
Speeding Up Control-Dominated Applications through
Microarchitectural Customizations in Embedded Processors �

Peter Petrov and Alex Orailoglu

Computer Science & Engineering Department
University of California, San Diego

(ppetrov,alex)@cs.ucsd.edu

ABSTRACT
We present a methodology for microarchitectural customization of
embedded processors by exploiting application information, thus at-
taining the twin benefits of processor standardization and application-
specific customization. Such powerful techniques enable increased
application fragments to be placed on the processor, with no sacri-
fice in system requirements, thus reducing the custom hardware and
the concomitant area requirements in SOCs. We illustrate these ideas
through the branch resolution problem, known to impose severe per-
formance degradation on control-dominated embedded applications.
A low-cost late customizable hardware that uses application informa-
tion to fold out a set of frequently executed branches is described.
Experimental results show that for a representative set of control dom-
inated applications a reduction in the range of 7%-22% in processor
cycles can be achieved, thus extending the scope of low-cost embed-
ded processors in complex co-designs for control intensive systems.

1. INTRODUCTION
Embedded processors constitute currently an attractive solution for

various modern electronic applications. Typically such designs are
implemented as a part of a system-on-a-chip (SOC) IC, a trend accel-
erated by ever increasing transistor density and die sizes. The inherent
drawbacks of processor-based designs, typically stemming from the
embedded redundancy of the processor computational model, impose
significant challenges though in achieving overall system requirements,
particularly performance and power.

Processor performance and cost considerations play a significant
role in the hardware/software co-design of systems [1]. A funda-
mental issue is the partitioning problem of system functionality be-
tween hardware and software. While shifting as much as possible
of the functionality onto software reduces system cost and time-to-
market, performance and power consumption suffers, thus counter-
balancing the aforementioned advantages of general-purpose proces-
sors; the end result typically is unnecessarily large custom hardware
in the SOC. Yet processor components with all their attendant benefits

�This work is supported by NSF Grant 0082325; the work of the first
author is additionally supported by an IBM Graduate Fellowship.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2001,June 18-22, 2001, Las Vegas, Nevada, USA.
Copyright 2001 ACM 1-58113-297-2/01/0006 ...$5.00.

of flexibility and high volumes would be natural candidates for fur-
ther utilization, had they been guaranteed not to impose performance
and power impediments. We propose in this paper a research focus
aimed at defining a new class of embedded processor architectures,
hard-coreable yet simultaneously customizable per application, thus
enabling larger parts of the codesign to be placed in software with
no adverse performance or power impact. In this direction and as a
first step in exploring the possibility of such a scheme, we target the
branch resolution unit, a factor of high importance in evolving control-
dominated embedded applications.

In this paper, we show that processor customization is a power-
ful tool for boosting performance and reducing power consumption of
processor cores. A customized embedded processor micro-architecture
can utilize application properties and make informed decisions dur-
ing execution. We propose a technique that communicates application
specific properties to the micro-architecture of the processor core. The
application-specific properties are identified during compile time and
provided to the hardware, so that they can be exploited efficiently dur-
ing program execution.

The paper focuses on the ramification of the aforementioned ideas
on the branch resolution logic in order to alleviate the detrimental ef-
fect of conditional branches for pipelined architectures. Especially
for control intensive applications which are part of a typical reactive
system, high-cost general-purpose branch predictors behave poorly,
resulting in low performance and significant amount of power wasted
in executing instructions from the mispredicted path. Of course, uti-
lizing no branch prediction at all in these circumstances has even direr
consequences, resulting in worse performance and power degradation,
thus eventually pushing the control dominated parts of the application
off the processor and into custom hardware.

Instead, utilization of knowledge about branch predicates, branch
addresses, and branch target instructions can be exploited efficiently
by the customizable branch resolving logic. A significant number of
branches can thus befolded outduring the fetch stage as advance
knowledge of the branch direction ensures branch replacement with
certainty. At the same time a smaller, cost-effective variant of a general-
purpose predictor can be used for the remaining branches. Three ma-
jor benefits accrue from this technique.

� A significant improvement in performance is achieved. This is
especially true for control intensive applications that typically
exhibit low predictability of branches.

