Improved Merging of Datapath Operators using
Information Content and Required Precision Analysis

Anmol Mathur

Sanjeev Saluja

Cadence Design Systems
555 River Oaks Parkway
San Jose, CA 95134

Abstract : We introduce the notions of required precision and
information content of datapath signals and use them to define
functionally safe transformations on data flow graphs. These
transformations reduce widths of datapath operators and enhance
their mergeability. Using efficient algorithms to compute required
precision and information content of signals, we define a new al-
gorithm for partitioning a data flow graph consisting of datapath
operators into mergeable clusters. Ezperimental results indicate
that use of our clustering algorithm for operator merging based
synthesis of datapath intensive designs, can lead to significant
improvement in the delay and area of the implementation.

1. INTRODUCTION

The number and complexity of datapath operations imple-
mented in systems on chips has increased considerably over the
years. This is especially true in chips for graphics, communica-
tion and multimedia processing applications, which have highly
parallel implementation of signal processing algorithms such as
fast fourier transforms, finite impulse response filters and opther
DSP algorithms. While techniques for high performance synthesis
of individual datapath operators like adders, multipliers, shifters
are well known [3]; such datapath intensive RTL designs require
synthesis techniques which yield optimized implementations of
groups of datapath operators instead of individual operators.

One such useful technique is operator merging i.e. clustering
of multiple datapath operators so that they can be synthesized
together as a unit. In particular, designers and researchers have
explored synthesizing a cluster of datapath operators as a sum of
addends using carry-save adders and Wallace trees [2][4][5][6][7].
For example, synthesis of the sum of product expression a*b+c*d
using traditional synthesis requires 2 multipliers and an adder.
Such an implementation has 2 carry-propagate adders on any
input-to-output path. Operator merging can implement such an
expression using only one carry-propagate adder by reducing the
partial products of the multipliers in a single carrysave reduc-
tion tree(CSA-tree). In [2], an operator merging based datapath
synthesis algorithm has been proposed, which first partitions a
data flow graph into clusters of datapath operators and then syn-
thesizes each cluster using CSA-tree i.e. the combination of a
reduction tree of carry-save adders and a final adder. The re-
sults of [2] demonstrate the effectiveness of operator merging in
improving performance of netlists for datapath intensive designs.
The later results of [4][5] focus on optimal implementation of the
second step of the algorithm of [2] i.e. implementation of a sum

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercia advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or afee.

DAC 2001, June 18-22, 2001, Las Vegas, Nevada, USA.

Copyright 2001 ACM 1-58113-297-2/01/0006 ...$5.00.

of addends using carry-save adders and bit-oriented Wallace trees
and they further support the usefulness of operator merging.

In this paper, we consider another approach to maximize the
benefits of operator merging, which focuses on maximizing merge-
ability of operators so that larger and fewer clusters are created.
The motivation for this approach comes from the observation that
implementation of each cluster representing sum of addends im-
plies the delay and area of a final carry-propagate adder; so par-
titioning a datapath computation into larger number of smaller
clusters could mean more timing delay and area of the resulting
netlist. Hence, increased merging implies reduction in the number
of carry-propagate adders and consequently reduced critical path
delay. Our experimental results mentioned in Section 7 validate
the above intuition. Note that the above mentioned approach
can be viewed as an attempt to improve the implementation of
the first step of the algorithm of [2], i.e. partitioning a data flow
graph into clusters.

A seemingly stronger motivation to consider the problem of
maximal merging of datapath operators comes from the fact that
the techniques that we use for partitioning data flow graphs into
clusters, give a more general method of analyzing and optimizing
data flow graphs consisting of datapath operators. In particular,
they allow to safely reduce the bitwidths of datapath operators
used in the design, which not only implies that the first pass of
synthesis would generate faster and smaller netlists and but also
that the gate level logic optimization step needs to work less to
meet the timing and area constraints. Further, our method of
partitioning a data flow graph into maximal mergeable clusters,
also gives a method for safe partitioning of data flow graph, which
can be used in problem scenarios other than operator merging
e.g. rebalancing of computation graphs consisting of associative
operators.

