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ABSTRACT
Currently, hardware intellectual property (IP) is delivered at 

three levels of abstraction: hard, firm, and soft. In order to further 
enhance performance, efficiency, and flexibility of IP design, we 
have developed a new approach for designing hardware and soft-
ware IP called MetaCores. The new design approach starts at the 
algorithm level and leverages on the algorithm’s intrinsic optimiza-
tion degrees of freedom. The approach has four main components: 
(i) problem formulation and identification of optimization degrees 
of freedom, (ii) objective functions and constraints, (iii) cost 
evaluation engine, and (iv) multiresolution design space search. 
From the algorithmic viewpoint, the main contribution is the intro-
duction of multiresolution search in algorithm optimization and 
synthesis process. We have applied the approach to the develop-
ment of Viterbi and IIR MetaCores. Experimental results demon-
strate the effectiveness of the new approach. 

1. INTRODUCTION 
The rapidly growing gap between silicon capacity and design 

productivity has resulted in a pressing need for design reuse. 
Hardware building blocks, usually under the name of cores, have 
become increasingly popular as the most efficient way of reusing 
design intellectual property (IP). While there exist several potential 
classification schemes for integrated circuits (IC) IP, the classifica-
tion of cores according to their level of implementation details is 
by far the most popular. 

Hard cores are IPs completely implemented using a particular 
physical design library. Firm cores are also completely imple-
mented, including physical design, but are targeted at a symbolic 
library. Finally, soft cores are described in high level languages 
such as VHDL or Verilog. Clearly, while hard cores provide com-
plete information about all relevant design parameters and facili-
tate the highest level of performance and implementation parame-
ter optimization for the selected library, soft cores are superior in 
terms of their flexibility and application range. Initially, hard cores 
dominated the IP reuse market and practice, but recently there is an 
increasing trend toward other types of cores and in particular, soft 
cores. Additionally, parameterized, configurable, and programma-
ble cores (such as Tensilica and Improv) have been rapidly gaining 
popularity.  

We present a new approach to IC IP development. The ap-
proach can be viewed as a natural next step in core evolution be-
cause we consider design optimization and its suitability for effi-
cient implementation at an even higher level than the high-level 

language specification. We analyze the algorithm for a particular 
application that is the target for creating the core with respect to its 
performance, and estimate implementation area and speed. Spe-
cifically, we identify the degrees of freedom for the algorithm 
alternations under specific targeted implementation objective func-
tions and constraints. By searching the algorithm solution space, 
we identify the algorithm structure that is best suited for the speci-
fied design goals and constraints. 
1.1. Trade-offs: Simple Example 

Let us consider an example to introduce the key ideas dis-
cussed in this paper. Altering several key parameters in the Viterbi 
decoding algorithm used in convolutional forward-error-correction, 
can have tremendous impacts on the attributes of the final design. 
Although an experienced designer may successfully guess the gen-
eral outcome of changing each parameter, initially, it is not always 
clear exactly what configuration is best suited for a specific appli-
cation. As an example, Table 1 presents three different instances of 
the Viterbi decoder. Each instance is obtained by altering only a 
subset of the parameters that effect the Viterbi algorithm. The three 
main metrics that we use to evaluate the performance of the Viterbi 
decoder are bit-error-rate, throughput, and chip area. Table 1 lists 
the specific parameters used and the estimated area requirements 
for each instance when the desired throughput is fixed at 1 Mbps. 
Figure 1 shows the bit-error-rate (BER) curves obtained by soft-
ware simulation for each case, under varying signal-to-noise ratios.  

Although all three cases exhibit comparable BER curves as 
shown in Figure 2, each can have drastically different area re-
quirements when the desired throughput is fixed as shown in Table 
1. Here we have selected only a few parameters while in general, 
the solution space is very large and complex. 