� The total number of instructions passing through the pipeline
is reduced, as a branch instruction folded in the fetch stage pro-
ceeds no further in the pipeline and no mispredicted instructions
are executed. Consequently, power consumption is decreased.

� Comparable branch prediction accuracies can be achieved at
significantly lower area costs.

The fundamental advantage of processor-centric implementations
is the flexibility to alter system functionality. It is paramount conse-
quently to preserve this processor characteristic even post customiza-
tion. In order to utilize customization benefits not only for a single
application, but rather for a class of applications, it is highly desirable
to be able to re-customize the processor between application runs, and
in any case certainly in a post-manufacturing fashion. We propose to
accomplish these goals through microarchitectural reprogrammability,
utilizing application and architecture characteristics. While traditional
methods of reconfigurability, such as FPGAs, fundamentally reliant
on logic level customization, can deliver flexibility, they frequently do
so only at the expense of high area and performance cost.

2. RELATED WORK
A great deal of research work has been recently completed in de-

signing branch predictors for alleviating the detrimental effect of con-
ditional branches on pipelined architectures. Static prediction ap-
proaches use both profiling and compile time analysis techniques to
statically predict the branch instructions [2]. Dynamic branch predic-
tors use run time information to improve their predictions [3]. One
of the fundamental ideas is to exploit correlation between branch out-
comes [4]. Recently, an approach for conditional branch folding for
embedded applications has been proposed [5]. It is based on the de-
tection and resolution of a subset of short loop branches.

In the customization arena, various approaches have been researched,
but none that target the microarchitecture, the primary focus of this
paper. In [6] a strategy for customizing a VLIW architecture is de-
scribed. The approach explores the design space of the architecture by
changing the number of functional units, clusters, and the number and
size of register files. A different set of customization approaches con-
siders application-specific instruction set extensions [7]. The efforts
here include the design of specialized instruction sets for multimedia
and communications applications.

3. MOTIVATION
A typical general-purpose branch predictor contains large tables

with various branch patterns corresponding to different branches and
global/local branch execution histories. A large branch target buffer is
needed to cache the branch target address to handle the case of a taken
prediction. Reducing the sizes of these tables in order to scale down
the predictor typically results in significant prediction accuracy degra-
dation. Yet such large hardware structures lead to excessive power
consumption which is rarely acceptable in the domain of embedded
applications. Furthermore, even these complex general-purpose pre-
dictors fail to deliver high prediction accuracy in the case of control
intensive applications.

Current branch predictors are presumed to work on the basis of sta-
tistical representations and inferences. Nevertheless, the underlying

if (c1) then // Branch B1
c4 = 1;
...

end if;
if (c2) then // Branch B2

...
if (c3) then // Branch B3

...
end if;

end if;
if (c4!=0) then // Branch B4

...
end if;
if (c5) then // Branch B5

Figure 1: Direct data correlation

correlations captured by them are comprised fundamentally of amal-
gams of data relationships between various predicate defining assign-
ments and conditional branches. For instance, the code in Figure 1
exhibits correlation for B4. Although typical branch predictors will
capture this B4 correlation as a statistical inference, one can note that
what is being captured is a straightforward data inference from the
predicate defining branch, B1, to the branch being predicted, B4. At
the same time, as no data inference exists (if we assume all variables
are unrelated), the same example will exhibit no branch prediction cor-
relation for branch B5. Of course, general-purpose machines possess
neither the hardware architecture, nor have an intimate knowledge of
the application to enable them to exploit such correlations on anything
other than a statistical basis.

While there does exist a correlation between B4 and B1, which
can be captured by current statistical branch prediction methods, al-
beit inefficiently as the correlation will be clouded by the intervening
branches, an interesting further observation is the effect of the resolu-
tion of B2 and of the embedded B3 branch. It will be observed that the
consequent imbalance in the control flow will deteriorate the statisti-
cal inference of general-purpose predictors by changing the position
of the relevant branches inside the global branch history. For exam-
ple, if branch B2 in Figure 1 is taken, only then branch B3 will appear
in the global branch history, thus changing the relative position of the
information-carrying branch B1 vis-a-vis the predicted branch B4.

