Speeding Up Control-Dominated Applications through
Microarchitectural Customizations in Embedded Processors .

Peter Petrov and Alex Orailoglu

Computer Science & Engineering Department
University of California, San Diego
(ppetrov,alex)@cs.ucsd.edu

ABSTRACT of flexibility and high volumes would be natural candidates for fur-

We present a methodology for microarchitectural customization 6’Fef utilization, had they been guaranteed not to impose performance

embedded processors by exploiting application information, thus éﬂnd power impediments. We propose in this paper a research focus

taining the twin benefits of processor standardization and applicatio imed at defining a new class of embedded processor architectures,

specific customization. Such powerful techniques enable increas@d-coreable yet simultaneously customizable per application, thus
fnabling larger parts of the codesign to be placed in software with

application fragments to be placed on the processor, with no sac ; T
o adverse performance or power impact. In this direction and as a

fice in system requirements, thus reducing the custom hardware > lori h ibility of h h h
the concomitant area requirements in SOCs. We illustrate these iddiat SteP In exploring the possibility of such a scheme, we target the
ranch resolution unit, a factor of high importance in evolving control-

through the branch resolution problem, known to impose severe p . d embedded licati
formance degradation on control-dominated embedded applicatio _mlngte embedded applications. o
_In this paper, we show that processor customization is a power-

A low-cost late customizable hardware that uses application inform L t0ol for b . ; d reduci . f
tion to fold out a set of frequently executed branches is describe tool for boosting performance and reducing power consumption o

Experimental results show that for a representative set of control domtoceSSor COres. A_customlzeql embedded processor m|cro_-e_lrch|tecture
inated applications a reduction in the range of 7%-22% in processﬁf’m Ut'l'ze. application properties a}nd make mformepl deC|S|on§ dqr-
cycles can be achieved, thus extending the scope of low-cost embdl €xecution. We propose a technique that communicates application

ded processors in complex co-designs for control intensive systemSPeCific properties to the micro-architecture of the processor core. The
application-specific properties are identified during compile time and

provided to the hardware, so that they can be exploited efficiently dur-
1. INTRODUCTION ing program execution.

Embedded processors constitute currently an attractive solution forThe paper focuses on the ramification of the aforementioned ideas
various modern electronic applications. Typically such designs agh the branch resolution logic in order to alleviate the detrimental ef-
implemented as a part of a system-on-a-chip (SOC) IC, a trend accfict of conditional branches for pipelined architectures. Especially
erated by ever increasing transistor density and die sizes. The inhergjitcontrol intensive applications which are part of a typical reactive
drawbacks of processor-based designs, typically stemming from tBgstem, high-cost general-purpose branch predictors behave poorly,
embedded redundancy of the processor computational model, imp@ggulting in low performance and significant amount of power wasted
significant challenges though in achieving overall system requiremenisexecuting instructions from the mispredicted path. Of course, uti-
particularly performance and power. lizing no branch prediction at all in these circumstances has even direr

Processor performance and cost considerations play a significaighsequences, resulting in worse performance and power degradation,
role in the hardware/software co-design of systems [1]. A fundahus eventually pushing the control dominated parts of the application
mental issue is the partitioning problem of system functionality beoff the processor and into custom hardware.
tween hardware and software. While shifting as much as possible|nstead, utilization of knowledge about branch predicates, branch
of the functionality onto software reduces system cost and time-t@rdresses, and branch target instructions can be exploited efficiently
market, performance and power consumption suffers, thus countgy the customizable branch resolving logic. A significant number of
balancing the aforementioned advantages of general-purpose proggginches can thus Helded outduring the fetch stage as advance
sors; the end result typically is unnecessarily large custom hardwegtgowledge of the branch direction ensures branch replacement with
inthe SOC. Yet processor components with all their attendant benefgigrtainty. Atthe same time a smaller, cost-effective variant of a general-

urpose predictor can be used for the remaining branches. Three ma-
S1[€)r benefits accrue from this technique.

*This work is supported by NSF Grant 0082325; the work of the fir
author is additionally supported by an IBM Graduate Fellowship.

¢ A significant improvement in performance is achieved. This is
especially true for control intensive applications that typically

Permission to make digital or hard copies of all or part of this work for exhibit low predlctabll_lty of br.anches. . o
personal or classroom use is granted without fee provided that copies are ~ ® The total number of instructions passing through the pipeline

not made or distributed for profit or commercial advantage and that copies is reduced, as a branch instruction folded in the fetch stage pro-

bear this notice and the full citation on the first page. To copy otherwise, to ceeds no further in the pipeline and no mispredicted instructions

republish, to post on servers or to redistribute to lists, requires prior specific are executed. Consequently, power consumption is decreased.

permission and/or a fee. L . .

