic TR4101 microprocessor as the basis for
our model for Trimaran hardware due to the similarities between
the two architectures. This processor has a feature size of 0.35µm
running at a maximum clock speed of 81MHz. We use the quad-
ratic scaling factor

factorpathdata __
35.0

2

⋅






= αλ

to scale the area to an architecture based on a feature size of α µm.
Since the TR4101 is a 32-bit processor, we use the
data_path_factor obtained from [Erc98] to adjusts the area re-
quirement based on the width of the data path (number of bits).

In our area model, we assume that clock rates scale linearly
with feature size with smaller sizes resulting in faster clock rates.
Also, to account for different data-path sizes, we use scaling fac-
tors based on data presented in [Erc98] to adjust the clock rate.
4.4. Multiresolution Search

There are roughly 108 distinct points in the solution space we
have defined for the Viterbi Decoder and even more options for the
IIR filter. Due to the large size of the solution space, exhaustive
search methods are ineffective. We use a multiresolution search
technique to search the solution space in an efficient manner by
concentrating our efforts on promising regions. We initiate the
search on a fixed grid in the solution space. For example, in the
case of the Viterbi decoder, since we have defined 8 dimensions,
we decide to evaluate up to 256 instances. However, in most prac-
tical cases this number is much lower since some of the parameters
are fixed (e.g. G, N). Using the performance evaluated at each
point on the grid as a guide, we further search the regions that are
most promising in terms of area, throughput, and BER using a
finer grid and more accurate simulation results (longer run times).

 R = Initial search resolution
 G = Initial sparse search points
 Procedure Viterbi_Metacore_Search(G,R) {
 For each pi ∈ G
 pi.BER = Simulate and measure BER
 Find pi.Area using Trimaran using given pi.Throughput
 End For
 NewGridSet = Refine_Grid(G)
 NewR = R+Resolution_Increment
 If (NewR<Max_Search_Resolution)
 For each Gi∈ NewGridSet
 Viterbi_Metacore_Search(Gi,NewR)
 }

Figure 6. Pseudo Code for Viterbi Metacore Design

The pseudo code in Figure 6 describes the Viterbi Metacore
search algorithm. When calculating the new grid (Refine_Grid)
regions, we extract regions enclosed by the points that are more
likely to contain promising solutions. Since our area and through-
put functions are smooth and continuous, we use interpolation
between the points on the grid to calculate initial estimates. How-
ever, BER is probabilistic by nature and interpolation can lead to
inaccurate conclusions especially if simulation times are kept
short. We use Bayesian probabilistic techniques to assign a BER
probability to each point pi∈ G, based on the BER values of its
neighbors. Essentially, we use conditional probabilities about ob-
served dependencies in the solution space points to predict most
likely value at points that are still to be considered during the
search. The search is then recursively executed on the newly
formed regions with higher resolution to find and refine the best
candidate solutions.

In general, we classify the design space parameters as: (i) dis-
crete or continuous and (ii) correlated or non-correlated. We fur-
ther distinguish the correlated parameters using their structures
such as monotonic, linear, quadratic, probabilistic, etc. Clearly,
non-correlated parameters are more difficult to handle since opti-
mal solutions cannot be found as rapidly using our heuristic tech-
niques. Also, the search method presented above for the Viterbi
Metacore design is clearly greedy. This design choice is justified
by the speed of the searching mechanism and ease of implementa-
tion. However, the optimality of the search and the results can be
increased using longer simulation times and relaxing the search
space pruning technique at the cost of significantly longer run-
times.
4.5. Validation Example – IIR Design flow

There are several parameters that impact the performance and
the computational complexity of IIR filters. Here, we consider the
following degrees of freedom: topological structure, number of
stages, word length, and passband ripple characteristics. The per-
formance of an instance of an IIR filter is measure using the fol-
lowing criteria: (i) 3-dB bandwidth, (ii) area, (iii) throughput, and
(iv) latency. SPW software simulations are used to measure gain,
3-dB bandwidth, pass band ripple, and stop band attenuation char-
acteristics. Area, throughput, and latency are obtained using the
HYPER behavioral synthesis tools [Rab91]. Specifically we use
HYPER tools for early estimation of both active logic area (execu-
tion units, registers, and interconnect) as well as statistical tools for
prediction of total area. The final implementation is obtained using
Hyper and Lager tools [Rab91].

 To evaluate each candidate for implementation, we start by
entering user specified transfer functions in SPW and consequently
generate Silage code which is used as input to the HYPER behav-
ioral synthesis tool. HYPER also outputs timing information such
as the length of the clock cycle and the number of cycles used.
This information is used to compute throughput and latency.