One further aspect that plays havoc with the statistical inference
process of branch predictors is a possible reliance on input data. This,
in its most salient form, impacts the prediction of the branch whose
predicate relies directly or indirectly on the input data. A more in-
tricate case will be the impact of this input dependence and therefore
hard-to-predict branch on the prediction of subsequent branches in the
case of distance variance due to nested branches between predicting
and predictor branches.

lh r2, 0(r4)
subu r3, r2, r11
addu r4, r4, 2
sra r2, r3, 31
andi r13,r2, 0x0008
bgez r3, Label

Figure 2: Branch depending directly on input data

A code fragment1 illustrating the first case is given in Figure 2.
In this case the branch outcome depends directly on the value pro-
duced by the load instruction. The connection between thesubuin-
struction, defining the argument of the branch condition r3, and the
branch, remains unnoticed by a general-purpose predictor. The result
is significant performance degradation due to the high misprediction
rate and, even more importantly for a large number of embedded sys-
tems, wasting power in executing instructions from the wrong path.
A more intricate extension of the same problem consists of a hard-to-
predict, because of input data dependence, branch, creating difficul-
ties for subsequent branches, especially if the outcome of the hard-to-
predict branch defines a predicate of another branch, and the number
of branches between the correlated branches varies depending on in-
termediate branch resolution.

By targeting in an application-specific manner branches with prop-
erties such as the ones described above, significant performance im-
provements can be achieved. Utilizing the statically available appli-
cation information can lead to a low-cost, efficient solution for early
branch resolution and consequently to branch folding. We examine
the principles of the application-specific branch folding methodology
in the next section.

1This assembly code is part of the ADPCM Encode benchmark [8] and was produced by
gcc for the SimpleScalar toolset [9].

4. BRANCH RESOLUTION
An interesting observation that accrues from the examples in sec-

tion 3 is that in the cases of direct data inference the prediction step
can be completely superceded and a complete branch resolution with
consequent branch folding affected. The branch instruction will be re-
placed in the pipeline by its target instruction, thus completely being
eliminated from the instruction stream. To achieve such substantial
benefits, not only does the direct data inference need to exist, but fur-
thermore the value of the predicate defining variable needs to be re-
solved prior to fetching the branch in question. Of course, these ben-
efits can be attained in an embedded application but not in a general-
purpose one, unless one is willing to change the instruction set archi-
tecture in a general-purpose processor to accommodate the proposed
approach.

Typically, branch folding schemes for general-purpose processors
are applied to unconditional branches [10]. Such branch folding schemes
utilize a table composed of replacement instructions and correspond-
ing destination addresses. The branch folding scheme that we propose
needs similarly to capture the instruction and the destination address,
both statically obtainable from the application code. Nonetheless, in
the case of conditional branches, even when a direct data inference
exists, the predicate sense, unlike an unconditional branch which is
always taken, is not immutable, although known dynamicallya pri-
ori. Each branch folding entry needs to be extended to include predi-
cate sense information, consequently. Handling the fall-through cases
necessitates additionally capture of the subsequent instruction in the
fall-through path. No additional destination address needs to be stored
though, as this is a direct function of the current PC.

For embedded processors, which due to more stringent power con-
sumption limitations lack the capability for multiple instruction is-
sue and out-of-order execution, the time interval between the branch
condition register definition and the branch fetch can be considerable.
Therefore, for a large number of branches, the register value that de-
termines the branch condition is computed well before the branch is
fetched. TheApplication-Specific Branch Resolution(ASBR) method-
ology we propose exploits this separation in time between branch
fetch and branch condition register definition to compute the branch
condition early, thus resolving the branch direction before the branch
is fetched. Yet, in order to be able to fold such a branch, additional
information about the branch is needed as well. This information,
consisting of the previously described branch target address and the
target and fall-through instructions, is “pre-decoded” statically during
compile time and provided to the branch resolution logic. When the
branch is subsequently fetched, it is identified and replaced with its
target instruction. The feasibility of early branch condition calcula-
tion and branch folding depends on the interval available before the
condition register is computed and the branch fetched. While ASBR
is not inherently related to compiler technology, certain optimization
techniques can boost significantly the effectiveness of the approach.
Instruction scheduling [11] and software pipelining [12] can both be
efficiently utilized to extend the time interval between branch condi-
tion definition and branch fetch.