DAC 2001,June 18-22, 2001, Las Vegas, Nevada, USA. e Comparable branch prediction accuracies can be achieved at

Copyright 2001 ACM 1-58113-297-2/01/0006$5.00. significantly lower area costs.

The fundamental advantage of processor-centric implementationsrrelations captured by them are comprised fundamentally of amal-
is the flexibility to alter system functionality. It is paramount conse-gams of data relationships between various predicate defining assign-
guently to preserve this processor characteristic even post customin@ents and conditional branches. For instance, the code in Figure 1
tion. In order to utilize customization benefits not only for a singleexhibits correlation for B4. Although typical branch predictors will
application, but rather for a class of applications, it is highly desirableapture this B4 correlation as a statistical inference, one can note that
to be able to re-customize the processor between application runs, aviat is being captured is a straightforward data inference from the
in any case certainly in a post-manufacturing fashion. We propose poedicate defining branch, B1, to the branch being predicted, B4. At
accomplish these goals through microarchitectural reprogrammabilithie same time, as no data inference exists (if we assume all variables
utilizing application and architecture characteristics. While traditionadre unrelated), the same example will exhibit no branch prediction cor-
methods of reconfigurability, such as FPGAs, fundamentally reliamelation for branch B5. Of course, general-purpose machines possess
on logic level customization, can deliver flexibility, they frequently doneither the hardware architecture, nor have an intimate knowledge of
so only at the expense of high area and performance cost. the application to enable them to exploit such correlations on anything

other than a statistical basis.
2. RELATED WORK While there does exist a correlation between B4 and B1, which
. can be captured by current statistical branch prediction methods, al-

A great deal of research work has been recently completed in dlgéit inefficiently as the correlation will be clouded by the intervenin
signing branch predictors for alleviating the detrimental effect of cong Y . Y y g

ranches, an interesting further observation is the effect of the resolu-

d'rtcl)(;r;ilegrﬁgghbe;honrgf'iﬁ)iﬁl'ngg daggrr:teigﬁ?nsé aﬁ;?tgsptreeg;ﬁ'ogegﬁbn of B2 and of the embedded B3 branch. It will be observed that the
P P 9 P Y q 8nsequent imbalance in the control flow will deteriorate the statisti-

statically predict the branch instructions [2]. Dynamic branch predic-_ .) . ; o
tors use run time information to improve their predictions [3]. OneCal inference of general-purpose predictors by changing the position

. . ! . f the relevant branches inside the global branch history. For exam-
of the fundamental ideas is to exploit correlation between branch ouq e relevant branches inside the global branch history. For exa

comes [4]. Recently, an approach for conditional branch folding f ; . - -

N X in the global branch history, thus changing the relative position of the
eml_)edded appllca_tlons has been proposed [5]. It is based on the I ?6rmation-carrying branch B1 vis-a-vis the predicted branch B4.
tection and resolution of a subset of short loop branches. o

In the customization arena, various approaches have been resear ?8 é1e further aspect that plays havoc with the statistical inference

- . . éss of branch predictors is a possible reliance on input data. This,
but none that target the microarchitecture, the primary focus of ths . . . e
IN its most salient form, impacts the prediction of the branch whose

ESEEQd ".]”[]2] aa S:L?Sﬁ);)io:oc;:zt&rglégs? ?,;/L;\(/;\./e ?)rfctﬂge;t;:ﬁ;;gf' redicate relies directly or indirectly on the input data. A more in-
: pp P gnsp rigate case will be the impact of this input dependence and therefore

c_hanglng t_he nu_mber of _functlonal units, clust_ersz and the number ap rd-to-predict branch on the prediction of subsequent branches in the
size of reg|§ter.flles. A qQ‘fe.rent set of customization approaches COase of distance variance due to nested branches between predicting
siders application-specific instruction set extensions [7]. The efforgsnd predictor branches

here include the design of specialized instruction sets for multimedia

0;:r)le, if branch B2 in Figure 1 is taken, only then branch B3 will appear

and communications applications. Ih r2, 0(r4)
subu r3, r2, rll
3. MOTIVATION addu 0, 1, 2

