
Signal Representation Guided Synthesis Using Carry-Save
Adders For Synchronous Data-path Circuits

Zhan Yu
Integrated Circuits and

Systems Lab.
University of California
Los Angeles, CA 90095

zhanyu@icsl.ucla.edu

Meng-Lin Yu
Circuit and Systems Lab.

Agere Systems
Holmdel, NJ 07733
myu@agere.com

Alan N. Willson, Jr.
Integrated Circuits and

Systems Lab.
University of California
Los Angeles, CA 90095

willson@icsl.ucla.edu

ABSTRACT
Arithmetic transformations using carry-save adders have been ex-
ploited recently in design automation but existing transformation ap-
proaches only optimize combinatorial functions. Most applications
need synchronous circuits and it is known that techniques that move
the positions of the registers, such as retiming, can significantly re-
duce the cycle time of a synchronous circuit. However, retiming dis-
regards arithmetic transformations and its power is limited by the cir-
cuit topology. This work is the first to exploit carry-save arithmetic
transformations together with the moving of the register positions.
To enable such transformations, we first propose the use of a new
multiple-vector signal representation. Next, we use multiple-vector
signal representation as a common guide for all of our simultaneous
carry-save arithmetic transformations with the moving of the register
positions. Specifically, we propose, operation forward and opera-
tion backward carry-save transformations, which are transformations
across register boundaries. We also propose operation duplicate and
operation merge transformations to exploit the resource sharing and
timing trade-offs in the implementation of a multiple-fanout network.
Finally, we propose an efficient and effective heuristic that selectively
applies a sequence of transformations to optimize the timing and the
area of a synchronous circuit. Experimental results show that the
proposed techniques significantly out-perform previous approaches.

1. INTRODUCTION
Arithmetic functions are key building blocks in VLSI data-path

circuits. Among them, an efficient implementation of addition is
especially important since it is the fundamental ingredient of other
operations such as subtraction and multiplication. An n-bit carry-
save adder (CSA) is shown in Fig. 1-(a), which is composed of n
disjoint full adders (FAs). It takes three binary vectors (X , Y and Z)
as inputs and its output is represented by two binary vectors (the sum
vector S and the carry vector C, which we call a carry-save repre-
sentation.) Instead of propagating the carry signals to the MSBs and
generating the output in vector-merge representation as the vector-
merge adder (VMA) in Fig. 1-(b), a CSA “saves” the carry signals
in a carry vector C. Since carry-save addition avoids the time-costly

This research was supported by a grant from Lucent Technologies
and MICRO 00-104.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2001, June 18-22, 2001, Las Vegas, Nevada, USA
Copyright 2001 ACM 1-58113-297-2/01/0006 ...$5.00.

c

c0s0

c

c1s1c2s2cn-1

c

sn-1cout

z0y0x0z1y1x1zn-1yn-1xn-1

.

cin

(a) n-bit carry-save adder

s0s1sn-1

y0x0y1x1yn-1xn-1

cinVector-Merge Addercout

(b) n-bit vector-merge adder

Figure 1: Carry-save adder and vector-merge adder.

carry-propagation operation, it has only one full-adder delay and is
particularly suitable for high-speed implementation of arithmetic op-
erations.

Arithmetic transformations using CSAs have been exploited re-
cently in [1]. Variations of the techniques proposed in [1] have also
been reported [2, 3]. Carry-save transformations across non-addition
operators were proposed in [2]. The timing and area trade-offs of
carry-save implementation for multiple addition trees were exploited
in [3]. However, all these transformation techniques [1, 2, 3] only
optimize combinatorial circuits. They are obviously limited by the
register boundaries and cannot be applied to optimize synchronous
data-path circuits.

Retiming [4] is an important technique for optimizing synchronous
circuits and it can be formulated as a mixed-integer linear program-
ming (MILP) problem. Since a carry-propagation operation is more
time-costly than carry-save operations, [5] separates them by intro-
ducing carry-save signal representation in the joint module selection
and retiming optimization. The techniques proposed in [5] are capa-
ble of producing faster and smaller circuits in comparison with sim-
ilar techniques that handle vector-merge signal representation alone,
however it is limited by retiming, which assumes static circuit topol-
ogy and disregards arithmetic transformations.