Fundamentally, the ASBR methodology can be divided into two
phases. The first phase, shown in Figure 3, performs theEarly Condi-
tion Evaluation.

Early_Condition_Evaluation:
if (committing Ri)

Update(Conditions(Ri));

Figure 3: Early condition evaluation

In this step, the branch direction is computed prior to fetching the
branch. Every time a register is being committed, all possible con-

ditions associated with this register are updated. In a typical RISC
architecture this set of conditions corresponds to a few zero compar-
isons. Performing the branch condition evaluation before the branch
is fetched eliminates the need for the branch instruction to read the
condition register from the register file and perform the comparison.

The second phase, shown in Figure 4, corresponds to the actual
branch folding mechanism. It is performed during the fetch stage of
the branch instruction.

ASBR:
if (Fetch(PC)==branch_type)

if (PC in {BA}) then
if (PredicateStorage(DI)==taken)

PC=BranchTargetAddress+4;
instr=BranchTargetInstruction;

else
PC=PC+8;
instr=BranchFallthroughInstr;

end if;
end if;

end if;

Figure 4: Application-specific branch resolution

If the fetched instruction is a branch and if the PC of this branch
matches aBranch Address(BA) from a set of branches, a series of ac-
tions is undertaken.PredicateStorage(DI)signifies the branch predi-
cate value by using aDirection Index (DI)to index a storage table with
the pre-computed branch directions associated to the branch condition
register. This storage is updated by the first phase, theEarly Condition
Evaluation.

If the branch is taken, then the PC is updated with theBranch Tar-
get Address(BTA) incremented by the size of one instruction word,
thus positioning the PC to the instruction subsequent to the branch
target. The instruction word, currently containing the branch itself, is
overwritten with theBranch Target Instruction(BTI). In the case of a
not takenbranch, the PC is positioned to the instruction subsequent to
the fall-through, while the branch is replaced with the op-code of the
Branch Fall-through Instruction(BFI).

The BA, DI, BTA, BTI, and BFI constitute a set of statically avail-
able information. This information is obtained statically during com-
pile time and provided to the embedded processor core during pro-
gram code upload. The application-specific, customizable branch res-
olution logic exploits it by performingearly condition resolutionwith
subsequentbranch folding. The content of these tables can be dynam-
ically re-defined at system level at run-time in order to accommodate
customization for different program modules, if the application con-
tains several important parts.

An essential issue to be addressed is the handling of branches for
which the condition register definition instructions lie on different
control paths, thus resulting in varying time intervals between branch
fetch and condition evaluation. This variance can arise due to differ-
ences in the control paths through which the branch is reached. If it
further happens that some of the paths guarantee that the predicate
value will be calculated prior to branch fetch while other paths do not,
a validity issue ensues if such a branch is to be folded. Resolution of
branches with such condition dependency necessitates a mechanism
that indicates the current validity of each predicate value. The value
is invalid, if the register associated with it is currently being produced
by an instruction still in execution. The required tracking of regis-
ter usage can be accomplished through a counter associated with each
register. The counter is incremented whenever an instruction that pro-
duces register R is decoded; when register R is committed, the counter
is decremented. A zero value on the counter guarantees the validity of
the pre-computed predicates associated to this register.

5. OPTIMIZATIONS FOR ASBR
The proposed application-specific branch folding techniques require

knowledge of the predicate-defining register prior to branch fetch. In
the case of pipelined architectures the distance between the predi-
cate defining register statement and the branch needs to exceed the
pipeline depth. In this section we show how the range of applicabil-
ity of the proposed ASBR method can be significantly enlarged by
utilizing certain compiler optimization techniques for increasing the
effectivedistance, and also by microarchitectural optimizations for
minimizing the effectivethreshold imposed by the pipeline.

5.1 Compiler support
The compiler capability to schedule the instruction that defines the

registers involved in computing the branch condition is crucial. Fortu-
nately, most modern compilers support instruction scheduling for data
dependent instructions in order to avoid pipeline stalls. In this case,
the branch must be considered as a data dependent instruction on the
condition register producing instruction.