sra r2, r3, 31
A typical general-purpose branch predictor contains large tablesdi r13,r2, 0x0008
with various branch patterns corresponding to different branches ahdez r3, Label
global/local branch execution histories. A large branch target buffer is
needed to cache the branch target address to handle the case of a taken
prediction. Reducing the sizes of these tables in order to scale downA code fragmertt illustrating the first case is given in Figure 2.
the predictor typically results in significant prediction accuracy degrdn this case the branch outcome depends directly on the value pro-
dation. Yet such large hardware structures lead to excessive powkrced by the load instruction. The connection betweersthwiin-
consumption which is rarely acceptable in the domain of embeddexdruction, defining the argument of the branch condition r3, and the
applications. Furthermore, even these complex general-purpose poeanch, remains unnoticed by a general-purpose predictor. The result
dictors fail to deliver high prediction accuracy in the case of controis significant performance degradation due to the high misprediction
intensive applications. rate and, even more importantly for a large number of embedded sys-
Current branch predictors are presumed to work on the basis of stams, wasting power in executing instructions from the wrong path.
tistical representations and inferences. Nevertheless, the underlyiagnore intricate extension of the same problem consists of a hard-to-
predict, because of input data dependence, branch, creating difficul-

Figure 2: Branch depending directly on input data

if (c1l) then // Branch B1
c4 = 1,

end“i.f;

if (c2) then // Branch B2
if (c3) then // Branch B3
end"i.f;

end if;

if (c4!=0) then // Branch B4

end”i.f;
if (c5) then // Branch B5

Figure 1: Direct data correlation

ties for subsequent branches, especially if the outcome of the hard-to-
predict branch defines a predicate of another branch, and the number
of branches between the correlated branches varies depending on in-
termediate branch resolution.

By targeting in an application-specific manner branches with prop-
erties such as the ones described above, significant performance im-
provements can be achieved. Utilizing the statically available appli-
cation information can lead to a low-cost, efficient solution for early
branch resolution and consequently to branch folding. We examine
the principles of the application-specific branch folding methodology
in the next section.

Lrhis assembly code is part of the ADPCM Encode benchmark [8] and was produced by
gcc for the SimpleScalar toolset [9].

4., BRANCH RESOLUTION ditions associated with this register are updated. In a typical RISC

An interesting observation that accrues from the examples in seRichitecture this set of conditions corresponds to a few zero compar-
tion 3 is that in the cases of direct data inference the prediction stégPns- Performing the branch condition evaluation before the branch
can be completely superceded and a complete branch resolution wiiHetched eliminates the need for the branch instruction to read the
consequent branch folding affected. The branch instruction will be réondition register from the register file and perform the comparison.
placed in the pipeline by its target instruction, thus completely being The second phase, shown in Figure 4, corresponds to the actual
eliminated from the instruction stream. To achieve such substantigTanCh folding mechanism. It is performed during the fetch stage of
benefits, not only does the direct data inference need to exist, but fiie branch instruction.
thermore the value of the predicate defining variable needs to be re-
solved prior to fetching the branch in question. Of course, these befiSBR:

. ; . L ! _ if (Fetch(PC)==branch_type)
efits can be attained in an embedded application but not in a general if (PC in {BA}) then

purpose one, unless one is willing to change the instruction set archi- if (PredicateStorage(DI)==taken)

tecture in a general-purpose processor to accommodate the proposed PC=BranchTargetAddress+4;

approach. instr=BranchTargetInstruction;
Typically, branch folding schemes for general-purpose processors else

are applied to unconditional branches [10]. Such branch folding schemes _PCZE)CJrS?)

utilize a table composed of replacement instructions and correspond- end";:"‘BranChFa"thro“gh'nStr’

ing destination addresses. The branch folding scheme that we propose ¢pg if: '

needs similarly to capture the instruction and the destination address, end if;

both statically obtainable from the application code. Nonetheless, in

the case of conditional branches, even when a direct data inference Figure 4: Application-specific branch resolution
exists, the predicate sense, unlike an unconditional branch which is

always taken, is not immutable, although known dynamicallyri- . If the fetched instruction is a branch and if the PC of this branch

ori. Each branch folding entry needs to be extended to include preq"n'atches Branch Addres¢BA) from a set of branches, a series of ac-

cate sense |nf0rmgt|on, consequently. Handling the fgll-through CaSns is undertakenPredicateStorage(DI}ignifies the branch predi-
necessitates additionally capture of the subsequent instruction in the,

fall-through path. No additional destination address needs to be stor%%te value by using Ialrectlor_1 Ind_ex (Dhto |n_dex astorage table W'th_ .
o . . the pre-computed branch directions associated to the branch condition
though, as this is a direct function of the current PC.

