Dynamic Detection and Removal of Inactive Clauses in SAT
with Application in Image Computation

Aarti Gupta
CCRL, NEC USA
4 Independence Way
Princeton, NJ 08540
agupta@nec-lab.com

ABSTRACT

In this paper, we present a new technique for the efficient dy-
namic detection and removal of inactive clauses, i.e. clauses
that do not affect the solutions of interest of a Boolean Sat-
isfiability (SAT) problem. The algorithm is based on the ex-
traction of gate connectivity information during generation
of the Boolean formula from the circuit, and its use in the
inner loop of a branch-and-bound SAT algorithm. The mo-
tivation for this optimization is to exploit the circuit struc-
ture information, which can be used to find unobservable
gates at circuit outputs under dynamic conditions. It has
the potential to speed up all applications of SAT in which
the SAT formula is derived from a logic circuit. In partic-
ular, we find that it has considerable impact on an image
computation algorithm based on SAT. We present practical
results for benchmark circuits which show that the use of
this optimization consistently improves the performance for
reachability analysis, in some cases enabling the prototype
tool to reach more states than otherwise possible.

1. INTRODUCTION

Checking Boolean Satisfiability (SAT) is at the core of a
number of applications in VLSI CAD including combina-
tional verification, ATPG, timing analysis, synthesis and,
recently, reachability analysis and model checking. Acceler-
ation of SAT can have significant impact in terms of improv-
ing the quality of these applications. SAT has received con-
siderable attention in the recent past, focusing both on ba-
sic improvements in the SAT algorithms [7, 11, 14, 19], and
on various applications like Automatic Test Pattern Gen-
eration (ATPG) [12], equivalence checking [5, 9], bounded
model checking (BMC) [2]. Recently, combining SAT tech-
niques with BDDs has been shown to be effective for image
computation with application in state reachability analysis
of sequential circuits [10].

Typical SAT solvers are based on a Davis-Putnam style
branch-and-bound algorithm, and include considerable so-

Permission to make digital or hard copies of all or part of this work for

Anubhav Gupta
School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213
anubhav@cs.cmu.edu

Zijiang Yang, Pranav Ashar
CCRL, NEC USA
4 Independence Way
Princeton, NJ 08540

Jyang,ashar@nec-lab.com

phistication in heuristics for decision making, implication
gathering, and backtracking [15, 18, 22]. However, miss-
ing from these efforts is exploitation of the fact that most
SAT problems arising in VLSI CAD are derived from logic
gate netlists. Logic gate netlists have some special proper-
ties related to how gates are connected together to realize
circuit functionality. These include properties like the input-
to-output flow of information, limitation on the fanout and
fanin of each gate, and the connectivity and signal value de-
pendence dynamically changing the controllability and ob-
servability of a gate. To the best of our knowledge, such
properties have not being exploited in current SAT pack-
ages.

On the other hand, circuit structure has been effectively
utilized in many SAT applications, e.g. ATPG [1], BMC [20].
However, this utilization has been mostly application-specific.
For example, justification/propagation frontiers in ATPG,
and unrolled transition relations in BMC, are used for more
effective decision heuristics in the associated SAT proce-
dures.

Our motivation is to exploit circuit structure in order to
improve the performance of generic SAT applications arising
in VLSI CAD. In particular, we use the notion of unobserv-
ability of gates at circuit outputs to reduce the size of the
SAT sub-problems. Like all search algorithms, the effective-
ness of a SAT algorithm is based on the amount of pruning
of the search space it enables. The amount of pruning, in
turn, is directly affected by the decision making heuristics
and implication methods. Typically, their effectiveness is in-
versely proportional to the size of the SAT problem. Thus,
the size of a SAT problem affects not only the size of the
search space, but also the effectiveness of pruning methods.