The main contributions of this paper are:

1. We define the notions of required precision and information
content of a signal' which measure the essential bitwidth
of the signal. We use these measures to define safe i.e.
functionality preserving transformations on the data flow
graphs (DFGs) which result in two benefits : the trans-
formed graph has potentially smaller widths of datapath
operators and has potentially greater mergeability of data-
path operators.

2. We provide a characterization of safe clustering of DFGs
in terms of required precision and information content of
signals, that is applicable to DFGs which have both signed
and unsigned extensions of signals.

3. We present efficient algorithms for computation of required
precision and upper bounds on information content and the
related DFG transformations. We use these algorithms to
define a new iterative algorithm for partitioning a graph
into maximal safe clusters.

'"We use signal (or datapath signal) to mean bitvector rep-
resenting value of any input, output or intermediate results
in the data-flow graph.

We note here that notions of required precision, information
content, the related transformations and partitioning algorithm
are applicable even to DFGs which have datapath operators be-
sides addition, subtraction, unary minus and multiplication e.g.
comparators and shifters. However, for the sake of clarity we
restrict the discussion to +, — and X operations in this paper.

The optimization algorithm of [2] uses the notion of leakage of
bits to determine if operators at two adjacent nodes in data-flow
graph can be merged. It turns out that the use of leakage of bits
for deciding mergeability leads to an extent to similar mergeabil-
ity boundaries as usage of analysis based only on required preci-
sion. However it turns out that, our clustering algorithm, which
uses a combined analysis based on values of both required pre-
cision and information content, creates larger and fewer clusters
and is a more elegant method of identifying mergeability bottle-
necks in a data flow graph. Further, DFG transformations based
on required precision and information content, give the additional
benefit of reducing widths of datapath operators. [8] uses a no-
tion similar to information content of a signal in the context of
converting a floating point representation of a design to a fixed
point representation.

The paper is organized as follows. Preliminary definitions and
notations including definition and interpretation of a DFG, which
are used throughout the paper, are given in Section 2. In Sec-
tion 3, we use an example to illustrate the application of operator
merging on a DFG and point out the essential characteristics of
a cluster. Section 4 formally introduces the notion of required
precision and shows how it can be used to transform a DFG and
enhance the mergeability. Section 5 gives an analogous presenta-
tion for the notion of information content . Section 6 defines a new
iterative algorithm for partitioning a DFG into maximal clusters,
each of which is synthesizable as a sum of addends. In Section 7,
we present preliminary results of our experiments, which compare
the performance of netlists obtained on some datapath intensive
test designs with and without our new clustering algorithm.

2. PRELIMINARIES

In this section, we give some definitions and notations which
are used in the paper. In particular, we describe the DFG model
that we have used as a representation of designs with datapath
operators.

DEFINITION 2.1. A width extension (or simply extension)
of a signal is the padding of multiple copies of a fixed bit to the
left of the signal to obtain a new signal of larger bitwidth. If the
padding is done with bit 0, the extension is said to be unsigned.
If it is done with the most significant bit of the original signal,
the extension is said to be signed.

For example, 00011 and 11111 are obtained from the two bit
signal 11 by a five bit unsigned and five bit signed extension
respectively.

2.1 DataFlow Graphs

A data flow graph (DFG) with datapath operators is a directed
acyclic connected graph where nodes represent inputs, outputs
and datapath operations. Edges represent the flow of data be-
tween operations. The interface of an edge with its source or
destination node is referred to as a port. A port is an input (or
output) port if it represents interface of an edge with its destina-
tion (resp. source) node. Each input (or output) node has one
output (resp. input) port; each operator node has one output
port and one or two input ports depending on whether the dat-
apath operator on the node is unary or binary. The following
quantities are defined for the nodes and edges in a DFG:

e Each operator node N has a width value w(N), which is
a positive integer. For an input (or output) node it repre-
sents, the bitwidth of the input (resp. output) signal rep-
resented by the node. For an operator node, it represents
the number of bits used to represent the operands and/or
result of the operation labeling the node.

e Each edge e has a width value w(e), which is a positive
integer. For an edge, the width represents the number of
least significant bits of the result of the operation at the
source node, which are used as input by the operation at
the destination node of the edge.