For embedded processors, which due to more stringent power ccrge\-?;ﬁg:'i o-l;]hls storage is updated by the first phaset-éiy Condition

sumption limitations lack thg capabl!lty fpr multiple instruction is- If the branch is taken, then the PC is updated with@hanch Tar-
sue and out-of-order execution, the time interval between the bran[%h

condition register definition and the branch fetch can be considerab gt Addrt_a_s:{BTA) incremented by the size of one instruction word,
us positioning the PC to the instruction subsequent to the branch

Ther_efore, for a large num_t_)er 9f branches, the register value that gFget. The instruction word, currently containing the branch itself, is
termines the branch condition is computed well before the branch IS

. o . overwritten with theBranch Target InstructioBTI). In the case of a
fetched. The\ppllcatlon-SpeC|f!c Branch Rest')lutl'()hSBR) method- ot takenbranch, the PC is positioned to the instruction subsequent to
ology we propose exploits this separation in time between branq

fetch and branch condition register definition to compute the bran efall-through, while the branch is replaced with the op-code of the

-) S ranch Fall-through InstructiofBFI).
condition early, thus resolving the branch direction before the branc . . .
is fetched. Yet, in order to be able to fold such a branch, additional The BA, DI, BTA, BT, and BF constitute a set of statically avail-

information about the branch is needed as well. This informatioﬁ?l.ble !nformation. This information is obtained statically during com-

consisting of the previously described branch tar.get address and lle time and provided to th_e embeddeql processor core during pro-

target and fall-through instructions, is “pre-decoded” statically durin fam code upload. The application-specific, customizable branch res-
' lution logic exploits it by performingarly condition resolutionvith

compile time and provided to the branch resolution logic. When th ' i
branch is subsequently fetched, it is identified and replaced with i?ubsequem)ranch folding The content of these tables can be dynam

target instruction. The feasibility of early branch condition calculal(§ally re-defined at system level at run-time in order to accommodate
arg _— y y - customization for different program modules, if the application con-
tion and branch folding depends on the interval available before t ins several important parts
condition register is computed and the branch fetched. While ASB P parts.

. . . X .0 An essential issue to be addressed is the handling of branches for
is not inherently related to compiler technology, certain optimization

. I . hich the condition register definition instructions lie on different
techniques can boost significantly the effectiveness of the approach. S T
Instruction scheduling [11] and software pipelining [12] can both bcontrol paths, thus resulting in varying time intervals between branch

e - 9 ottware pip g $etch and condition evaluation. This variance can arise due to differ-
efficiently utilized to extend the time interval between branch condi- . ! . .
: e ences in the control paths through which the branch is reached. If it
tion definition and branch fetch.

Fundamentally, the ASBR methodology can be divided into thurther happens that some of the paths guarantee that the predicate

X g 0 WQalue will be calculated prior to branch fetch while other paths do not,
Egﬁsé\félzgﬁggﬁ phase, shown in Figure 3, perform# iy Condi- a validity issue ensues if such a branch is to be folded. Resolution of

branches with such condition dependency necessitates a mechanism

Early_Condition_Evaluation: .thf.it inc.jicalltes the gurrent vaIiQity of cleac.h.predicate valge. The value
if (committing Ri) is invalid, if the register associated with it is currently being produced
Update(Conditions(Ri)); by an instruction still in execution. The required tracking of regis-

ter usage can be accomplished through a counter associated with each
register. The counter is incremented whenever an instruction that pro-
duces register R is decoded; when register R is committed, the counter

In this step, the branch direction is computed prior to fetching thés decremented. A zero value on the counter guarantees the validity of
branch. Every time a register is being committed, all possible corthe pre-computed predicates associated to this register.