K Trellis 
Depth 

Quantization Bits 
Low / high 

Multi-res. 
Paths 

Area 
mm2 

3 2 3 / NA NA 0.26 
5 5 1 / 3 8 0.56 
7 5 1 / 3 4 1.73 

Table 1. Area Estimates of Three Instances of the Viterbi 
Decoder Under Fixed Throughput (1Mbps) 
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Figure 1. Viterbi Decoder  BER vs. Signal-to-Noise  Ratio  
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1.2. Goals 
Our primary objective is to demonstrate the importance and 

effectiveness of leveraging the potential of algorithm design 
through performance simulation and area and speed estimation. 
Note that performance indicates quantified qualities from the ap-
plication point of view. For example, in error correction, algorithm 
performance is measured by the bit error rate while in lossy com-
pression, the level of compression and loss rate are used to meas-
ure performance.  

We also introduce and demonstrate the first effective quantita-
tive algorithm design technique. Also, the study of algorithmic 
degrees of freedom of the Viterbi decoder has an interesting and 
potentially important side result: a new multiresolution Viterbi 
decoding algorithm. Our final objective and result is to produce a 
high performance, low cost, Viterbi decoder implementation for a 
variety of bit error rates (BER) and throughput requirements. 
While the Viterbi is the primary driver in our discussions, we  also 
demonstrate the methodology when applied to an IIR filter as a 
validation example. 
1.3. Paper Organization 

The reminder of the paper is organized as follows. We first 
summarize the related work. Then, we survey all preliminary mate-
rial about the Viterbi algorithm and IIR filters, the targets of our 
case studies, and discuss area and timing models. Section 4 is the 
backbone of the paper and presents detailed description of the 
problem formulation, objectives, and the new multi-resolution 
design space search technique. Finally, we demonstrate the effec-
tiveness of the meta-core design approach using the Viterbi de-
coder driver example. 

2. RELATED WORK 
Although, IC component reuse has been widely practiced at 

many design centers since the beginnings of silicon designs, in the 
last few years a strong consensus has formed that IP reuse will be a 
dominant enabling force for the future generation of designs. A 
number of design companies have been making strong efforts to 
develop their IP portfolio, often mainly for internal use. There are 
also several companies (e.g. Artisan) who have completely based 
their business model on providing design IP. Thus, IP creation, 
assembly, and testing have received significant recent research 
attention [Sch99, Del99, Zor99].  

The Viterbi decoding algorithm has by far been the most 
widely studied and used convolutional error correction code in 
both wired and wireless communication. It is considered a funda-
mental DSP algorithm and the performances of modern DSP chips 
are often quoted in terms of their Viterbi decoding speed. The al-
gorithm is well described in the classical papers. Several hard and 
soft Viterbi decoder cores have been reported in [Smi98, Bur99]. 

Filtering (processing) on streams of data is a fundamental task 
widely used in digital signal processing, communication, and con-
trol applications [Opp89]. Infinite Impulse Response (IIR) filters 
are  particularly attractive due to their relatively low implementa-
tion complexity. A variety of different topological structures have 
been proposed for the realization of IIR filters, including direct 
form, cascade, parallel, continued fraction, ladder, Wave digital, 
state-space digital, orthogonal and multi variable digital lattice. 
Today, in addition to many public domain IIR filter design pro-
grams, there are also well-supported commercial design tools for 
synthesis of IIR filters including MATLAB and SPW.   

Algorithm selection and design has been a popular research 
topic in a number of research fields, particularly in artificial intel-
ligence where four main directions have emerged: first order logic-
based methods [Gre69], rewrite systems [Der85], transformational 

approaches [Dar81] and schema-based programming [Wil83]. 
While the proposed techniques are strategically and algorithmi-
cally very different, they all share a common weakness in their 
inability to scale to problems of practical importance. Several 
VLSI DSP efforts have also addressed the algorithm selection and 
design process [Opp92, Bro97, Pro96]. In a sense, the algorithm 
design aspect of our approach is most similar to one presented in 
[Pot99]. However, while their approaches are limited just to the 
algorithm selection process, we explore the much richer design 
space where a number of vital algorithm parameters are consid-
ered. Furthermore, a major distinction of this approach with re-
spect to all surveyed work is that our main goal is the development 
of IP creation techniques at the higher level of abstraction.  

Multiresolution techniques have been popular for a long time, 
in particular in image, video, and in general, digital signal process-
ing. The popularity of multiresolution techniques in DSP has been 
further amplified with the introduction of wavelet transforms 
[Mal98]. Multiresolution techniques have also been widely used in 
numerical algorithms and in mesh-based finite element techniques.  