Each edge e is labeled with a binary attribute ¢(e) called
the signedness of the edge. The signedness is either signed
or unsigned. We also use the binary bits {0, 1} to represent
the signedness types “unsigned” and “signed” respectively.

2.2 Interpretation of widthsand signedness

Let Ny and N2 be the source and destination nodes of an edge
e. Let their widths be w(N1), w(N2) and w(e) respectively. If
w(e) < w(N1), then signal defined by w(e)-many least significant
bits of the result of N1, is said to be carried by e. If w(e) > w(Ny),
then e carries a signal which is obtained by extending the result
of N1 to w(e) width. The type of extension is determined by the
signedness of the e. Similarly if w(N2) < w(e), signal defined
by w(N2)-many least significant bits of the signal carried by e is
used as input operand by the operator at the destination node. If
w(N2) > w(e) and implementation of the operator at N> requires
an extension of its operand, then a w(N>) bit extension (whose
signedness is determined by signedness of e) of the signal carried
by e is used as the input operand.

3. MERGEABILITY OF DATAPATH OPER-
ATORS

We illustrate the idea of merging of datapath operators with
an example. Consider the data flow graph G in Figure 1(a).

@ (b)

Figure 1: Cluster creation in DFG

Note that output of node N is obtained by truncating the
9 bit sum to 7 bits. Further on edge e, this truncated values
gets sign-extended to 9 bits, which is used as an operand for
node Ns. Because of extension of a truncated result, the output
R of G3 is not directly expressible as sum of addends derived
from input signals?. Therefore, the whole of G cannot be in the
same cluster. Figure 1(b) shows the maximal merging possible in
this DFG. Such a situation where a signal is truncated and then
subsequently extended in the downstream computation creates a
mergeability bottleneck and forces a bounadry for merging.

The following two essential conditions are required for a set of
datapath operators in a DFG to be viewed as a cluster :

1. The subgraph formed by the operators is a connected in-
duced subgraph with a unique output.

2. The value of the output signal at the unique output node,
is definable as a mergeable function of inputs to the cluster.
For example, for the optimization algorithm of [2] and also
for most of discussion in our paper, this function is a sum

2Here an addend is said to be derived from an input signal
if it is obtained by truncation, extension or 2’s complement
of the input signal

of products of signals derived from inputs. Note that since
a product operation can be implemented as sum of multiple
partial products, we can view a sum of products of signals
as a sum of addends, where the partial product of inputs
form the addends.

4. REQUIRED PRECISIONANDRELATED
DFG TRANSFORMATION

Figure 2: Small required precision implies mergeability

Before formally defining required precision, we explain the no-
tion with a simple example. Consider the graph G4 in Figure
2(a), which is same as G2 (Figure 1(a)), except for the width 5
of output. Since only 5 least significant bits of final sum need to
be generated, therefore for each intermediate result, only 5 least
significant bits need to be generated; in other words the required
precision of of every signal in the graph is 5 bits; the higher sig-
nificance bits are superfluous. Hence no extension is required on
edge e and (G4 is completely mergeable. In fact, the graph can be
transformed to G; (Figure 2(b)), which has smaller widths and
enhanced mergeability of operators compared to G4. Note that,
though in this example, the width of the output signal is used
to update the width of the operators of graph; in general, width
of any node or edge inside the data-flow graph can be used to
transform the widths of nodes and edges in the fanin cone of the
given node (or edge respectively).

In the following, we define required precision for signal at every
port in a DFG. The definition is recursive and bottom up i.e. the
ports on the output nodes form the base case.

DEFINITION 4.1. Required precision : For an input or
output port p, the required precision r(p) for the signal entering
or leaving the port respectively, is given by the following rules :
e For input port p of an output node N : r(p) = w(N).

e For input port p of a non-output node N : r(p) = min{r(po,), w(N)}.

Here p, is the output port of N.

o For output port p of a node N :

’f‘(p) = mameEoutedges(N){min{w(e)r T(pd)}}

Here pg denotes the input port at the destination node of edge e.