Figure 3: Early condition evaluation

5. OPTIMIZATIONS FOR ASBR branch-foldable under either of these pipeline forwarding path aug-

The proposed application-specific branch folding techniques requifé@ntations, as they resultihresholdvalues of 3 and 2, respectively;
knowledge of the predicate-defining register prior to branch fetch. [pince three independent instructions exist between the branch and the
the case of pipelined architectures the distance between the prefstruction defining the predicate register, an unaugmented five stage
cate defining register statement and the branch needs to exceed RB&IC pipeline will not be able to fold the branch shown.
pipeline depth. In this section we show how the range of applicabil-

ity of the proposed ASBR method can be significantly enlarged b§. BRANCH SELECTION FOR ASBR

effectivedistance, and also by microarchitectural optimizations for pranches that are feasible therein to resolve. This selectivity is a cru-
minimizing the effectivethreshold imposed by the pipeline. cial premise for the cost-effectiveness of the application-specific cus-
. tomization, an issue to which we return in the subsequent section.

5.1 Compller support All branches that satisfy the distance property discussed are can-

The compiler capability to schedule the instruction that defines thgidates for folding, while branches that fail cannot partake, but may
registers involved in computing the branch condition is crucial. Fortusontinue instead to use a general-purpose branch predictor. Yet a cer-
nately, most modern compilers support instruction scheduling for daain amount of selectivity in choosing the branches to be folded may
dependent instructions in order to avoid pipeline stalls. In this casgiill be appropriate as the cost of folding a branch exceeds that of pre-
the branch must be considered as a data dependent instruction ondfging it and as foldable branches may show highly variant expected
condition register producing instruction. benefits. Getting the utmost advantage from the proposed technique

Software pipelining [12], a technique for increasing the instructionrequires a prioritization of the foldable branches based on their ex-
level parallelism by overlapping independent parts of loop iterationgected benefit. Frequently executed, hard-to-predict branches are es-
effectively inserts branch independent instructions between the brangcially propitious to resolve by using ASBR. There are three fun-
and the last instruction that defines the branch condition. A typic@lamental advantages for utilizing ASBR for this particular subset of
program fragment is shown in the left part of Figure 5, while the rightonditional branches.
part of the figure presents the same code after aggressive software

pipelining for scheduling the branch condition evaluation. e Resolving the frequently executed, hard-to-predict branches and
folding them out with their target instructions results in propor-
o __ prologue code; tionately greater performance and power improvements. This is
for(i=1;i++i<1000) for(i=2;i++;<999 a direct consequence of Amdahl's law.
load FO from memory; Rt=f(FO0);
R=f(F0); if (R) then e Applying the ASBR methodology to a small subset of branches
if (R) then R=Rt; results in less costly and power consuming implementation. As
described in Section 4, certain branch information needs to be
else else . . h S .
R=Rt: provided to the microarchitecture, which implies a linear growth
end if in hardware complexity per branch.
end for end if L .
load FO from memory; ¢ Eliminating the hard-to-predict branches decreases the destruc-
end for; tive aliasing into the prediction table greatly; hence better pre-
epilogue code; diction can be achieved with a significantly less expensive gen-

. . eral branch predictor.
Figure 5: Software pipelining for ASBR

Not only does the proposed technique improve branch resolution
5.2 Processor architecture through folding a number of branches, but furthermore the removal

Pipeline depth determines the number of time slots required bgf hard-to-predict branches from the prediction table can actually im-

tween the branch and the last instruction that defines the branch cdiov the accuracy of t_he complementary, origin_al branch pr_e_diction
dition register. Therefore, thearesholdfor a given architecture is method. The overall twin boost to branch resolution can significantly

determined as the number of states between instruction fetch and réea?ﬁge :]i;ehnug;flz) erggnec)((eegzgolgvsyc(l):;sefrocr)reeml;fr?:t?vdef pf;ﬁ?fﬂzgg'
ister commit stages. One can notice though that this threshold ¢ 9 igh p P - y ;
o) drastically reduce area and still keep the original branch predic-

be reduced by updating the predicate value right after the executi D rates by using a much more lightweiaht branch predictor instead
stage immediately upon actual production of the value, instead of dyt- Y 9 9 9 P i ’
oth the performance and power improvements or the alternative re-

Ing the register commit stage. Direct paths from the ALU units to th‘auctions in area are verified through experimental data in Section 8
early predicate evaluation logic are needed to accomplish this. These 9 P)

paths resemble the traditional forwarding paths in the pipeline, except

in that they transfer a recently computed value to the early predicate IMPLEMENTATION

evaluation logic instead of to a processor functional unit. In order to be able to implement the application-specific branch
Figure 2 has already illustrated an example code that demonstratesolution technique, the branch information obtained through static

a situation suitable for early branch resolution. If we assume that ttamalysis of the application code needs to be encoded into the proces-

execution stage is th&'¢ pipeline stage, the forwarding path to thesor and utilized. The branch characteristics utilized in ASBR as de-

early predicate resolution logic makes the branch predicate availalderibed in Section 4 are BA (the branch address), DI (direction index),

at the end of the‘" stage, thus determining thleresholdvalue to be BTA (branch target address), BTI (branch target instruction), and BFI