To further illustrate the limitations of performing retiming and
arithmetic transformations separately, we examine the direct-form
FIR filter example in Fig. 2-(a). Because of its circuit topology,
a direct application of the retiming with carry-save representation
technique in [5] on the Fig. 2-(a) filter produces an implementation
of all the addition operators along the critical path using carry-save
arithmetic and a VMA at the output as in Fig. 2-(b). Such an imple-
mentation has a critical path delay of 11 CSA delays and one VMA
delay (we assume each multiplier has three partial-products). On the
other hand, if a carry-save arithmetic transformation on combinato-
rial blocks is applied first, as in [1], the addition part of the multipliers
and the chain of adders (as circled in Fig. 2-(a)) will be identified and
reconstructed as a balanced CSA tree followed by a VMA, as shown
in Fig. 2-(c). Next, however, even if we then attempt retiming, the
critical path will still consist of six CSA delays and one VMA de-
lay. The transposed-form FIR filter of Fig. 2-(d) (which has a much
shorter critical path–three CSA delays and one VMA delay) cannot
be generated from Fig. 2-(a) unless carry-save transformations and

(a) (b)

out

in

csa

critical path

csa

csa

vm
a

csa

csa
csa

csa

csa

csa

csa

csa

csa
csa

csa

csa
csa

in

out

critical path

in

out

(d)

csa

csa

vm
a

critical
path

csa

csa

csa

csa

csa

csa

csa

csa

csa

csa

csa

csa

csa

csa

in

out

csa csa csa csa csa
csa csa csa
csa csa
csa
csa
csa

(c)

critical
path

csa
csa

csa

vma

Figure 2: Motivation Example.

retiming are applied simultaneously.
In this work, we improve the existing transformation-based and

retiming-based algorithms by simultaneous transformation and re-
timing. This is achieved by a set of carry-save transformations across
register boundaries and algorithms to use these transformations to
optimize a synchronous circuit. Note that a simultaneous transforma-
tion and retiming technique has been exploited in the logic synthesis
domain [6]. However, there are sharp differences between logic func-
tions and arithmetic functions (including their different delay mod-
els and different sets of applicable transformations). Therefore, logic
synthesis techniques cannot be applied directly. This work is the first
that exploits carry-save arithmetic transformations for synchronous
data-path circuits.

Beyond the handling of transformations and the moving of regis-
ter positions separately, all existing approaches have another hidden
limitation: only trade-offs between carry-save arithmetic and carry-
propagation operations are exploited. The joint module selection and
retiming techniques in [5] can only insert registers between carry-
save and carry-propagation operations by distinguishing carry-save
and vector-merge signal representations; they are not capable of in-
serting registers inside a CSA tree. The transformation-based tech-
niques in [3] only exploit the resource sharing of the VMAs among
different addition trees but fail to exploit the resource sharing flexi-
bilities inside a CSA tree.

We observe that the essence of using CSAs lies in a signal repre-
sentation property: the number of binary vectors used to represent
a signal. We will further discuss this point and propose the use of
multiple-vector signal representation as a guide for our arithmetic
transformations. We will show that using the signal representation
property overcomes all the above limitations of existing techniques.

We will first introduce, in Section 2, the multiple-vector signal rep-
resentation concept (and its advantages) as a guide for our transfor-
mations. Next, in Section 3, we will present multiple-vector signal
representation guided carry-save arithmetic transformations across
register boundaries, and for multiple-fanout networks. We will dis-
cuss the circuit timing and area trade-offs using these transforma-
tions. In Section 4, we will show how to use these transformations to
optimize the timing and the area of a synchronous circuit. Our exper-
imental results in Section 5 will show that the proposed method out-
perform existing combinatorial transformation techniques [1] and the
retiming with carry-save representation technique [5]. Finally, we
summarize our conclusions in Section 6.

2. MULTIPLE-VECTOR SIGNAL
REPRESENTATION

To explain the concept of a multiple-vector signal representation,
we first consider the task of adding together n binary vectors. For an

addition operator that takes these n (assume n 3) binary vectors as
input, we can simply pass the n binary vectors directly to the opera-
tor’s output and view the output signal as being represented by these
n binary vectors. Alternatively, we can assign a CSA to any three
of the vectors and convert them into n 1 vectors. Each time we
allocate a CSA, we reduce the number of vectors that represent the
output by one. This implies that we can actually use up to n vectors
to represent a signal (which we call the multiple-vector signal repre-
sentation), and view the addition operation as a signal representation
conversion operation. This signal representation conversion view is
not limited to addition operations; many arithmetic operations, such
as multiplication and subtraction can be transformed into addition
operations [1]. For simplicity, we only discuss addition operations in
this paper.

We now define the size of a multiple-vector signal representation.
If a signal is represented by n binary vectors, we say that the size of
this representation is n. Therefore, a carry-save representation has
size 2 and a vector-merge representation is of size 1. We will use sig-
nal representation and the size of signal representation interchange-
ably when there is no ambiguity. We refer to increasing and decreas-
ing a signal representation as increasing or decreasing the size of a
signal representation.