3. PRELIMINARIES 
3.1. Viterbi Algorithm 

In most modern communication systems, channel coding is 
used to increase bandwidth, add error detection and correction 
capabilities, and provide a systematic way to translate logical bits 
of information to analog channel symbols used in transmission. 
Convolutional coding and block coding are the two major forms of 
channel coding used today. As their names imply, in convolutional 
coding the algorithms work on a few bits at a time while in block 
coding big chunks of data are processed together. Generally, con-
volutional coding is better suited for processing continuous data 
streams with relatively small latencies. Also, since convolutional 
forward error correction (FEC) works well with data streams af-
fected by the atmospheric and environmental noise (Additive 
White Gaussian Noise) encountered in satellite and cable commu-
nications, they have found widespread use in many advanced 
communication systems. Viterbi decoding is one of the most popu-
lar FEC technique used today and is therefore the main focus of 
our discussion. 

Convolutional codes are usually defined using the two pa-
rameters, code rate (k/n) and constraint length (K). The code rate of 
the convolutional encoder is calculated as the ratio k/n where k is 
the number of input data bits and n is the number of channel sym-
bols output by the encoder. The constraint length K is directly re-
lated to the number of registers in the encoder. These (shift) regis-
ters hold the previous data values that are systematically convolved 
with the incoming data bits. This redundancy of information in the 
final transmission stream is the key factor enabling the error cor-
rection capabilities that are necessary when dealing with transmis-
sion errors. Figure 2 shows an example of a ½ rate encoder with 
K=3 (4 states). 
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Figure 2. Convolutional Encoder 

The simple encoder in Figure 2 generates two channel sym-
bols as each incoming data bit is shifted into register R1. The con-
nections from the registers to the output XOR gates are defined by 
the polynomial G. There are many studies that show the optimal K 
and G in different situations [Lar73, Ode70]. It is interesting to 
note that although the ½ rate encoding effectively reduces the 



channel bandwidth by a factor of two, the power savings that are 
gained due to the increased reliability of the channel offset the 
negative effects of the reduced bandwidth and overall, the tech-
nique improves the efficiency of the channel.  

Viterbi decoding and sequential decoding are the two main 
types of algorithms used with convolutional codes. Although se-
quential decoding performs very well with long-constraint based 
convolutional codes, it has a variable decoding time and is less 
suited for hardware implementations. On the other hand, the 
Viterbi decoding algorithm developed by Andrew J. Viterbi, one of 
the founders of Qualcomm Corporation [Vit67], has fixed decod-
ing times and is well suited for hardware implementations. The 
exponentially increasing computation requirements as a function of 
constraint length (K) limit current implementations of the Viterbi 
decoder to about K=9.   
3.2. Viterbi Decoder 

Viterbi decoding, also known as maximum-likelihood decod-
ing, is comprised of the two main tasks of updating the trellis and 
trace-back. The trellis used in Viterbi decoding is essentially the 
convolutional encoder state transition diagram with an extra time 
dimension. Figure 3 shows an example of a trellis diagram for the 
4-state (K=3) Viterbi decoder. The four possible convolutional 
encoder states are depicted as four rows in the trellis. The solid 
edges represent transitions based on 1 inputs and the dashed lines 
represent transitions based on 0 inputs. There are two channel 
symbols produced by the encoder associated with each branch in 
the trellis.   
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Figure 3. Viterbi Trellis Diagram 

After each time instance t, the elements in the column t con-
tain the accumulated error metric for each encoder state, up-to and 
including time t. Every time a pair of channel symbols is received, 
the algorithm updates the trellis by computing the branch metric 
associated with each transition. In hard decision decoding, the 
branch metric is most often defined to be the Hamming distance 
between the channel symbols and the symbols associated with each 
branch. So for hard decision ½ rate decoding (2 channel symbols 
per branch), the possible branch metric values are 0, 1, and 2, de-
pending on the number of mismatched symbols. The total error 
associated with taking each branch is the sum of the branch metric 
and the accumulated error value of the state from which the branch 
initiates. Since there are two possible transitions (branches) into 
each state, the smaller of the two accumulated error metrics is used 
to replace the current value of each state.   