3. An even more aggressive approach can be utilized that compuigsanch fall-through instruction). The corresponding values need to

the predicate value at the end of the execution stage of the pipelir® captured in the ASBR logic.

in the case that the execution stage is not time critical and the clockIn order to preserve processor flexibility and in order to continue

period not adversely affected. #hresholdvalue of 2 could then be making the proposed technique applicable even to hard core proces-

attained. For example, the branch in the code shown in Figure 2 $sr designs, we propose a scheme targeting a microarchitecturally

[ADPCM Encode I ADPCM Decode I G.721 Encode I G.721 Decode |
| Cycles T CPIJ Acc || Cycles [CPI [Acc || Cycles [CPI [Acc || Cycles [CPI [Acc |
not taken|| 12,232,809] 1.85 | 32% || 10,818,933] 1.96 | 31% || 80,695,528] 1.73 | 53% [| 80,418,120] 1.83 | 53%
bimodal [| 9,354,462| 1.41 | 69% || 7,909,813] 1.44 [71% || 62,130,909| 1.33 | 91% || 62,820,828] 1.43 | 91%
gshare 8,454,179| 1.28 | 82% 7,267,628| 1.32 | 81% || 62,317,531| 1.33 | 91% || 63,128,743| 1.44 | 90%

Figure 6: Branch predictability of the benchmarks

[I br0 | brl | br2] br3] brd] bi5] br6[br7[br8] bro[bri0] bril] bri2[bri3] bri4[bri5 |
exec# |[200,000 | 200,000 | 200,000 | 25,000 | 23,514 | 25,000 | 25,000 | 25,000 | 25,000 | 24,995 | 150,000| 150,000 1,761,060| 23,514 | 24,997 | 25,000
not taken 0.99 0.74 0.51 1.00 0.51 1.00 1.00 0.00 0.99 0.52 0.00 0.94 0.89 0.51 0.49 1.00
bimodal 0.99 0.70 0.51 1.00 0.50 1.00 1.00 1.00 0.99 0.51 1.00 0.96 0.88 0.50 0.50 1.00
gshare 0.99 0.81 0.52 0.99 0.61 0.96 0.95 0.97 0.99 0.91 0.99 0.96 0.86 0.50 0.93 0.99

Figure 7: Execution statistics for the set of branches selected for G.721

reprogrammable implementation. This scheme must allow easy t bne blez cnt
customization of the processor after application modification. Th . - RO
branch information must be redefined and exploited by the proce — R1
sor in the same way as the program code. Conceptually, this impli R2
enlargement of the communication link between the compiler and tt Updaefrom Update from
. . . register values R3 instruction decode
embedded processor. Theanch informationis loaded into the pro- —

cessor core in a similar way as the program code.
A Branch Identification Table (BIT) is utilized to store theanch
information Figure 8: A four entry BDT example

The fields in each BIT entry store the following information: effective way to virtually increase the size of BIT is to add additional

opies of BITs and switch between them during the loop transitions.
. ; . o any moment only one BIT copy will be active, thus not exceeding
Tthls brafr;ﬁh address is used for branch identification in the fem{ﬂe power consumption or performance limitations. Activating a BIT
) S age otthe p_rocessor.) copy can be performed by writing a special value to a control register
instl, inst2 These fields correspond to BTl and BFI and contain thqst before entering the loop.
target and fall through instructions respectively. They are used

PC The PC field stores the program counter (address) of the bran

in replacing the folded branch. 8. EXPERIMENTAL RESULTS
BA The program counter (address) of the target instruction. The pro-|n our experimental framework we use architectural level simula-
cessor program counter is updated from this field. tions, thus measuring precisely the number of processor cycles needed

DI A direction index that points to a structure with branch conditiongo execute the benchmark. We use the most detailed simulator avail-
associated with each register. This field incorporates the infoable in the SimpleScalar toolset [9], one capable of simulating a pipelined
mation about the branch condition. architecture. The architecture supports a MIPS-like instruction set

with conditional branches supporting all possible zero comparisons.