5. EXPERIMENTAL RESULTS
5.1. Experimentation Platform – Viterbi Metacore

The main user interface, multiresolution search algorithm, and
the multiresolution Viterbi decoder simulator are implemented as a
Microsoft Windows application using Visual C++ 6.0 IDE. The
Trimaran environment is set up on an Intel Pentium III based PC
running RedHat Linux 6.1. This configuration facilitates the paral-
lel execution of the Viterbi software and hardware simulations.

Figure 7 shows a screen capture of the main user interface in
action, where the user can specify most of the algorithmic and
hardware related parameters. Several configuration files and scripts

are used to specify the range of parameters used and automate user
tasks.
5.2. Experimental Results – Viterbi Decoder

We present several experimental results to better illustrate the
general trade-offs involved in our approach, specifically in the
exploration of the multi-resolution Viterbi decoder Metacore. The
graph in Figure 8 shows the relative BER for hard, soft, and mul-
tiresolution Viterbi decoding with K=5, using 1-bit low-resolution
and 3-bit adaptively quantized high-resolution decoding. In this
case, on average, using 4 high-resolution paths (M=4) results in a
64% improvement in BER while using 8 high-resolution paths
(M=8) results in 82% improvement over pure hard-decision decod-
ing.

Table 3 lists the results of several Metacore search outcomes
using different parameter specifications. In each case, the BER and
throughput were specified. Normalization (N) and polynomial (G)
were fixed to speedup the search process. The estimated area re-
quirement and the associated Viterbi metacore parameters are re-
ported for comparison.
5.3. Experimental Results – IIR Filter

In order to evaluate the effectiveness of the proposed Meta-
core design technique on the IIR designs, we specified a bandpass
IIR filter with the following characteristics: ωp1=0.411111π, ωp2=
0.466667π, εp=0.015782, ωs1=0.3487015π, ωs2=0.0.494444π,
εs=0.0157816, where ωp1 and ωp2 are the bandpass frequencies, ωs1
and ωs2 are stopband frequencies, εp is the passband ripple, and εs
is the stopband ripple (assuming a standard normalized filter char-
acteristics).

Table 4 shows the experimental results after applying the
multiresolution search algorithm on the IIR filter. The first column
shows the throughput of the filter (µs). The second column indi-
cates the best solution in terms of the area. The third column shows
the average case solution (in terms of area). Column four, indicates

Figure 7. Screenshot of Main User Interface

Figure 8. BER vs. Signal-to-Noise Ratio for Viterbi Decoder
(K=5, L=5 , R1=1, R3=3 with adaptive quantization)

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

0 1 2 3Es/No

B
ER

Hard
Soft
M=4
M=8

the percentage improvement in the area after applying the Meta-
core optimization in comparison with the average case. The last
column of the table shows the structure of the filter that was used
to produce the best implementation. The average and median re-
duction in area over all designs generated during the search process
were 75.12% and 71.92% respectively.

6. CONCLUSION
We presented a new approach for designing hardware and

software IP that starts at the algorithm level and leverages on algo-
rithm’s intrinsic optimization degrees of freedom. The main com-
ponents of the approach namely problem formulation and identifi-
cation of optimization degrees of freedom, objective functions and
constraints, cost evaluation engine, and multiresolution design
space search were discussed in detail with illustrative examples
from our chosen application, the Viterbi decoder and our validation
example, the IIR filter.

We demonstrated the multiresolution design space search for
optimization and synthesis and presented parameter classifications
and the tradeoffs involved. Furthermore, we presented the new
multi-resolution Viterbi decoding algorithm and illustrated its ca-
pabilities as a viable alternative to pure hard and soft decision de-
coders.

REFERENCES
[Aha95] Advanced Hardware Architectures Inc., “Soft Decision Thresholds

and Effects on Viterbi Performance,” ANRS07-0795,
http://www.aha.com, 1995.

[Bro97] D.W. Brown, J.G. McWhirter, “The Design Of A Block-
Regularized Parameter Estimator By Algorithmic Engineering,” Interna-
tional Journal of Adaptive Control and Signal Processing, Vol. 11, No.
5, pp. 381-393, 1997.

[Bur99] R. Burger, G. Cesana, M. Paolini, M. Turolla, “A Fully Synthesiz-
able Parameterized Viterbi Decoder,” Custom Integrated Circuits Con-
ference, pp. 27-30, 1999.

[Dar81] J. Darlington, “An Experimental Program Transformation And
Synthesis System,” Artificial Intelligence, Vol. 16, pp.1-46, 1981.

[Del99] M. Delpasso, A. Bogliolo, L. Benini, “Virtual Simulation Of Dis-
tributed IP-Based Designs,” 36-th DAC, pp. 50-55, 1999.

[Der85] N. Dershowitz, “Synthesis By Completion,” The Ninth Int. Joint
Conference on Artificial Intelligence, pp. 208-214, 1985.