Another way to view required precision is as follows : given a
port in a data-flow graph, for every directed path from the port
to an output node, find the minimum width of any node or edge
on the path; required precision is the maximum of this value over
all of these directed paths. Intuitively, if required precision of a
signal is n, it means, not more than n least significant bits of the
signal are needed to completely define the signals at every out-
put node in the fanout cone of the port. The remaining higher
order bits of the signal get truncated by some intermediate oper-
ation or explicit truncation on directed every path and hence are
superfluous.

As demonstrated by the example given in the beginning of this
section, analysis of required precision of a data-flow graph, can
potentially reduce the required width of operators and operands
and also enhance the mergeability of operators. The following

theorem defines the width reduction that can be done based on
required precision analysis.

THEOREM 4.2. Consider a transformation that changes the
width of nodes and edges in a DFG such that

w(n) = min{w(n),r(po)}

and

w(e) = min{w(e), r(pa)}

where po is the output port of node n and py is the destination
port of edge e. The functionality of the DFG is preserved by this
tranformation.

The transformation indicated in Theorem 4.2 can be efficiently
performed by processing the nodes of a DFG in reverse topological
order.

5. INFORMATIONCONTENT AND RELATED

TRANSFORMATION

Figure 3: Low information content implies increased
mergeability

Once again, we start with a simple example to understand the
notion of information content. Consider graph G5 (Figure 3(a)).
Note that edge ey seems like a potential boundary of merging,
because it is sign-extending an 8 bit truncated sum. However
since A, B, C, D have small bitwidths, the 8-bit results of nodes
N; and N3 are simply sign extensions of 4 bit sums. Carrying this
analysis one level further, result of N3 is sign-extension of 5 bit
sum. This means, the combination of widths of node N3, edge e7
and node N4 does not really imply a sign-extension of a truncated
result; in fact, the operand entering N4 via edge es is a sign
extension of 5 bit sum. Note that the preceding analysis allows
us to replace G5 with functionally equivalent graph G’s, which has
smaller widths for some nodes and edges (Figure 3(b)). Further
it also allows us to conclude that output R is expressible as sum
of sign-extensible inputs A, B,C,D,E and the entire graph is
mergeable.

This example illustrates that careful analysis of essential con-
tent of information in the result of every operator node, can
in some situations, allow to merge operators, which otherwise
seemed unmergeable. Also, as noted in the context of preceding
example, the same analysis also allows to reduce the widths of
datapath operators which are working on operands with small
information content.

We now formally define the notion of information content and
provide an efficient algorithm for computing an upper bound on
the information content of signals at every port of a DFG. We also
show how information content can be used to prune the widths
of nodes and edges in the DFG safely.

DEFINITION 5.1. Information content : Information con-
tent of a signal in a DFG is the tuple (i,t) of the smallest pos-
sible non-negative integer i and an extension type t € {0,1} (i.e.
{unsigned, signed}) such that : for all possible values of inputs to
the DFG, the signal is a t-extension of its i many least significant
bits. For a port p, we use (i(p), t(p)) to denote the information
content of the signal entering (or leaving) the port if the port is
an input (resp. output) port.

DEFINITION 5.2. Intrinsic information content of a
node is the information content of ils result signal in terms of
the information content of its operands, assuming the opera-
tion at the node is done without any loss of information. For
example, intrinsic information content of addition of operands
with information contents (m1,unsigned) and (m2,unsigned) is
(max{m1,ma2} + 1,unsigned).

The following theorem shows that the problem of exact com-
putation of first component of information content is hard.

THEOREM 5.3. The problem of computing the first compo-
nent of information content of signals in any given DFG with +,
— and X operators is NP-hard.

While computing the exact value (say (7, t)) of information con-
tent is hard; it is still possible to efficiently compute an upper
bound on information content i.e. a tuple (¢/,t'), where i’ > i
such that the signal is a t’-extension of its ¢’ many least signifi-
cant bits. R R
Notation : Henceforth we use the notation :(p) (similarly 2(N)
and 2;,¢(N)) to denote upper bounds on the information content
i(p) of a port. We will also use the term information content
to mean upper bounds on information content and will often let
the notation (i.e. ¢(p) versus i(p)) clarify what we mean in any
particular context.