1.1 Our Contributions

Our optimization technique for reducing the size of SAT
sub-problems uses the notion of unobservability for the dy-
namic detection and removal of inactive clauses, i.e. clauses
which do not affect the SAT solutions of interest. Rather
than perform the analysis on the circuit structure, our pro-
posed optimization works directly on the CNF (Conjunctive
Normal Form) description of the circuit. Since, typical SAT
solvers use a CNF description of the problem, this avoids

personal or classroom use is granted without fee provided that copies arethe overhead of multiple representations.

not made or distributed for profit or commercial advantage and that copies

We tag the variables and clauses of a CNF description

bear this notice and the full citation on the first page. To copy otherwise, 10 with circuit connectivity information. This is done once at

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.
DAC 2001, June 18-22, 2001, Las Vegas, Nevada, USA.
Copyright 2001 ACM 1-58113-297-2/01/000685.00.

the time of generating the CNF description from the cir-
cuit structure. Later, this information is used repeatedly in
the inner loop of a typical Davis-Putnam style branch-and-

bound SAT algorithm [14] to perform a backward traversal
in order to remove inactive clauses. Note that the connectiv-
ity information in the CNF description is adequate for any
traversal of the corresponding circuit structure. This can be
potentially used in other optimizations, besides detection of
inactive clauses.

Our proposed algorithms for generating the connectivity
information, and its use for detection of inactive clauses are
efficient. In particular, the algorithm for detecting inac-
tive clauses involves marking all clauses and variables in the
worst case. Depending upon the application, this cost can be
either incurred at every decision level, or amortized over sev-
eral decision levels within the SAT search. The important
point to note is that our optimization provides a uniform
way to exploit circuit connectivity information, and has the
potential to accelerate all SAT applications in which the
SAT formula is derived from a logic circuit representation.
In this paper, we focus on a SAT-based image computation
application for reachability analysis [10]. For this applica-
tion, the overhead of detecting inactive clauses at every de-
cision level is negligible. Our experimental results show that
the use of this technique consistently improves the perfor-
mance of our prototype tool, in some cases enabling it to
reach more states than otherwise possible.

1.2 Related Work

While our technique provides a clear benefit to SAT al-
gorithms, it is also important to put our ideas in the con-
text of the large body of work in combinational ATPG [1].
Unlike traditional SAT, conventional ATPG algorithms op-
erate on data structures at the level of the circuit structure
itself. As a result, all circuit information, including gate
connectivity, is directly available to these algorithms. In-
deed, dynamic detection of inactive circuit regions is per-
formed by the justification-propagation operations, which
are at the core of ATPG algorithms. However, there is no
explicit removal of these inactive regions. In particular, the
overhead of propagating values through inactive regions is
not avoided. In contrast, our proposed technique effectively
removes the inactive regions (clauses) from further consid-
eration. Furthermore, it provides a way to exploit the gate
connectivity information within a traditional SAT formula-
tion based on CNF formulas. Our ideas are also peripher-
ally related to, but go beyond, the notion of dominators in
ATPG. This is clarified further in Section 2.

In terms of detecting redundant clauses in a SAT formula,
a recent effort [13] proposed the use of clause dominance in
the inner loop of the SAT algorithm. Unfortunately, the ef-
fort required for detection of dominating clauses is high, and
it typically negates the gains arising out of clause removal.

2. INACTIVE CLAUSES

As a motivating example, consider the circuit shown in
Figure 1(a). Suppose, the signal a has been set to 0, say,
within the branch-and-bound SAT search. This implies a 0
on signal ¢ at the output of the AND gate. As a result, signal
b becomes unobservable at the output. In addition, any gate
which fans out only to the transitive fanin cone of signal b,
i.e. is dominated by b, also becomes unobservable at the
output. As a result, all clauses associated with such gates
are inactive, in that they can be safely removed without
affecting the SAT solution for the output. Note that the
status of these clauses, i.e. whether or not they are inactive,

a=0 c
Active b

Logi ¢ Cone

Redundant (I nactive)
Logi ¢ Cone

@

a=0 : c

Logic Cone is
Inactive if
a=0 and d=1

Figure 1: Circuit Example

depends on the values taken by variables a and b. In other
words, it is determined dynamically within the SAT search
which assigns/implies values for these variables.

Now, consider a similar example shown in Figure 1(b).
Again, let signal a be set to 0, implying a 0 on signal c,
and making signal b unobservable. Note that signal b does
not statically dominate all gates in its fanin cone, since the
shown signal e fans out to another gate. Consider the case
where signal e is also unobservable, due to signal d being
1, thereby implying a 1 on the output signal f of that OR
gate. In this case again, the clauses associated with all gates
in cone of b are inactive, since these gates fan out to unob-
servable signals only.