[Erc98] M. Ercegovac, D. Kirovski, M. Potkonjak, “Behavioral Synthesis
Optimization Using Multiple Precision Arithmetic,” ICASSP '98,
p.3113-16, 1998.

[Gre69] C. Green, “Application Of Theorem Proving To Problem Solving”,
Proc. Of the First International Joint Conference on Artificial Intelli-
gence, pp. 219-239, 1969.

[Lar73] K. J. Larsen, “Short Convolutional Codes With Maximal Free
Distance For Rates 1/2, 1/3, And 1/4,” IEEE Trans. on Inf. Theory, vol.
IT-19, pp. 371-372, 1973

[Mal98] S. G. Mallat, A Wavelet Tour Of Signal Processing. San Diego :
Academic Press, 1998.

[Ode70] J. P. Odenwalder, “Optimum Decoding Of Convolutional Codes,”
Ph.D. Dissertation, Department of Systems Sciences, UCLA, 1970.

[Opp89] A.V. Oppenheim, R.W. Shafer, Discrete-Time Signal Processing,
Prentice Hall, Englewood Cliffs, NJ, 1989.

[Opp92] A.V. Oppenheim, S.H. Nawab, Symbolic and Knowledge-based
Signal Processing, Prentice Hall, Englewood Cliffs, NJ, 1992.

[Pot99] M. Potkonjak, J.M. Rabaey, “Algorithm Selection: A Quantitative
Optimization-Intensive Approach,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol.18, (no.5), IEEE,
May 1999.

[Pro96] I.K. Proudler, J.G. McWhirter, M. Moonen, G. Hekstra, “Formal
Derivation Of A Systolic Array For Recursive Least Squares Estima-
tion,” Trans. On Circuits and Systems II: Analog and Digital Signal
Processing, Vol. 43, No. 3, pp.247-254, 1996.

[Rab91] J.M. Rabaey, C. Chu, P. Hoang, M. Potkonjak, “Fast Prototyping
Of Datapath-Intensive Architectures,” IEEE Design & Test of Com-
puters, vol.8, June 1991. p.40-51.

[Sch99] P. Schaumont, R. Cmar, S. Vernalde, M. Engels, and others.
“Hardware Reuse At The Behavioral Level,” DAC, pp. 784-789, 1999.

[Smi98] B. Smith, J.V. McCanny, “Rapid Design Of High Performance
Adaptive Equalizer And Viterbi Decoder For The Class-IV PRML
Channel,” Workshop on Signal Processing Systems, SIPS 98, pp. 307-
316, 1998.

[Stu91] B. Stuckman, P. Scannell, “A Multidimensional Bayesian Global
Search Method Which Incorporates Knowledge of an Upper Bound”,
Proc. IEEE Int. Conf. on Systems, Man, and Cybernetics. pp. 591-596,
1991.

[Tri99] Trimaran: An Infrastructure for Research in Instruction-Level Par-
allelism, www.trimaran.org.

[Vit67] A. J. Viterbi, "Error Bounds for Convolutional Codes and an As-
ymptotically Optimum Decoding Algorithm," IEEE Trans. on Inf. The-
ory, vol. IT-13, pp.260-269, 1967

[Wil83] D.S. Wile, “Program Developments: Formal Explanations of Im-
plementations”, Comm. of the ACM, Vol. 26, No. 11, pp. 902-911,
1983.

[Zor99] Y. Zorian, E.J. Marinissen, S. Dey, “Testing embedded-core-based
system chips”, Computer, vol.32, pp. 52-60, 1999

Desired BER
(at Es/N0=1.0)

Desired
Throughput K L

(*K) G R1
(bits)

R2
(bits) Q* N M Area

(mm2)
1x10-2 5 Mbps 3 4 7,5 2 NA A 1 NA 0.35
1 x10-4 2 Mbps 5 6 35,23 1 3 F 1 5 1.2
1x10-5 1 Mbps 7 7 171,133 3 NA A 1 NA 2.2
1x10-5 3 Mbps 7 7 171,133 2 4 A 1 NA 3.3
1x10-9 1 Mbps x x x x x x x x Not Feasible

Table 3. Viterbi Decoder results with several BER and Throughput Requirements (*A=Adaptive, F=Fixed)

Throughput
(µs)

Multi-res.
Area
(mm2)

Average
Area
(mm2)

Reduction
% Structure

5 5.73 15.75 63.62 Ladder
4 5.92 18.27 67.60 Parallel
3 5.92 19.94 70.31 Parallel
2 5.92 21.08 71.92 Parallel
1 6.11 35.81 82.94 Cascade

0.5 11.63 69.98 83.39 Cascade
0.25 22.14 158.90 86.07 Cascade

Table 4. Performance of IIR Filter

	Main
	DAC01
	Front Matter
	Table of Contents
	Session Index
	Author Index