The BIT is looked up with the program counter during the fetchThe fetch stage of the simulator is modified, so as to implement the
stage. Upon a match of the PC field and the processor program counggproach described in this paper. A manual scheduling in the applica-
the direction indexfield is used in determining the branch direction.tion code is performed for the branches that we identify as candidates

Since this look-up is performed in the fetch stage prior to instructiofor folding.

decoding, the existence of the PC field in BIT is the factor that de- A pipelined architecture with a 5 stage pipeline, in-order single is-

termines that the instruction is a branch and that all needed branshe, is assumed for simulation. The memory hierarchy subsystem uti-

information is available in the BIT entry. lizes 8KB instruction cache, and 8KB data cache. This type of archi-
The number of entries in the BIT determines the number of branchéscture corresponds closely to current embedded processor cores.
that can be handled by the approach at any time instance. Since only~our applications from the MediaBench collection of benchmarks
the most frequently executed branches within the important applicg8] have been examined. The first two applications constitute the AD-
tion loops are targeted, a small number of BIT entries would suffice PCM (Adaptive Differential Pulse Code Modulation) encoder and de-
The direction index in the BIT entry points to an entry in the Brancltoder. The other two benchmarks used in our study are the G.721

Direction Table (BDT). The BDT is composed of an entry per pro{speech coding standard) encoder and decoder. We study the branch

cessor register; each entry contains a number of direction bits for tbehavior and apply the proposed approach of application-specific, early

architecture-supported branch conditions and a validity counter as diganch resolution. As a comparison base, figure 6 reports execution
cussed in Section 4. Figure 8 depicts a BDT for an architecture thegsults for all four benchmarks obtained by using well-known general-
supports 4 general-purpose registers and branch instruction conditignspose branch predictors; total number of cycles, CPI, and accuracy
of not equal to zerpandless-than-or-equal to zerdvery time areg- measurements are given for each predictor. The general-purpose pre-
ister value is produced from a functional unit, the direction (conditionjlictors examined for the baseline architecture are listed below:

bits of the register entry in the BDT are updated. not taken- Always predicts the branches as not taken. This is the

If the application contains more than one loop and the BIT cannatefault in many embedded processors that lack branch predictors;
cover all the branches from these loops, a mechanism is needed to addimodal[3]- a predictor that uses 2048 2-bit saturating counters and
new branch definitions to the BIT. As discussed earlier, the size afbranch target buffer containing 2048 entries;

BIT is kept small for performance and power efficiency reasons. An gshare[3] - a 2 level global history correlation predictor utilizing an

| br0 | brl] br2 | br3] | | br0 | brl] br2]

exec# | 147,520| 147,520| 147,520| 147,520 exec# | 147,520| 147,520| 147,520

not taken 0.48 0.31 0.48 0.50 not taken 0.50 0.31 0.48
bimodal 0.43 0.63 0.43 0.50 bimodal 0.00 0.63 0.43
gshare 0.61 0.65 0.84 0.91 gshare 0.91 0.88 0.59

Figure 9: Execution statistics for the set of branches se-

lected for the ADPCM encode benchmark Figure 10: Execution statistics for the set of branches se-

lected for the ADPCM decode benchmark

ADPCM Encode || ADPCM Decode G.721 Encode G.721 Decode
Cycles [Impr. Cycles [Impr. Cycles [Impr. Cycles | Impr.
not taker| 10,328,867 16% || 9,367,586 13% || 76,089,314 6% || 80,418,120 5%
bi-512 7,282,057| 22% || 6,321,949| 20% || 57,550,878 7% || 58,913,062 6%
bi-256 7,282,095| 22% || 6,321,992| 20% || 57,989,836 7% || 59,159,275 6%