Our ideas are peripherally related to dominators in com-
binational ATPG [1]. A gate G is called a structural domi-
nator of a gate H if all paths from H to an output must pass
through G. If gate G is a dominator of all gates and primary
inputs in its transitive fanin, the justification process [1] in
ATPG can stop at G. It must be separately checked that
both 0/1 values can be generated at G for some input combi-
nations. Our ideas go beyond the way dominators are used
in ATPG. First off, the notion of structural dominators in
testing is purely static. On the other hand, our notion of
inactive clauses is a function of dynamic values on variables,
i.e. whether or not a clause is inactive changes dynamically
during the SAT search. Secondly, inactive clauses can be
completely removed from the sub-problem at that point in
the SAT search. In contrast, ATPG algorithms use the dom-
inators only to partition the overall problem into one for the
dominated portion of the circuit, and another for the rest.

Given a gate-level circuit description, a simple backward
traversal starting from circuit outputs can be performed in
order to identify unobservable gates, and all clauses associ-
ated with such gates are guaranteed to be inactive. How-
ever, this requires switching back and forth between a circuit
structure description and a CNF description. Since our goal
is to use inactive clause detection in the inner loop of a SAT
search, it is desirable to reduce this overhead. Our proposed
technique is to perform the analysis on the CNF description
itself. The key is to associate the connectivity information
between signals and gates of the circuit structure description,
with the variables and clauses of the CNF description. This

information is generated statically at the time of generat-
ing the CNF formula from the circuit structure, and is used
dynamically within the SAT search to detect and remove
inactive clauses. The next two subsections describe these
algorithms in detail.

2.1 Structural Information for CNF

Typically, the signals of a circuit are represented as vari-
ables, and the functionality of each gate is expressed as
clauses for generation of a CNF formula from a circuit struc-
ture [12]. To capture the circuit structural connectivity for
a backward traversal, we associate the set of clauses for each
gate as the fanin list for the variable which denotes the out-
put of that gate. Thus, each variable (except a primary in-
put variable) is associated with a fanin list of clauses. Note
also that the other clauses which a variable might appear in,
e.g. clauses for gates in its fanout, are not required for back-
ward traversal. (For a forward traversal, we could similarly
associate a fanout list of clauses with each variable.)

The pseudo-code of our algorithm for generating these
fanin lists along with CNF generation is shown in Figure 2.
Here, we assume the availability of a gate-level circuit de-
scription in terms of simple Boolean gates.

generate_cnf_circuit()

foreach output node n {
generate_cnf _node(n);

}
}

generate_cnf_node(n)
{ // termination condition
if (n is a primary input)
return;
if (n is visited)
return;
mark n is visited;
// generate clauses for the simple gate
g = get_gate_of node(n);
cList = generate_cnf_gate(g);
// add fanin information for CNF wvariable
v = satVarId(n);
foreach clause c in cList {
add clauseId(c) to faninList(v);
5/ recursively handle gate’s inputs
foreach input w of gate g {
generate_cnf _node(w) ;

}
}

Figure 2: Pseudo-code for CNF Generation

We can easily handle complex combinational gates as well.
A typical format for such gates is that of a table, where
each row of the table identifies a tuple of allowable inputs
and output(s), such as that used in VIS [3]. An example
of CNF generation and structural information for such a
table is shown in Figure 3. It also demonstrates how multi-
valued variables such as z,y, and equality constraints such
as (= y),(= z) are handled. Since complex gates usually
result in introduction of many extra CNF variables, we use
a post-processing phase of compacting the CNF description.

Inputs : x,y, z
Output : o
Value Ranges :
X7 y:{07]‘7273}
z, 0:{0,1}

Table:

X 'y z — O
default 0

1 2 1 1
2 3 - =z

Each multi-valued variable is encoded by binary variables.
x : x0 x1 (LSB)

y : y0 y1 (LSB)

CNF Generation for Given Table:

A new variable is introduced for each row of table (v1,v2,v3).
An equality constraint at the inputs also introduces new
variables — one per Boolean variable (v4,v5).