The state with the lowest accumulated error metric is chosen 
as the candidate for trace-back. The path created by taking each 
branch leading to the candidate state is traced back for a predefined 
number of steps.  The initial branch in the trace-back path indicates 
the most likely transition in the convolutional encoder and can 
therefore be used to obtain the actual encoded bit value in the 
original data stream. 

To make the decoder work, received channel symbols must be 
quantized. In hard decision decoding, channel symbols can be 
either 0 or 1. Hard decision Viterbi decoders can be extremely fast 
due to the small number of bits that are involved in the computa-
tions. However, tremendous BER improvements have been 

achieved by increasing the number of bits (resolution) used in 
quantizing the channel symbols. Figure 4 shows an example of a 
uniform quantizer using 3-bits (8 levels) to represent a symbol 
received on the channel [Aha95]. The ratio Es/N0, the energy per 
symbol to noise density ratio, is used to calculate D, the decision 
level. For a detailed discussion of quantization methods and their 
effects on the Viterbi decoding algorithm refer to [Aha95]. 
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Figure 4. Adaptive Soft Quantization 

3.3. Multiresolution Viterbi 
The benefits of soft decision over hard decision decoding are 

offset by the cost of significantly bigger and slower hardware. 
Here we propose a new multi-resolution Viterbi decoding algo-
rithm that exhibits the BER performance benefits of higher resolu-
tion soft decoding while maintaining minimal area and delay over-
heads. The multi-resolution Viterbi decoding method is based on 
the key observation that at any given time, only a relatively small 
number of the trellis states are possible candidates for trace-back 
while others with larger accumulated errors are less likely to be 
useful. We use this observation and update the trellis using fewer 
bits and after each step recalculate the branch metrics for several of 
the “better” paths (paths with smaller accumulated errors) using 
higher precision.   

Since in trace-back the state with the minimum accumulated 
error is chosen as the starting point, the algorithm must be de-
signed such that no state is given an unfair advantage over the 
others. The higher precision recalculation of branch metrics for the 
most likely candidate states improves the probability of selecting 
the real best state for trace-back. However, since the quantization 
and branch error calculation methods are different for each case, a 
correction term must be added to the recalculated branch metrics to 
keep the accumulated error values normalized.   

There are several methods of normalizing the lower and 
higher resolution branch metric values obtained during decoding. 
In general, an efficient approach of finding the correction value is 
by calculating the difference between the best high resolution and 
the best low resolution branch metric at each iteration. We can 
further improve on this approach by averaging the differences of 
two or more branch metrics. Experimental results show that big 
improvements in performance can be achieved over hard decision 
decoding by only recalculating a small fraction of the trellis paths. 
3.4. Infinite Impulse Response (IIR) Filters 

The functionality of IIR filter can be compactly and com-
pletely captured by its transfer function. Figure 5 shows a typical 
transfer function for a low-pass IIR filter. There are several pa-
rameters that characterize a filter that include passband and stop-
band frequencies, passband ripple, stopband attenuation, 3-dB 
bandwidth, and gain. Note that all of the structures mentioned in 
Section 2, can be used to implement an arbitrary transfer function. 
However they greatly differ in terms of hardware requirements, 
such as number of multiplications, number of additions, word 



length, interconnect, and registers. It has been shown that depend-
ing on the required throughput, various structures are the better 
options for implementation [Pot99]. 

 

 

Figure 5. Typical transfer function for low pass  
IIR filter (Elliptic IIR Filter) 

4. DESIGN FLOW 
4.1. Problem Formulation and Optimization Degrees of 

Freedom – Viterbi Decoder 
There are many parameters that can effect the performance of 

the Viterbi decoder. Currently, we model the domain of the solu-
tion space as an 8-dimensional matrix. Table 2 lists all parameters 
that constitute the degrees of freedom in our solution space. 