Software pipelining [12], a technique for increasing the instruction-
level parallelism by overlapping independent parts of loop iterations,
effectively inserts branch independent instructions between the branch
and the last instruction that defines the branch condition. A typical
program fragment is shown in the left part of Figure 5, while the right
part of the figure presents the same code after aggressive software
pipelining for scheduling the branch condition evaluation.

prologue code;
for(i=1;i++;i<1000) for(i=2;i++;i<999

load F0 from memory; Rt=f(F0);
R=f(F0); if (R) then
if (R) then R=Rt;

... ...
else else

... R=Rt;
end if ...

end for end if
load F0 from memory;

end for;
epilogue code;

Figure 5: Software pipelining for ASBR

5.2 Processor architecture
Pipeline depth determines the number of time slots required be-

tween the branch and the last instruction that defines the branch con-
dition register. Therefore, thethresholdfor a given architecture is
determined as the number of states between instruction fetch and reg-
ister commit stages. One can notice though that this threshold can
be reduced by updating the predicate value right after the execution
stage immediately upon actual production of the value, instead of dur-
ing the register commit stage. Direct paths from the ALU units to the
early predicate evaluation logic are needed to accomplish this. These
paths resemble the traditional forwarding paths in the pipeline, except
in that they transfer a recently computed value to the early predicate
evaluation logic instead of to a processor functional unit.

Figure 2 has already illustrated an example code that demonstrates
a situation suitable for early branch resolution. If we assume that the
execution stage is the3rd pipeline stage, the forwarding path to the
early predicate resolution logic makes the branch predicate available
at the end of the4th stage, thus determining thethresholdvalue to be
3. An even more aggressive approach can be utilized that computes
the predicate value at the end of the execution stage of the pipeline,
in the case that the execution stage is not time critical and the clock
period not adversely affected. Athresholdvalue of 2 could then be
attained. For example, the branch in the code shown in Figure 2 is

branch-foldable under either of these pipeline forwarding path aug-
mentations, as they result inthresholdvalues of 3 and 2, respectively;
since three independent instructions exist between the branch and the
instruction defining the predicate register, an unaugmented five stage
basic pipeline will not be able to fold the branch shown.

6. BRANCH SELECTION FOR ASBR
The ASBR methodology is intended to target only a subset of the

branches that are feasible therein to resolve. This selectivity is a cru-
cial premise for the cost-effectiveness of the application-specific cus-
tomization, an issue to which we return in the subsequent section.

All branches that satisfy the distance property discussed are can-
didates for folding, while branches that fail cannot partake, but may
continue instead to use a general-purpose branch predictor. Yet a cer-
tain amount of selectivity in choosing the branches to be folded may
still be appropriate as the cost of folding a branch exceeds that of pre-
dicting it and as foldable branches may show highly variant expected
benefits. Getting the utmost advantage from the proposed technique
requires a prioritization of the foldable branches based on their ex-
pected benefit. Frequently executed, hard-to-predict branches are es-
pecially propitious to resolve by using ASBR. There are three fun-
damental advantages for utilizing ASBR for this particular subset of
conditional branches.

� Resolving the frequently executed, hard-to-predict branches and
folding them out with their target instructions results in propor-
tionately greater performance and power improvements. This is
a direct consequence of Amdahl’s law.

� Applying the ASBR methodology to a small subset of branches
results in less costly and power consuming implementation. As
described in Section 4, certain branch information needs to be
provided to the microarchitecture, which implies a linear growth
in hardware complexity per branch.

� Eliminating the hard-to-predict branches decreases the destruc-
tive aliasing into the prediction table greatly; hence better pre-
diction can be achieved with a significantly less expensive gen-
eral branch predictor.

Not only does the proposed technique improve branch resolution
through folding a number of branches, but furthermore the removal
of hard-to-predict branches from the prediction table can actually im-
prove the accuracy of the complementary, original branch prediction
method. The overall twin boost to branch resolution can significantly
reduce the number of execution cycles for embedded applications re-
quiring high performance and low power or alternatively can be used
to drastically reduce area and still keep the original branch predic-
tion rates by using a much more lightweight branch predictor instead.
Both the performance and power improvements or the alternative re-
ductions in area are verified through experimental data in Section 8.

7. IMPLEMENTATION
In order to be able to implement the application-specific branch

resolution technique, the branch information obtained through static
analysis of the application code needs to be encoded into the proces-
sor and utilized. The branch characteristics utilized in ASBR as de-
scribed in Section 4 are BA (the branch address), DI (direction index),
BTA (branch target address), BTI (branch target instruction), and BFI
(branch fall-through instruction). The corresponding values need to
be captured in the ASBR logic.