Clauses for introduced variables:

vl = (20’ Azl Ay0 Ayl A z) (c1)
v2 = (VA AVS A 2') (c2)
v3 = (20 Azxl’ Ay0 Ayl) (c3)
vd = (20 = y0) (c4)
v5 = (z1 = yl) (cb)
Clauses for output per row:

vl —> o (c6)
v2 = o (c7)
v3 = (0 = 2) (c8)
Negation of all row variables implies default value of output:
(vl Av2' Av3') = o (c9)

Clauses are created for (c1)-(c9) using standard methods,
without introducing any other variables.

Structural Information for Given Table
CNF Variable Fanin List of Clauses

vl (c1)
v2 (c2)
v3 (c3)
vd (c4)
v5 (c5)
0 (c6), (c7), (c8), (c9)

Figure 3: Example for CNF Generation

2.2 Detecting Inactive Clauses

The pseudo-code for our procedure for detecting inactive
clauses is shown in Figure 4. A recursive backward traversal
is performed over all variables, starting from each variable
denoting a circuit output. For each variable, we loop over
the clauses in its fanin list, each of which is marked “ac-
tive”. If the clause is unsatisfied, then a recursive traversal
is invoked for each of the variables appearing in the clause.
This is because each of these variables, whether assigned or
unassigned, is “observable” in the sense that it can affect
the satisfiability status of the clause. On the other hand,
if the clause is satisfied, then only its assigned variables are
“observable”. Indeed, each unassigned variable of a satisfied
clause is “unobservable” in the sense that it cannot affect its
satisfiability status. Therefore, we do not invoke backward
traversal for such variables. Our marking procedure is safe,
i.e. any clause which is unmarked at the end is guaranteed
to be inactive. (The simple connectivity information we use

mark_active_cnf ()
foreach output node variable v {
// start the recursive marking procedure
mark_cnf_var(v);

// at the end clauses that are not marked are
tnactive

}

mark_cnf_var(v)
{
// termination condition
if (v is visited)
return;
mark v is visited;
// loop over each clause in its fanin list
foreach cId in faninList(v) {
¢ = clause[cId];
// mark the clause as active
mark_active_clause(c);
// handle each variable in the clause
foreach variable u in clause c {
if (satisfied(c) && notAssigned(u))
// variable s unobservable
continue;
else
// recursively mark from variable
mark_cnf_var(u);

Figure 4: Pseudo-code for CNF Marking

is not enough to make an exact determination of all unob-
servable gates. For simple gates, the additional information
required is identification of controlling input values, but this
is hard to generalize for complex combinational gates de-
scribed earlier.)

In terms of complexity, note that the traversal involves
marking all clauses and variables in the worst case. De-
pending on the application, this cost can be either incurred
at every decision level, or amortized over multiple decision
levels within the SAT search. All clauses which are marked
inactive need not be considered for satisfaction or for deci-
sion heuristics in the sub-tree rooted at that decision level.
Note that these clauses may again become active after back-
tracking from this decision level.

3. IMAGE COMPUTATION USING SAT

Historically, symbolic state space traversal [6, 8] has relied
on efficient algorithms based on BDDs [4] for carrying out
an image computation, shown below:

Image(P,T)(y) = 32T (x,i,y) A P(x) (1)

Here, z/y denote present/next state variables, ¢ denotes pri-
mary input variables, T denotes the transition relation, and
P denotes the input state set. BDDs are used to represent
the characteristic function of the transition relation, as well
as the input/image sets. As an example application, the
set of reachable states can be computed by starting from
a set P which denotes the set of initial states of a system,
and using image computation iteratively, until a fixpoint is

reached. The BDD-based approaches work well when it is
possible to represent the sets of states and the transition
relation (as a whole, or in a usefully partitioned form) us-
ing BDDs. Unfortunately, BDD size is very sensitive to the
number of variables, variable ordering, and the nature of the
logic expressions being represented.

Recently, an integration of SAT and BDDs has been pro-
posed for image computation [10], which represents the tran-
sition relation as a CNF formula, and organizes the search
for solutions as a top-level SAT search. BDD-based sub-
problems are invoked on-the-fly, in order to obtain multiple
solutions simultaneously. The next section describes exper-
imental results for reachability analysis based on this image
computation engine.