The following lemma gives expression for upper bounds on in-
trinsic information content of the common datapath operators.
These expressions are used later in the algorithm which computes
information content for signals in a given DFG.

LEMMA 5.4. Let (i1,t1), {i2,t2) denote upper bounds on in-
formation contents of inputs of binary operators of addition(+),
subtraction(-), multiplication(x) and unary minus(—.). Then :

%int(+) = (max{ii,i2} + 1,t1]t2);

iing(—) = (max{i1, iz} + 1, signed);
Eint(x) = (il + iz,tl‘t2>;
tint(—u) = (i1 + 1, signed).

Since information content of a signal at output edge of an op-
erator node depends on width of operator node and information
content of input operands of the operator node, we compute the
information content of signals in a given DFG in a top-down order
i.e. starting at input nodes and finishing at output nodes. Two
key steps in this computation are :

(i) Propagating information content across an operator node :
Given information content for inputs ports of an operator node;
compute information content for the output port of the node.
(ii) Propagating information content across an edge : Given in-
formation content for the source port of an edge; compute infor-
mation content for the destination port.

The information content at the output port of a node is the
smaller of the intrinsic information content of the node and its
width. For propagating information content across an edge, no-
tice that if the sign of the information content and the edge are
the same, then the width of the information content across the
edge is the smaller of ¢ and we. In the scenario where the signed-
ness type t of the information content at source port differs from
signedness type t(e), an interesting case arises when ¢ = unsigned
and t(e) = signed. In this case, if there is a strict extension of the
information content across the edge (i.e. w(N1) > i and w(e) > 7)
then the first component of the information content is ¢ and the
signedness is unsigned. Hence, even though the edge is signed,
in this case we can view the data going into the destination node
as unsigned because it will always have Os in the most significant
bits beyond the ¢ least significant bits.

5.1 Width Pruning Using Information Con-
tent

Intuitively, information content captures the minimum num-
ber of bits that need to be retained at a particular port without
altering the functionality of the design. Hence, we can use infor-
mation content to reduce the widths of nodes and edges in the
graph, in the case when widths exceed the information content.
We first need the definition of a new type of node i.e. extension
node, which gets created in DFG, during the transformation.

DEFINITION 5.5. An eztension node is an operator node

which performs an extension on the input signal. The node has
two attributes : width and signedness (denoted by w(N) and t(N)
for node N), such that the result of extension operation is defined
as follows :
(i) if w(N) > w(ein) (where eiyn is the unique input edge of the
node), then result is a w(N) bit extension of the signal at the
destination port of e and the type of extension is same as t(N).
(i) if w(N) < w(en), then result is the w(N) many least signif-
icant bits of the signal on destination port of e.

LEMMA 5.6. If the intrinsic information content of an oper-
ator node N is (i,t) and w(N) > i, then the following transfor-
mation can be done without changing functionality of the DFG :
decrease width of N to i; remove all the outedges of N, connect
the output port of N to a new extension node and connect the
removed outedges of N to the output port of the new extension
node; the width and signedness type of the edge connecting N and
the new extension node is (w(N),X) (where X means either of
signed or unsigned is fine); the width and signedness type of the
new extension node are w(N) (old value) and t respectively.

LEMMA 5.7. If the information content at the destination
port of an edge in a DFG is (i,t), then the width and sign type
of the edge can be changed to i and t without changing the func-
tionality of the DFG.

The width transformations defined by the above Lemmas can
be performed while evaluating the information content in topo-
logical order from inputs towards outputs.

5.2 RefiningInformation Content Upper Bounds

x®/4

X@AC — ANQAB c4\®/4D
A

R %
0)
¢ 6
7 (All Edges Unsigned) !

z

@ (b)

Figure 4: Refining information content upper
bounds by safe rebalancing.

There are situations, in which, a safe rebalancing of a subgraph
of a DFG, can allow to obtain tighter (i.e. smaller) values of upper
bounds on information content of signals; in turn this can allow
for potentially greater merging and smaller widths of operators.