There is a circuit cost and a delay associated with signal represen-
tation conversion. Assume an addition operator has n input binary
vectors and an output signal representation of size m (n m). For
m 1, n m CSAs must be allocated to implement the addition op-
eration. If m 1, a VMA must be allocated, which usually has higher
cost and larger circuit delay in comparison with a CSA. Given n input
vectors of an addition operator, along with their signal arrival times,
and the size of the output signal representation m, the timing-optimal
construction of a CSA tree can be generated by a polynomial-time
greedy algorithm similar to the construction of a Huffman tree [7].

A synchronous data-flow graph (DFG) G V E is commonly used
to represent a synchronous circuit. It is a directed graph, where each
vertex X V represents an operation and each edge e E represents
a connection between two operations. A non-negative weight w e
is associated with each edge e, and it corresponds to the number of
registers on e. The size of the signal representation is expressed as a
positive integer s e associated with each edge e. We call a DFG with
the signal representation property a signal-representation flow-graph
(SFG).

With the multiple-vector signal representation property associated
with each edge in the SFG, we can now overcome the limitations of
the existing approaches discussed in Section 1:

1. Using “multiple-vector” signal representation enables carry-save
arithmetic transformations across register boundaries. The size
of the signal representation s e on a registered edge e : w e
0 affects the computation distribution between the head and tail
vertices of e. Therefore, we can perform transformations across
the register boundaries by changing s e .

2. Using “multiple-vector” instead of carry-save and vector-merge
signal representations allows us to insert registers inside a CSA
tree. The MILP technique in [5] limits s e to be 1 or 2, which im-
plies a registered signal can only have carry-save or vector-merge
signal representation. This may separate CSA trees from VMAs.
With s e 2, we now allow word-level pipelining inside a CSA
tree.

3. Using multiple-vector signal representation gives us resource shar-
ing flexibilities inside a CSA tree. Given an operator with multiple
fanouts, allowing its output signal representation to be 1 or 2 ex-
ploits the resource sharing of a VMA on different fanouts. Allow-
ing its output signal representation to be larger than 2 enables us

to share part of the CSA tree and to vary the extent of the sharing
as needed.

With multiple-vector signal representation, the traditional signal
data-arrival-time and required-time concepts should be modified ac-
cordingly. For edge e with s e n, each of the n vectors has its
own data-arrival-time. It is obviously not optimal to use one data-
arrival-time (the largest one) for all the vectors. We define a data-
arrival-time profile of the signal on e, which is an ordered list of
the data-arrival-times of the n vectors. The required-time profile of
a signal should also be an ordered list of the required-times that cor-
respond to each vector. We will say that a signal is timing-critical
or critical if its data-arrival-time profile is not upper bounded by its
required-time profile.

3. SIGNAL REPRESENTATION GUIDED
TRANSFORMATIONS FOR
SYNCHRONOUS CIRCUITS

We will show, in this section, that multiple-vector signal represen-
tation allows us to perform carry-save transformations across register
boundaries, exploit area and timing trade-offs in the implementation
of multiple-fanout networks, and perform arithmetic transformations
across non-addition operators. We also examine the circuit timing
and area trade-offs associated with the multiple-vector signal repre-
sentation property.

3.1 Transformations Across Register
Boundaries

Carry-save transformations across register boundaries are achieved
by changing the signal representation s e on a registered edge e :
w e 0, since s e determines the computation’s distribution be-
tween the head and tail vertices of e. For example, in the DFG of
Fig. 3-(a), edge e : w e 1 connects the addition operators X and Y .
The signal representations of all edges are given except for edge e.
Figs. 3-(b) and (c) show two possible solutions of s e , where each
arrow represents a binary vector and the numbers in parenthesis are
the data-arrival-times of each binary vector. A CSA is assumed to
have a sum and carry delay of 2. A circle represents an operator with
its implementation illustrated in detail. In Fig. 3-(b), s e 3, while
s e 2 in Fig. 3-(c). Increasing s e moves part of the signal rep-
resentation conversion operation in X forward into operator Y , while
decreasing s e moves part of the signal representation conversion
operation in Y backward into X . We emphasize that the transfor-
mation from Fig. 3-(b) to Fig. 3-(c) cannot be obtained by retiming
alone, since it involves the reconstruction of the CSA trees in X and
Y . A transformation from Fig. 3-(b) to Fig. 3(c) is a carry-save arith-
metic transformation across register boundaries, and it is achieved
by changing s e . The circuit area and timing trade-offs associated
with s e are also reflected in Fig. 3. The solution in Fig. 3-(c), in
comparison with Fig. 3-(b), requires higher hardware cost and longer
circuit delay in X , but lower circuit cost and earlier data-arrival-time
at the output of Y . Overall, reducing s e results in smaller circuit
area since the number of registers needed on edge e is reduced.