In order to preserve processor flexibility and in order to continue
making the proposed technique applicable even to hard core proces-
sor designs, we propose a scheme targeting a microarchitecturally

ADPCM Encode ADPCM Decode G.721 Encode G.721 Decode
Cycles CPI Acc Cycles CPI Acc Cycles CPI Acc Cycles CPI Acc

not taken 12,232,809 1.85 32% 10,818,933 1.96 31% 80,695,528 1.73 53% 80,418,120 1.83 53%
bimodal 9,354,462 1.41 69% 7,909,813 1.44 71% 62,130,909 1.33 91% 62,820,828 1.43 91%
gshare 8,454,179 1.28 82% 7,267,628 1.32 81% 62,317,531 1.33 91% 63,128,743 1.44 90%

Figure 6: Branch predictability of the benchmarks

br0 br1 br2 br3 br4 br5 br6 br7 br8 br9 br10 br11 br12 br13 br14 br15

exec # 200,000 200,000 200,000 25,000 23,514 25,000 25,000 25,000 25,000 24,995 150,000 150,000 1,761,060 23,514 24,997 25,000
not taken 0.99 0.74 0.51 1.00 0.51 1.00 1.00 0.00 0.99 0.52 0.00 0.94 0.89 0.51 0.49 1.00
bimodal 0.99 0.70 0.51 1.00 0.50 1.00 1.00 1.00 0.99 0.51 1.00 0.96 0.88 0.50 0.50 1.00
gshare 0.99 0.81 0.52 0.99 0.61 0.96 0.95 0.97 0.99 0.91 0.99 0.96 0.86 0.50 0.93 0.99

Figure 7: Execution statistics for the set of branches selected for G.721

reprogrammable implementation. This scheme must allow easy re-
customization of the processor after application modification. The
branch information must be redefined and exploited by the proces-
sor in the same way as the program code. Conceptually, this implies
enlargement of the communication link between the compiler and the
embedded processor. Thebranch informationis loaded into the pro-
cessor core in a similar way as the program code.

A Branch Identification Table (BIT) is utilized to store thebranch
information.

The fields in each BIT entry store the following information:

PC The PC field stores the program counter (address) of the branch.
This branch address is used for branch identification in the fetch
stage of the processor.

inst1, inst2 These fields correspond to BTI and BFI and contain the
target and fall through instructions respectively. They are used
in replacing the folded branch.

BA The program counter (address) of the target instruction. The pro-
cessor program counter is updated from this field.

DI A direction index that points to a structure with branch conditions
associated with each register. This field incorporates the infor-
mation about the branch condition.

The BIT is looked up with the program counter during the fetch
stage. Upon a match of the PC field and the processor program counter,
the direction indexfield is used in determining the branch direction.
Since this look-up is performed in the fetch stage prior to instruction
decoding, the existence of the PC field in BIT is the factor that de-
termines that the instruction is a branch and that all needed branch
information is available in the BIT entry.

The number of entries in the BIT determines the number of branches
that can be handled by the approach at any time instance. Since only
the most frequently executed branches within the important applica-
tion loops are targeted, a small number of BIT entries would suffice.

The direction index in the BIT entry points to an entry in the Branch
Direction Table (BDT). The BDT is composed of an entry per pro-
cessor register; each entry contains a number of direction bits for the
architecture-supported branch conditions and a validity counter as dis-
cussed in Section 4. Figure 8 depicts a BDT for an architecture that
supports 4 general-purpose registers and branch instruction conditions
of not equal to zero, andless-than-or-equal to zero. Every time a reg-
ister value is produced from a functional unit, the direction (condition)
bits of the register entry in the BDT are updated.

If the application contains more than one loop and the BIT cannot
cover all the branches from these loops, a mechanism is needed to add
new branch definitions to the BIT. As discussed earlier, the size of
BIT is kept small for performance and power efficiency reasons. An

R0

R1

R2

R3
Update from
instruction decode

Update from
register values

DI from BIT

bne blez cnt

Figure 8: A four entry BDT example

effective way to virtually increase the size of BIT is to add additional
copies of BITs and switch between them during the loop transitions.
At any moment only one BIT copy will be active, thus not exceeding
the power consumption or performance limitations. Activating a BIT
copy can be performed by writing a special value to a control register
just before entering the loop.