K Constraint length {3,4,5,6,7,…} 
L Trace-back depth {1*K, 2*K, 3*K, 4*K, 5*K, …} 
G Encoder Polynomial(s) 
R1 Quantization used for low-resolution decoding 
R2 Quantization used for high-resolution decoding (multi) 
Q Quantization method (hard, fixed, adaptive) 
N Normalization method  
M Number of multi-resolution paths (1,2,…,2K-1) 

Table 2. Viterbi Decoder Parameters 
The parameter K is the constraint length of the convolutional 

encoder and L is the trace-back depth of the decoder. Although K 
and L do not have any theoretic bounds, we limit our search to 
current practical values of K<10 and L<30*K. Our experiments 
have shown that in most cases, trellis depths larger than 7*K do not 
have any significant impact on BER. There are several standard 
specifications of the encoder polynomial G for different values of 
K. The user has the option of selecting multiple variations of G to 
be included in the search, although in most cases G is fixed. The 
quantization resolution parameters R1 and R2 indicate the number 
of bits used in the calculation of the trellis branch metrics.  As we 
discussed earlier, higher number of bits (soft decision) translate to 
better BER performance. Also, the choice of the quantization reso-
lution parameters R1 and R2, effect the multiresolution normaliza-
tion method N. Currently, N specifies the number of branch metric 
values used in the calculation of the multi-resolution correction 
factor. For pure hard or soft decoding this parameter is set to 0 and 
for multiresolution decoding 1≤N≤M. The parameter M specifies 
the number of trellis states (paths) that are recalculated using 
higher resolution in multi-resolution decoding. 
4.2. Objective Function and Constraints 

The performance of each instance of the Viterbi decoder is 
quantified in terms of the following three metrics: (i) Bit Error 
Rate (BER) (ii) Area, and (iii) Throughput. Software simulation is 
used to measure the BER of each instance of the algorithm under 
varying signal to noise ratios. Generally, the user defines a thresh-
old curve that serves as a guide for the desired BER performance. 

Area and throughput metrics are obtained by simulating the algo-
rithm using Trimaran [Tri99]. Trimaran provides a compiler and 
hardware platform for parallel programmable VLIW and Supersca-
lar architectures. We use Trimaran to estimate the area require-
ments of each candidate solution for a fixed throughput. To evalu-
ate each instance, we generate the source code that Trimaran can 
compile and optimize and  specify the Trimaran hardware architec-
ture parameters such as register file sizes, memory hierarchy, 
number of arithmetic logic units (ALU) and others. During the 
simulation, Trimaran collects several statistics for each solution 
instance including the total number of operations executed (load, 
store, ALU, branch, etc.) the total number of cycles required to 
complete the decoding task for a fixed number of bits, dynamic 
register allocation overhead, and several others. Using our Trima-
ran area models, we then obtain the area requirements of each in-
stance based on the desired throughput (clock rate). 
4.3. Hardware Area and Throughput Model 

We use the LSI Logic TR4101 microprocessor as the basis for 
our model for Trimaran hardware due to the similarities between 
the two architectures. This processor has a feature size of 0.35µm 
running at a maximum clock speed of 81MHz. We use the quad-
ratic scaling factor 

factorpathdata __
35.0

2

⋅






= αλ  

to scale the area to an architecture based on a feature size of α µm. 
Since the TR4101 is a 32-bit processor, we use the 
data_path_factor obtained from [Erc98] to adjusts the area re-
quirement based on the width of the data path (number of bits). 

In our area model, we assume that clock rates scale linearly 
with feature size with smaller sizes resulting in faster clock rates.  
Also, to account for different data-path sizes, we use scaling fac-
tors based on data presented in [Erc98] to adjust the clock rate. 
4.4. Multiresolution Search 

There are roughly 108 distinct points in the solution space we 
have defined for the Viterbi Decoder and even more options for the 
IIR filter. Due to the large size of the solution space, exhaustive 
search methods are ineffective. We use a multiresolution search 
technique to search the solution space in an efficient manner by 
concentrating our efforts on promising regions. We initiate the 
search on a fixed grid in the solution space. For example, in the 
case of the Viterbi decoder, since we have defined 8 dimensions, 
we decide to evaluate up to 256 instances. However, in most prac-
tical cases this number is much lower since some of the parameters 
are fixed (e.g. G, N). Using the performance evaluated at each 
point on the grid as a guide, we further search the regions that are 
most promising in terms of area, throughput, and BER using a 
finer grid and more accurate simulation results (longer run times). 