For example, consider the DFG shown in Fig. 4(a) which could
be part of a bigger DFG. Since the adders form a skewed tree, the
algorithm for computing information content computes (7,0) as
the upper bound on information content of signal Z (i.e. output
port of last adder). However, if we were to rebalance the tree as
shown in Fig. 4(b), the upper bound computed is (6,0). Note

that this rebalancing of the subgraph in a DFG did not alter its
functionality. Therefore once a subgraph has been identified as
safely rebalanceable, we can try to recompute upper bounds on
the output of the subgraph using a more balanced ordering of
operations in the graph. Note that, we need not actually rebal-
ance the nodes and alter the graph; but only need to come up
with a more balanced ordering of operators in order to compute
tighter upper bounds. In order to identify safely rebalanceable
subgraphs, we can use the following observation.

OBSERVATION 5.8. In a DFG, a cluster obtained from merge-

ability analysis is a safely rebalanceable subgraph (e.g. Gi, G
in Figure 1(b)). This is because, by its definition, output of clus-
ter is expressible directly as sum of products of input signals.

OBSERVATION 5.9. Given a DFG consisting of addition,
subtraction, multiplication and unary minus; let a cluster be such
that its unique output is expressible as a sum of constant multi-
ples of addends (e.g. z=5xb—4xd+3xf), then such a cluster
is a safely rebalanceable subgraph. Here we view each constant
integer product as multiple addends coming from the same signal
(e.g. 5xb is b+b+b+b+b and —4xd is (—d)+(—d)+(—d)+(—d));
so the output can be viewed as sum of addends derived from input
signals.

The above discussion suggests that after identifying clusters
using an initial mergeability analysis, we can recompute the in-
formation content of the output of the clusters by rebalancing
them. Further, if this recomputation leads to reduction in the
value of the width component of information content, it may al-
low further merging of operators.

‘We now consider the computational problem of computing tighter

upper bounds on information content of a cluster, which repre-
sents a sum of constant multiples of inputs. The following algo-
rithm Huffman_Rebalancing takes an expression representing
sum of constant multiples of input signals and computes an up-
per bound on integer value of information content of the output
signal using the optimal ordering of operations. This is modeled
after the minimum redundancy coding algorithm of [1].

Algorithm Huffman_Rebalancing
(Input : An expression representing sum of constant multi-
ples of input signals. Upper bounds on information contents
of the input signals are known.)
(Output : Upper bound on information content of output
signal of the expression.)
Step 1 : Create a priority heap structure H of integers as
follows : for each term ¢ = I in the expression (where c is
an integer constant and I is an input signal; put ¢ copies of
numeric value of information content of I.
Step 2 :

while (H has more than one value) {

minl = extractMin(H);
min2 = extractMin(H);
InsertValue(H, max{minl,min2}+1);

}

return extractMin(H); /* Return the single remaining value
in H *

End Algorithm
The following Theorem shows that the above algorithm com-

putes upper bound on information content which is the best pos-
sible among all possible orderings of operations..

THEOREM 5.10. Among all possible orderings of operations
in an ezrpression representing sum of constant multiples of in-
puts; the ordering defined by Huffman_Rebalancing algorithm
gives the tightest possible upper bound on information content of
expression result.

6. ALGORITHM FOR COMPUTING MAX-
IMAL CLUSTERS

We now return to the problem of partitioning a DFG into clus-

ters. We describe our algorithm for computing maximal clusters
based on the analyses of required precision and information con-
tent. The algorithm repeatedly does a bottom up traversal (out-
puts to inputs) of the DFG and identifies break nodes i.e. every
operator node N such that N is not mergeable with at least one
of the operators at the destination of its outedges. This defines a
partitioning of the graph into clusters; the clusters are connected
components obtained by removing those outedges of every break
node, whose destination nodes are not operator nodes. Following
conditions are used to identify break nodes.
Conditions for identifying break nodes : Assume that in-
put DFG G has been transformed based on analysis of required
precision and information content . Then an operator node N of
G, is a break node if one or more of following conditions hold :

1. Safety Condition 1 : For some outedge of N, the destina-
tion node is an extension node.

2. Safety Condition 2 : Let pi1,...,pm be the destination
ports of outedges of N. Let r(p;) denote the required pre-
cision of signal for each p;. Then
min{i;n: (N), max{r(pi),... ,7(pm)}} < w(N).