4. EXPERIMENTAL RESULTS

There has been significant progress made in symbolic reach-
ability analysis in recent years. We compare the SAT-based
image computation with and without the inactive clause re-
moval (ICR) optimization, to state of the art techniques in
VIS [3], a public domain tool. Our prototype implementa-
tion of the SAT-based image computation algorithm uses the
GRASP SAT solver [15] and the CUDD BDD package [21],
and has been integrated within VIS. All reported experi-
ments were run on an UltraSparc machine, with a 296 MHz
processor, and 1 GB memory. Dynamic variable reorder-
ing was enabled throughout. Unless noted otherwise, a time
limit of 10 hours was used, and a “TT” in the results tables
indicates a timeout, while an “SS” indicates a spaceout.

4.1 Reachability Analysis

Results for reachability analysis on the benchmark circuits
are shown in Table 1. The name of the circuit appears in
Column 1, and number of latches in Column 2 (marked #L).
The number of CNF variables and clauses are shown, respec-
tively in Column 3 (marked #V/#C). Column 4 shows the
number of image steps completed, and a “(C)” after the
number of steps indicates that the traversal was complete,
i.e. a fixpoint was reached. Column 5 shows the CPU time
(in seconds) for standard VIS [3], which uses only BDDs for
image computation. The remaining columns report the re-
sults for the SAT-based image computation method, which
is labeled (VIS: SAT+BDDs) in the table. Columns 6 and
7 report the CPU time (in seconds) without and with ICR,
respectively. Column 8 reports the speedup factor as a ratio
of (time without ICR)/(time with ICR). Finally, Columns 9
and 10 report the percentage of clauses that were found
inactive, and the percentage of clauses that were found in-
active and unsatisfied. While the former number indicates
the occurrence of inactive clauses, the latter number is a
more useful figure of merit, since unsatisfied clauses criti-
cally affect SAT search in the sub-tree rooted at a decision
level.

4.2 Discussion

Broadly speaking, the SAT-based image computation method

does well in majority of the circuits when compared with
standard VIS. It should be noted that our current contri-
bution, i.e. the use of ICR, improves this method even fur-
ther. In particular, the method with ICR performs better in
9 of the 10 benchmarks circuits compared to the SAT-based
method without this optimization (Column 8). This clearly
demonstrates that detecting inactive clauses and their re-

Circuit | #L | #V/#C Image VIS SAT-based Method (VIS: SAT+BDDs)
Name Steps (Standard) || No ICR With ICR
Time(s) || Time(s) | Time(s) | Speedup | % Inactive | % Inactive and
Ratio Clauses | Unsat Clauses
s1269 37 456/1244 10(C) 3269 2688 2164 1.24 60.9 14.9
s1512 57 | 496/1301 1024(C) 2647 5753 5768 1.00 18.7 0.9
s3271 116 | 1183/3219 || 17(C) 17933 14793 14036 1.05 48.7 28.6
$3330 132 | 846/2114 9(C) 20029 3967 2029 1.96 41.2 15.7
prolog 136 | 1027/2607 || 4 25003 765 674
9(C) TT 11175 4697 2.38 36.8 12.8
sb378 164 | 1012/2819 || 8 57986 5957 6016
45(C) SS > 30h 60500 90337 0.67 28.3 5.3
s1423 74 | 574/1464 11 8791 3010 3318
12 TT 9577 5423 1.77
13 TT TT 13151 32.7 4.7
$3384 183 | 1187/2853 || 4 24875 787 557
5 TT 2882 1095 2.63
6 TT TT 7801 24.0 0
s9234.1 211 | 2316/6548 || 7 2360 8030 4569 1.76
9 11577 TT 22777 31.1 9.3
s13207.1 | 638 | 3464/8773 || 8 2285 28025 5061 5.54
10 4906 TT 8340 29.9 5.6
14 28600 TT TT

Table 1: Reachability Results for Benchmark Circuits

moval is beneficial to the underlying search. Not surpris-
ingly, the benefit seems to be greater when more inactive
clauses are found, as indicated by a higher number in Col-
umn 9. Though not shown in the table, the overhead of
applying ICR is minimal, constituting less than 10 seconds
of CPU time in the largest experiment.