 R = Initial search resolution  
 G = Initial sparse search points 
 Procedure Viterbi_Metacore_Search(G,R) { 
  For each pi ∈  G 
   pi.BER = Simulate and measure BER 
   Find pi.Area using Trimaran using given  pi.Throughput  
  End For 
  NewGridSet = Refine_Grid(G) 
  NewR = R+Resolution_Increment  
  If (NewR<Max_Search_Resolution) 
   For each Gi∈ NewGridSet 
    Viterbi_Metacore_Search(Gi,NewR) 
 } 

Figure 6. Pseudo Code for Viterbi Metacore Design 



The pseudo code in Figure 6 describes the Viterbi Metacore 
search algorithm. When calculating the new grid (Refine_Grid) 
regions, we extract regions enclosed by the points that are more 
likely to contain promising solutions. Since our area and through-
put functions are smooth and continuous, we use interpolation 
between the points on the grid to calculate initial estimates. How-
ever, BER is probabilistic by nature and interpolation can lead to 
inaccurate conclusions especially if simulation times are kept 
short. We use Bayesian probabilistic techniques to assign a BER 
probability to each point pi∈ G, based on the BER values of its 
neighbors. Essentially, we use conditional probabilities about ob-
served dependencies in the solution space points to predict most 
likely value at points that are still to be considered during the 
search. The search is then recursively executed on the newly 
formed regions with higher resolution to find and refine the best 
candidate solutions. 

In general, we classify the design space parameters as: (i) dis-
crete or continuous and (ii) correlated or non-correlated. We fur-
ther distinguish the correlated parameters using their structures 
such as monotonic, linear, quadratic, probabilistic, etc. Clearly, 
non-correlated parameters are more difficult to handle since opti-
mal solutions cannot be found as rapidly using our heuristic tech-
niques. Also, the search method presented above for the Viterbi 
Metacore design is clearly greedy. This design choice is justified 
by the speed of the searching mechanism and ease of implementa-
tion. However, the optimality of the search and the results can be 
increased using longer simulation times and relaxing the search 
space pruning technique at the cost of significantly longer run-
times. 
4.5. Validation Example – IIR Design flow 

There are several parameters that impact the performance and 
the computational complexity of IIR filters. Here, we consider the 
following degrees of freedom: topological structure, number of 
stages, word length, and  passband ripple characteristics. The per-
formance of an instance of an IIR filter is measure using the fol-
lowing criteria: (i) 3-dB bandwidth, (ii) area, (iii) throughput, and 
(iv) latency. SPW software simulations are used to measure gain, 
3-dB bandwidth, pass band ripple, and stop band attenuation char-
acteristics. Area, throughput, and latency are obtained using the 
HYPER behavioral synthesis tools [Rab91]. Specifically we use 
HYPER tools for early estimation of both active logic area (execu-
tion units, registers, and interconnect) as well as statistical tools for 
prediction of total area. The final implementation is obtained using 
Hyper and Lager tools [Rab91].  

 To evaluate each candidate for implementation, we start by 
entering user specified transfer functions in SPW and consequently 
generate Silage code which is used as input to the HYPER behav-
ioral synthesis tool. HYPER also outputs timing information such 
as the length of the clock cycle and the number of cycles used. 
This information is used to compute throughput and latency. 

5. EXPERIMENTAL RESULTS 
5.1. Experimentation Platform – Viterbi Metacore 

The main user interface, multiresolution search algorithm, and 
the multiresolution Viterbi decoder simulator are implemented as a 
Microsoft Windows application using Visual C++ 6.0 IDE. The 
Trimaran environment is set up on an Intel Pentium III based PC 
running RedHat Linux 6.1. This configuration facilitates the paral-
lel execution of the Viterbi software and hardware simulations. 