3. Synthesizability Condition 1 : For some outedge of N, the
destination node has multiplication operator.

4. Synthesizability Condition 2 : There is a node N’ such
that every directed path starting at N goes through N’
and there are no break nodes between N and N’ on any of
these paths.

Synthesizability condition (2) ensures that every cluster has a
unique operator node providing outputs; synthesizability condi-
tion (1) ensures that this unique output is expressible as sum
of products of inputs to the cluster. Then each cluster can be
synthesized as a sum of addends.

Before describing the clustering algorithm, we need to clarify
one more technical issue. If the algorithm for information con-
tent computation encounters an extension node, created by the
previous iteration of information content computation; it needs
to propagate information content across the extension node. The
following observation describes how this can be done.

OBSERVATION 6.1. Let N be an extension node and let (i,t)
be upper bound on information content at its input port. Letl e
be the inedge of N. Then an upper bound (io,to) on the output
port of N can be defined as follows :
(i) if ((t == t(N)) OR ((t == unsigned) AND (t(N) == signed)))
then
io = min{s, w(N)}; to = t(N);
(ii) if ((t == signed) AND (t(N) == unsigned)) then
io = min{w(e), w(N)}; to = L(N);

Note that after initial computation of required precision and in-
formation content , the algorithm for maximal merging enters the
iterative mode. Every iteration defines a partitioning based on
current values of information content and uses current set of clus-
ters to compute tighter upper bounds on the information content
of the output signals of clusters. Whenever the value of informa-
tion content at output of any cluster change, another iteration of
cluster definition is done with the anticipation that smaller in-
formation content could lead to more mergeability and result in
bigger and fewer clusters. This way the algorithm converges to a
partitioning with maximal safe clusters.

7. EXPERIMENTAL RESULTS

The new DFG partitioning algorithm has been implemented
and tested, as a dfg optimization and datapath operator merging
step in the BuildGates synthesis tool of Cadence Design Systems.
We used datapath intensive RTL testcases and collected experi-
mental data on the performance of the algorithm and compared

with results obtained using an older implementation of cdfg parti-
tioning algorithm. The older algorithm did mergeability analysis
using criteria similar to “leakage of bits” notion of [2] and with-
out doing any transformations based on information content and
required precision.

Using TSMC 0.25 micron technology cell library, we collected

two types of performance data :
(i) Longest path delay and area of the netlists obtained after syn-
thesis but before any timing driven gate level logic optimization.
(ii) Runtime of timing driven gate level logic optimization done
on netlists obtained from synthesis.

In Tables 1 and 2 respectively, we present the above two types
of data from five datapath-only testcases. To highlight the impact
of operator merging in datapath synthesis, Table 1 also includes
the data obtained using a synthesis flow which does not do any
operator merging. When the non operator-merging based flow
was used, the runtimes of logic optimization were much larger
than those with operator-merging based flows; so for fair com-
parison, we did not include their runtime in Table 2. To further
compare of the quality of the final netlists generated using old
and new merging algorithm, we have also included in Table 2,
the data on final longest path delay and final area after timing
driven logic optimation. All delay numbers are in nanseconds and
the area numbers are scaled down by a factor of 100.

Note that to collect data for both tables, we set the arrival
times at all inputs in each testcase to 0.

Testcases — D1 Do D3 Dy D3
No mg 14.47 | 18.01 | 33.59 | 29.23 | 25.89
Del. Old mg | 13.04 | 11.97 | 29.90 | 28.13 | 25.89
(ns) | New mg | 12.73 | 11.07 | 29.27 | 16.97 | 15.57
% red. 2.38 7.52 2.11 39.67 | 39.86
No mg 93.8 79.3 1866 490 279
Area Old mg 91.7 66.6 501 397 225
(unit) | New mg | 90.3 | 66.6 476 43 33.3

% red. 1.53 0 5 89.2 85.2
Table 2
Testcases — Dy Do D3 Dy D5

Target delay (ns)— | 5.0 4.0 | 21.0 | 10.5 | 14.0
Opt Old mg 470 | 1031 26 118 21
time New mg 6.8 208 17 2.2 1.3
(sec) % red. 98.5 | 79.8 [34.6 | 98.1 | 93.8