Figure 11: Application-specific branch resolution results

11 bit history register and a 2048 entry second level table and branpbrformance and reducing power consumption have been identified
target buffer of 2048 entries. as essential goals towards achieving cost-efficient and flexible sys-
A detailed analysis of all benchmarks has been performed and ttem implementations. The customization approach we propose herein
set of branches that are highly beneficial for folding have been ideapplied to early branch resolution attacks these goals, utilizing a low-
tified by profiling. A BIT with 16 entries has been assumed; wecost, reconfigurable datapath. This customization technique uses a
have targeted 16 branches for #mecodeand 15 for thedecodeof the novel approach for transferring application information to the proces-
G.721 benchmarks. For the ADPCé&hcoderwe have utilized only sor micro-architecture and exploiting it dynamically. The ability to re-
4 branches, and 3 branches for ttecoder None of these branches customize the application-specific branch resolution logic in field is a
were loop branches, but rather were branches within the tight loop significant advantage that preserves the flexibility of general-purpose
the corresponding algorithm. Figure 7 shows the statistics for the sgrocessors. The approach is evaluated on real-life applications and
lected 16 branches for the G.721 encoder. The first row shows haignificant performance improvement is shown.
many times the branch is executed; the subsequent rows show th€ustomizing the processor core with application-specific informa-
prediction accuracy of the three general purpose predictors describtémh promises to be a powerful technique towards higher performance
above for each branch. For the G.721 decoder the same set of brandnas lower power consumption that allows the processor-centric imple-
have been selected except foanch3(both the decoder and the en- mentation paradigm and its concomitant advantages to be extended to
coder share the same numerical functions that contain the tight appkrge classes and parts of complex hardware/software codesign sys-
cation loops and thus exhibit a very similar behavior). Figures 9 angms implementing various modern applications.
10 contain the corresponding information for the ADPCM encoder
and decoder, respectively. 10. REFERENCES
Figure 11 shows the results obtained after implementing the pro-

L - . . 27 [1] WL H. Wolf, “Hardware-Software Co-Design of Embedded Systems”,
posed application-specific branch resolution logic for early condition™" proceedings of the IEE®oI. 82, n. 7, pp. 967-989, July 1992.

evaluation and branch folding. The first column shows the type of[2] C. Young and M. D. Smith, “Static correlated branch predictiohGM
auxiliary predictor used for the branches not covered by ASBR. The = Transactions on Programming Languages and Systeais21, pp. 111—
not takenpredictor corresponds to essentially having no predictor. Bi- 159, 1999.

modal predictors of sizes 512 (bi-512) and 256 (bi-256) prediction[3] S. McFarling, “Combining branch predictors”, Technical Report TN-36,
entries have been used with the branch target buffer reduced to a quar- \Western Research Laboratory, DEC, June 1993.

ter of its size compared to the general-purpose predictors used in thgl S. T. Pan, K. So and J. T. Rahmeh, “Improving the accuracy of dynamic
baseline architecture. All simulation results of ASBR show significant g;’;%grp{gg'zcuon using branch correlation”, ASPLOS Vpp. 76-84,
performance improvements over the baseline results shown in Figur i

; . - L. H. Lee, J. Scott, B. Moyer and J. Arends, “Low-cost branch folding
fs, thus showing that area reductions can be coupled with performance” ¢, empbedded applications with small tight loops”32nd MICRQ pp.
improvements by using the method we propose.

103-111, November 1999.

Table 11 is broken down into subtables, corresponding to the enje] J. A. Fisher, P. Faraboschi and G. Desoli, “Custom-fit processors: letting
code and decode applications. The first column in each subtable presentspplications define architectures”, 29th MICRQ pp. 324-335, 1996.
the total number of cycles taken to execute the application, while thg7] J. A. Fisher, “Customized instruction-sets for embedded processors”, in
second column shows the absolute performance improvement. The 36th DAG pp. 253 —257, June 1999. _ _
percentage of the performance improvement for the cases of bi-511l %rLgféltﬂéticgk::éa's‘ ;ﬂﬂ:ﬁi;‘hgﬁ%ﬁ%‘;ﬁm&?& ‘g)ﬁ’ﬁﬁgggﬁ;ﬁs@?;

" . .) . 9] D. Burger and T. M. Austin, “The SimpleScalar Tool Set, Version 2.0",

predictor compared to is composed of 2048 2-bit saturating counters™ technical Report 1342, University of Wisconsin-Madison, CS Depart-
and 2048 branch target buffer entries, the results for which are pre- ment, June 1997.
sented in the second row of Figure 6. [10] D. Ditzel and H. McLellan, “Branch folding in the CRISP microproces-
sor: reducing branch delay to zero”, 1dth ISCA pp. 2-7, June 1987.
P. B. Gibbons and S. S. Muchnik, “Efficient instruction scheduling for a
pipelined processor”, iBIGPLAN pp. 11-16, June 1986.
M. S. Lam, “Software pipelining: An effective scheduling technique for
VLIW processors”, inSIGPLAN pp. 318-328, June 1988.

9. CONCLUSION [11]

In this paper, we present a novel, application-specific customizd12]
tion approach for embedded processor cores. Increasing processor

	Main
	DAC01
	Front Matter
	Table of Contents
	Session Index
	Author Index