8. EXPERIMENTAL RESULTS
In our experimental framework we use architectural level simula-

tions, thus measuring precisely the number of processor cycles needed
to execute the benchmark. We use the most detailed simulator avail-
able in the SimpleScalar toolset [9], one capable of simulating a pipelined
architecture. The architecture supports a MIPS-like instruction set
with conditional branches supporting all possible zero comparisons.
The fetch stage of the simulator is modified, so as to implement the
approach described in this paper. A manual scheduling in the applica-
tion code is performed for the branches that we identify as candidates
for folding.

A pipelined architecture with a 5 stage pipeline, in-order single is-
sue, is assumed for simulation. The memory hierarchy subsystem uti-
lizes 8KB instruction cache, and 8KB data cache. This type of archi-
tecture corresponds closely to current embedded processor cores.

Four applications from the MediaBench collection of benchmarks
[8] have been examined. The first two applications constitute the AD-
PCM (Adaptive Differential Pulse Code Modulation) encoder and de-
coder. The other two benchmarks used in our study are the G.721
(speech coding standard) encoder and decoder. We study the branch
behavior and apply the proposed approach of application-specific, early
branch resolution. As a comparison base, figure 6 reports execution
results for all four benchmarks obtained by using well-known general-
purpose branch predictors; total number of cycles, CPI, and accuracy
measurements are given for each predictor. The general-purpose pre-
dictors examined for the baseline architecture are listed below:

not taken- Always predicts the branches as not taken. This is the
default in many embedded processors that lack branch predictors;

bimodal[3]- a predictor that uses 2048 2-bit saturating counters and
a branch target buffer containing 2048 entries;

gshare[3] - a 2 level global history correlation predictor utilizing an

br0 br1 br2 br3

exec # 147,520 147,520 147,520 147,520
not taken 0.48 0.31 0.48 0.50
bimodal 0.43 0.63 0.43 0.50
gshare 0.61 0.65 0.84 0.91

br0 br1 br2

exec # 147,520 147,520 147,520
not taken 0.50 0.31 0.48
bimodal 0.00 0.63 0.43
gshare 0.91 0.88 0.59

Figure 9: Execution statistics for the set of branches se-
lected for the ADPCM encode benchmark Figure 10: Execution statistics for the set of branches se-

lected for the ADPCM decode benchmark

ADPCM Encode ADPCM Decode G.721 Encode G.721 Decode
Cycles Impr. Cycles Impr. Cycles Impr. Cycles Impr.

not taken 10,328,867 16% 9,367,586 13% 76,089,314 6% 80,418,120 5%
bi-512 7,282,057 22% 6,321,949 20% 57,550,878 7% 58,913,062 6%
bi-256 7,282,095 22% 6,321,992 20% 57,989,836 7% 59,159,275 6%

Figure 11: Application-specific branch resolution results

11 bit history register and a 2048 entry second level table and branch
target buffer of 2048 entries.

A detailed analysis of all benchmarks has been performed and the
set of branches that are highly beneficial for folding have been iden-
tified by profiling. A BIT with 16 entries has been assumed; we
have targeted 16 branches for theencodeand 15 for thedecodeof the
G.721 benchmarks. For the ADPCMencoderwe have utilized only
4 branches, and 3 branches for thedecoder. None of these branches
were loop branches, but rather were branches within the tight loop of
the corresponding algorithm. Figure 7 shows the statistics for the se-
lected 16 branches for the G.721 encoder. The first row shows how
many times the branch is executed; the subsequent rows show the
prediction accuracy of the three general purpose predictors described
above for each branch. For the G.721 decoder the same set of branches
have been selected except forbranch3(both the decoder and the en-
coder share the same numerical functions that contain the tight appli-
cation loops and thus exhibit a very similar behavior). Figures 9 and
10 contain the corresponding information for the ADPCM encoder
and decoder, respectively.