In terms of details, the SAT-based methods performs fairly
well for the first 4 ”easy” circuits where all methods com-
plete traversal. In particular, for s3330, the method with
ICR outperforms standard VIS by an order of magnitude.
Recently, other improvements over standard VIS have also
been reported for these circuits [16, 17]. However, since
these implementations are not publicly available, we were
unable to conduct comparison experiments within our envi-
ronment.

The real benefit of SAT-based image computation is demon-
strated by the next two circuits — prolog, and s5378. The
SAT-based method is successful in performing a complete
traversal, both with and without ICR, whereas VIS is not.
For these circuits, and the next two circuits — s1423, and
$3384 — the SAT method is consistently faster, sometimes by
two orders of magnitude, and completes more steps through
use of ICR. Finally, the last two circuits — 9234, and s13207
— have a bigger CNF representation than the other circuits,
making the SAT-based method less effective. For these two
circuits, the use of ICR improves the SAT-based method by
greater than factors of 2, and 5, respectively. This has the
benefit of closing the performance gap between the SAT-
based method and standard VIS.

In the SAT-based image computation application, ICR
affects both the decision making in SAT, as well as size of the
BDD sub-problems which is directly related to the number
of unsatisfied clauses. The result in Column 10 for circuit
$3384 is very interesting for this reason. Since there are
no inactive unsatisfied clauses, the size of the BDD sub-

problems does not change. However, it is due to the different
decision making in SAT (leading perhaps to different BDD
sub-problems) that we get a speedup factor of 2.63. To
demonstrate this effect of ICR, we present details of the
experimental results for the prolog circuit in Table 2, where
labels of the Columns are similar to Table 1. Note that use
of ICR results in less number of BDD leaves (sub-problems)
in most image computation steps of the complete traversal.
Also, the fraction of inactive clauses and inactive unsatisfied
clauses remains consistently high in all steps. More tellingly,
the overall peak BDD nodes and the maximum live BDD
nodes (as reported by the CUDD package) are considerably
lower with the use of ICR.

5. CONCLUSIONS

We have proposed an optimization technique which incor-
porates circuit-specific knowledge in order to improve per-
formance of SAT algorithms on problems arising in VLSI
CAD. This optimization is based on detection and removal
of inactive clauses in the SAT formula, thereby reducing
the size of the sub-problems. We also provide efficient al-
gorithms for implementing this optimization within a CNF
framework. We highlighted the impact of this optimization
on a recently proposed application — SAT-based image com-
putation for reachability analysis. We presented practical
results for a number of benchmark circuits, which show a
consistent performance improvement due to our optimiza-
tion. We believe that more domain-specific optimizations of
this nature are possible for SAT.

6. REFERENCES

[1] M. Abramovici, M. A. Breuer, and A. D. Friedman.
Digital Systems Testing and Testable Design.
Electrical Engineering, Communications and Signal

[7]

(8]

[10]

prolog circuit No ICR With ICR
Step | Reached States Time # BDD Time | # BDD | % Inactive | % Inactive and
(s) Leaves (s) Leaves Clauses | Unsat Clauses
1 3.77487e+07 18.1 2 17.2 2 31.8 14.5
2 4.93249e+09 7.4 3 7.1 3 32.9 14.3
3 5.95738e+14 35.1 11 55.2 12 38.8 16.0
4 1.29149e+16 705.2 24 595.0 22 36.9 12.4
5 1.7276e+17 1872.9 24 || 2671.3 22 36.9 12.4
6 5.99378e+17 2814.7 26 645.8 22 36.9 12.4
7 7.22992e+17 2108.5 26 380.2 22 36.9 12.4
8 7.2778e+17 3485.1 40 293.6 22 36.9 124
9 7.2778e+17 128.1 23 32.0 22 36.9 12.4
Total 7.2778e+17 || 11175.0 179 || 4697.5 149 36.8 12.8
Peak BDDs= 8.7TM Peak BDDs= 2.7TM
Live BDDs= 2.7M Live BDDs= 0.9M

Table 2: Details of Results for prolog circuit

Processing. Computer Science Press, New York, New
York, 1990.