End Old mg 499 | 435 | 20.7 | 10.5 | 13.9
Del. New mg 4.99 [3.98 | 20.9 9.1 12.2
End Old mg 161 155 377 609 259
Area New mg 142 118 | 363 44 35

Testcase D; and D2 were created using multiple addition op-
erations which are potentially mergeable. These addition oper-
ations did not have any redundant widths in RTL code; so the
first pass of information-analysis leads to clusters which are not
distinguishable from those created by the old merging algorithm.
However, the post-clustering information analysis based on op-
timal reordering of operations, which is done by the second or
subsequent iteration of the new merging algorithm, allows to in-
fer smaller information content for output signals of clusters. This
allows the second or subsequent iterations to merge the set of clus-
ters created in previous iteration into bigger and fewer clusters.
This reduction in number of clusters, leads to the better longest
path delay and area values after initial synthesis. Since there were
no apparent redundant widths in RTL, the gains seen after the
initial synthesis do not seem as large as D4 and Ds. Nevertheless
during timing driven logic optimization, we see considerable ad-
vantages of creating larger clusters, and see significantly smaller
runtimes.

Testcases D4 and D5 were created with lot of redundancy in
the bit widths of intermediate wires in RTL, to test the effect of
information-analysis based width reduction on timing and area of
netlists. In these testcases, the new merging algorithm was able
to prune the redundant widths to the minimum required, and this
in turn helped in reducing the number of clusters created. As a
result, we note that the reduction in longest path delay and area

after the initial synthesis is quite significant. This also translates
to drastic reduction in the runtime of the timing driven logic
optimization for these two testcases, as seen in Table 2.

Testcase D3 represented a sum of products of sum computa-
tion, where information-based-analysis allowed the new merging
algorithm to prune with widths of outputs of products and merge
them with the the final addition.

The above results demostrate the benefits of using analyses of
required precision and information content of signals in DFGs for
operator merging based datapath synthesis.

8. CONCLUSION

We have presented new algorithmic techniques for analyzing
and optimizing DFGs consisting of datapath operators with the
objective of increasing the scope of operator merging and reducing
the area and delay of the netlists obtained from synthesis. Our
experimental results show that use of these techniques can reduce
the area and delay of the netlists and considerably reduce the
effort required by timing optimization to meet timing constraints
for datapath intensive designs.

91} REFERENCES

. Huffman, A method for the construction of
minimum- redundancy codes, Proceedings of the IRE, 40(9),
1952, pp. 1098-1101.

[2] T. Kim, W. Jao, S. Tjiang, “Arithmetic Optimization using
Carry-Save-Adders”, Proceedings of the 35th Design
Automation Conference, 1998, pp.433-438.

[3] A.R. Omondi, “Computer Arithmetic Systems :
Algorithms, Architectures and Implementations”, Prentice
Hall International Series in Computer Science, 1998.

[4] J. Um, T. Kim, C.L. Liu, “Optimal Allocation of
Carry-Save-Adders in Arithmetic Optimization”
Proceedings of International Conference on Computer
Aided Design, 1999, pp.410-413.

[5] J. Um, T. Kim, C.L. Liu, “A Fine-Grained Arithmetic
Optimization Technique for High-Performance/Low-Power
Data Path Synthesis” Proceedings of the 37th Design
Automation Conference, 2000, pp.98-103.

[6] C.S. Wallace, “A suggestion for a fast multiplier” IEEE
Trans. Electron. Comput., Feb. 1964, vol EC-13, pp.14-17.

[7] N. Weste, K. Eshraghian, “Principles of CMOS VLSI
Design - A System Perspective” Addition Wesley
Publishers, 1985.

[8] M. Willems, V. Bursgens, H. Keding, T. Grotker, H. Meyr,
“System Level Fixed-Point Design Based on an
Interpolative Approach”, Proceeding of the 3/th Design
Automation Conference, 1997, pp. 293-298.

	Main
	DAC01
	Front Matter
	Table of Contents
	Session Index
	Author Index