Figure 11 shows the results obtained after implementing the pro-
posed application-specific branch resolution logic for early condition
evaluation and branch folding. The first column shows the type of
auxiliary predictor used for the branches not covered by ASBR. The
not takenpredictor corresponds to essentially having no predictor. Bi-
modal predictors of sizes 512 (bi-512) and 256 (bi-256) prediction
entries have been used with the branch target buffer reduced to a quar-
ter of its size compared to the general-purpose predictors used in the
baseline architecture. All simulation results of ASBR show significant
performance improvements over the baseline results shown in Figure
6, thus showing that area reductions can be coupled with performance
improvements by using the method we propose.

Table 11 is broken down into subtables, corresponding to the en-
code and decode applications. The first column in each subtable presents
the total number of cycles taken to execute the application, while the
second column shows the absolute performance improvement. The
percentage of the performance improvement for the cases of bi-512
and bi-256 corresponds to an absolute decrease in execution cycles
compared to the general-purpose bimodal predictor. The particular
predictor compared to is composed of 2048 2-bit saturating counters
and 2048 branch target buffer entries, the results for which are pre-
sented in the second row of Figure 6.

9. CONCLUSION
In this paper, we present a novel, application-specific customiza-

tion approach for embedded processor cores. Increasing processor

performance and reducing power consumption have been identified
as essential goals towards achieving cost-efficient and flexible sys-
tem implementations. The customization approach we propose herein
applied to early branch resolution attacks these goals, utilizing a low-
cost, reconfigurable datapath. This customization technique uses a
novel approach for transferring application information to the proces-
sor micro-architecture and exploiting it dynamically. The ability to re-
customize the application-specific branch resolution logic in field is a
significant advantage that preserves the flexibility of general-purpose
processors. The approach is evaluated on real-life applications and
significant performance improvement is shown.

Customizing the processor core with application-specific informa-
tion promises to be a powerful technique towards higher performance
and lower power consumption that allows the processor-centric imple-
mentation paradigm and its concomitant advantages to be extended to
large classes and parts of complex hardware/software codesign sys-
tems implementing various modern applications.

10. REFERENCES
[1] W. H. Wolf, “Hardware-Software Co-Design of Embedded Systems”,

Proceedings of the IEEE, vol. 82, n. 7, pp. 967–989, July 1992.
[2] C. Young and M. D. Smith, “Static correlated branch prediction”,ACM

Transactions on Programming Languages and Systems, vol. 21, pp. 111–
159, 1999.

[3] S. McFarling, “Combining branch predictors”, Technical Report TN-36,
Western Research Laboratory, DEC, June 1993.

[4] S. T. Pan, K. So and J. T. Rahmeh, “Improving the accuracy of dynamic
branch prediction using branch correlation”, inASPLOS V, pp. 76–84,
October 1992.

[5] L. H. Lee, J. Scott, B. Moyer and J. Arends, “Low-cost branch folding
for embedded applications with small tight loops”, in32nd MICRO, pp.
103–111, November 1999.

[6] J. A. Fisher, P. Faraboschi and G. Desoli, “Custom-fit processors: letting
applications define architectures”, in29th MICRO, pp. 324–335, 1996.

[7] J. A. Fisher, “Customized instruction-sets for embedded processors”, in
36th DAC, pp. 253 – 257, June 1999.

[8] C. Lee, M. Potkonjak and W. H. Mangione-Smith, “MediaBench: A Tool
for Evaluating and Synthesizing Multimedia and Communications Sys-
tems”, in30th MICRO, pp. 330–335, December 1997.

[9] D. Burger and T. M. Austin, “The SimpleScalar Tool Set, Version 2.0”,
Technical Report 1342, University of Wisconsin-Madison, CS Depart-
ment, June 1997.

[10] D. Ditzel and H. McLellan, “Branch folding in the CRISP microproces-
sor: reducing branch delay to zero”, in14th ISCA, pp. 2–7, June 1987.

[11] P. B. Gibbons and S. S. Muchnik, “Efficient instruction scheduling for a
pipelined processor”, inSIGPLAN, pp. 11–16, June 1986.

[12] M. S. Lam, “Software pipelining: An effective scheduling technique for
VLIW processors”, inSIGPLAN, pp. 318–328, June 1988.

	Main
	DAC01
	Front Matter
	Table of Contents
	Session Index
	Author Index