A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu.
Symbolic model checking without BDDs. In Tools and
Algorithms for the Analysis and Construction of
Systems (TACAS), volume 1579 of Lecture Notes in
Computer Science, 1999.

R. K. Brayton et al. VIS: A system for verification
and synthesis. In R. Alur and T. Henzinger, editors,
Proceedings of the Internation Conference on
Computer-Aided Verification, volume 1102 of Lecture
Notes in Computer Science, pages 428-432, June 1996.
R. E. Bryant. Graph-based algorithms for Boolean
function manipulation. IEEE Transactions on
Computers, C-35(8):677-691, Aug. 1986.

J. Burch and V. Singhal. Tight integration of
combinational verification methods. In Proceedings of
the International Conference on Computer-Aided
Design, pages 570-576, 1998.

J. R. Burch, E. M. Clarke, D. E. Long, K. L.
McMillan, and D. L. Dill. Symbolic model checking for
sequential circuit verification. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and
Systems, 13(4):401-424, Apr. 1994.

S. T. Chakradhar, V. D. Agrawal, and S. G.
Rothweiler. A transitive closure algorithm for test
generation. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems,
12(1):1015-1028, July 1993.

O. Coudert, J. C. Madre, and C. Berthet. Verifying
temporal properties of sequential machines without
building their state diagrams. In Proceedings of the
Internation Conference on Computer-Aided
Verification, volume 3 of DIMACS Series in Discrete
Mathematics and Theoretical Computer Science, 1991.
A. Gupta and P. Ashar. Integrating a Boolean
satisfiability checker and BDDs for combinational
verification. In Proceedings of the VLSI Design
Conference, Jan. 1998.

A. Gupta, Z. Yang, A. Gupta, and P. Ashar.
Sat-based image computation with application in
reachability analysis. In Proceedings of the Conference
on Formal Methods in Computer-Aided Design, 2000.

[11]

[12]

[13]

[14]

[19]

[20]

W. Kunz and D. Pradhan. Recursive learning: A new
implication technique for efficient solutions to CAD
problems — test, verification and optimization. IEEE
Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 13(9):1143-1158, Sep. 1994.

T. Larrabee. Test pattern generation using Boolean
satisfiability. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 11(1):4-15,
Jan. 1992.

J. P. Marques-Silva and A. L. Oliveira. Improving
satisfiability algorithms with dominance and
partitioning. In IEEE/ACM International Workshop
on Logic Synthesis, May 1997.

J. P. Marques-Silva and K. A. Sakallah. Grasp: A new
search algorithm for satisfiability. In Proceedings of the
International Conference on Computer-Aided Design,
pages 220-227, Nov. 1996.

J. P. Marquez-Silva. Grasp package.
http://algos.inesc.pt/~ jpms/software.html.

I.-H. Moon, G. Hachtel, and F. Somenzi. Border-block
triangular form and conjunction schedule in image
computation. In Proceedings of the Conference on
Formal Methods in Computer-Aided Design, 2000.
I.-H. Moon, J. Kukula, K. Ravi, and F. Somenzi. To
split or to conjoin: The question in image
computation. In Proceedings of the Design Automation
Conference, pages 23—-28, June 2000.

M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and
S. Malik. Engineering a (super?) efficient SAT solver.
In Proceedings of the Design Automation Conference,
2001.

M. Sheeran and G. Stalmark. A tutorial on Stalmark’s
method of propositional proof. Formal Methods in
System Design, 16(1), 2000.

O. Shtrichman. Tuning SAT checkers for bounded
model checking. In Proceedings of the Internation
Conference on Computer-Aided Verification, 2000.

F. Somenzi et al. CUDD: University of Colorado
Decision Diagram Package.

http://vlsi.colorado.edu/~ fabio/CUDD/.

H. Zhang. SATO: an efficient propositional prover. In
International Conference on Automated Deduction,
number 1249 in LNAI, pages 272-275, 1997.

	Main
	DAC01
	Front Matter
	Table of Contents
	Session Index
	Author Index