Figure 7 shows a screen capture of the main user interface in 
action, where the user can specify most of the algorithmic and 
hardware related parameters. Several configuration files and scripts 

are used to specify the range of parameters used and automate user 
tasks. 
5.2. Experimental Results – Viterbi Decoder 

We present several experimental results to better illustrate the 
general trade-offs involved in our approach, specifically in the 
exploration of the multi-resolution Viterbi decoder Metacore. The 
graph in Figure 8 shows the relative BER for hard, soft, and mul-
tiresolution Viterbi decoding with K=5, using 1-bit low-resolution 
and 3-bit adaptively quantized high-resolution decoding. In this 
case, on average, using 4 high-resolution paths (M=4) results in a 
64% improvement in BER while using 8 high-resolution paths 
(M=8) results in 82% improvement over pure hard-decision decod-
ing. 

Table 3 lists the results of several Metacore search outcomes 
using different parameter specifications. In each case, the BER and 
throughput were specified. Normalization (N) and polynomial (G) 
were fixed to speedup the search process. The estimated area re-
quirement and the associated Viterbi metacore parameters are re-
ported for comparison. 
5.3. Experimental Results – IIR Filter 

In order to evaluate the effectiveness of the proposed Meta-
core design  technique on the IIR designs, we specified a bandpass 
IIR filter with the following characteristics: ωp1=0.411111π, ωp2= 
0.466667π, εp=0.015782, ωs1=0.3487015π, ωs2=0.0.494444π, 
εs=0.0157816, where ωp1 and ωp2 are the bandpass frequencies, ωs1 
and ωs2 are stopband frequencies, εp is the passband ripple, and εs 
is the stopband ripple (assuming a standard normalized filter char-
acteristics).   

Table 4 shows the experimental results after applying the 
multiresolution search algorithm on the IIR filter. The first column 
shows the throughput of the filter (µs). The second column indi-
cates the best solution in terms of the area. The third column shows 
the average case solution (in terms of area). Column four, indicates 

Figure 7. Screenshot of Main User Interface 

Figure 8. BER vs. Signal-to-Noise  Ratio for Viterbi Decoder 
(K=5, L=5 , R1=1, R3=3 with adaptive quantization)
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the percentage improvement in the area after applying the Meta-
core optimization in comparison with the average case. The last 
column of the table shows the structure of the filter that was used 
to produce the best implementation. The average and median re-
duction in area over all designs generated during the search process 
were 75.12% and 71.92% respectively. 

6. CONCLUSION  
We presented a new approach for designing hardware and 

software IP that starts at the algorithm level and leverages on algo-
rithm’s intrinsic optimization degrees of freedom. The main com-
ponents of the approach namely problem formulation and identifi-
cation of optimization degrees of freedom, objective functions and 
constraints, cost evaluation engine, and multiresolution design 
space search were discussed in detail with illustrative examples 
from our chosen application, the Viterbi decoder and our validation 
example, the IIR filter.  

We demonstrated the multiresolution design space search for 
optimization and synthesis and presented parameter classifications 
and the tradeoffs involved. Furthermore, we presented the new 
multi-resolution Viterbi decoding algorithm and illustrated its ca-
pabilities as a viable alternative to pure hard and soft decision de-
coders. 
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Desired BER 
(at Es/N0=1.0) 

Desired  
Throughput K L  

(*K) G R1 
(bits) 

R2 
(bits) Q* N M Area 

(mm2) 
1x10-2 5 Mbps 3 4 7,5 2 NA A 1 NA 0.35 
1 x10-4 2 Mbps 5 6 35,23 1 3 F 1 5 1.2 
1x10-5 1 Mbps 7 7 171,133 3 NA A 1 NA 2.2 
1x10-5 3 Mbps 7 7 171,133 2 4 A 1 NA 3.3 
1x10-9 1 Mbps x x x x x x x x Not Feasible 

Table 3. Viterbi Decoder results with several BER and Throughput Requirements (*A=Adaptive, F=Fixed) 

Throughput 
(µs) 

Multi-res. 
Area 
(mm2) 

Average 
Area 
(mm2) 

Reduction 
% Structure 

5 5.73 15.75 63.62 Ladder 
4 5.92 18.27 67.60 Parallel 
3 5.92 19.94 70.31 Parallel 
2 5.92 21.08 71.92 Parallel 
1 6.11 35.81 82.94 Cascade 

0.5 11.63 69.98 83.39 Cascade 
0.25 22.14 158.90 86.07 Cascade 

Table 4. Performance of IIR Filter 
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