3.2 Transformations for Multiple-fanout
Networks

A multiple-fanout network is a subgraph of an SFG G V E , which
includes an operator X with more than one fanout, the output edges
of X and the fanout operators of X . For example, Fig. 4-(a) shows
a multiple-fanout network, where addition operator X fans out to
addition operators Y and Z. A carry-save transformation for this
multiple-fanout network is achieved by changing the output signal

csa

(4,6,8,8)

csa
csa

csa
csa

(0)

(4,4)

csa

(0)

(2,2)

X

Y

(10,10,8)

(12,12)

(b) (c)

(4,6,8,8)

(a)

X

Y

e

X

Y

s(e) = 41

s(e) = 2
3

s(e) = 12

Figure 3: Signal Representation on Registered Edge.

(a)

X

YZ

ez ey

s(e) = 3

csa

(8,2,0)

csacsa

(8,8) (0)

(8,12,12) (12,12)

X

Z Y csa

(8,2,0)

csa
csa

(8,8) (0)

(8,12,12) (10,10)

X

Z

Ycsa

(b) (c)

(10,10) (8,2,0)s(e) = 2

s(e) = 3 s(e) = 2

s(e) = 1

1

2

4 5

3

Figure 4: Signal Representation of Multiple-fanout.

representation of X , since this signal representation affects the com-
putation’s distribution among X and its fanout operators. In Fig. 4-
(a), the signal representations on all edges are given except for the
output edges of X : ey and ez. Figs. 4-(b) and (c) show two possible
solutions for s ey and s ez . In Fig. 4-(b), s ez s ey 2 while
s ez s ey 3 in Fig. 4-(c). Increasing s ez and s ey moves
part of the signal representation conversion operation out of X and
duplicates this operation in fanout operators Y and Z. Conversely,
decreasing s ez and s ey would merge part of the computation in Y
and Z back into X . In general, increasing the output signal represen-
tation of an operator with multiple fanouts requires more circuit area,
but may improve the timing of its fanout operators. This is illustrated
in Fig. 4-(c), where Y has an earlier output data-arrival-time profile
in comparison with Y in Fig. 4-(b).

The technique proposed in [3] exploits trade-offs similar to those
described here, however, they are limited to the sharing of the VMAs
by allowing s ez s ey 1 2. In this work, we extend the resource
sharing to the inside of a CSA tree by allowing s ez s ey 2 and
by allowing transformations across register boundaries.

3.3 Transformations Across Non-addition
Operators

Carry-save transformations across a non-addition operator X are
achieved by changing the signal representation of the input edge e
of X . Since allowing s e 1 usually implies a significant hard-
ware increase in X , we only allow s e 1 2. That is, we allow
the flexibility of performing carry-propagation at the input of X or
not doing so. In general, increasing the input signal representation
of non-addition operators may trade circuit area for timing improve-
ment. Such transformations have been discussed in [2]. Our work
puts this kind of transformation into the framework of signal repre-
sentation guided transformations and allows transformations across
register boundaries.

4. OPTIMIZATION ALGORITHMS
We now present algorithms that use signal representation guided

transformations to optimize a synchronous circuit. We first define,
in Section 4.1, some terms used in later discussions. Next, in Sec-
tion 4.2, we discuss the algorithms that perform signal representation

guided transformations in a synchronous data-path circuit. Finally, in
Section 4.3, we propose an efficient and effective local search algo-
rithm that applies these transformations to optimize the clock period
T and the area of a synchronous circuit.

4.1 Background
We define the following notation. We denote the type of vertex X

as type X . Functions i X and o X give, respectively, the number
of input and output vectors of vertex X respectively. A vertex X is a
tail of a signal path if all its output edges have non-zero weight. A
vertex X is a head of a signal path if at least one of its input edges
has non-zero weight. To retime a vertex X by r is to reduce the
weight of each output edge of X by r and increase the weight of each
input edge of X by r. To retime a vertex X by r is simply the oppo-
site. When we disconnect an edge e from a vertex and reconnect it to
another vertex, its weight w e and signal representation s e remain
unchanged unless mentioned otherwise. Assuming each vertex has
only one output, an edge e is a multiple (single) fan-out edge if there
does (not) exist another e with tail e tail e . An SFG G0 V0 E0
is T -feasible with clock period T if the signal data-arrival-time pro-
files of all vertices X V0 are upper bounded by T .

Given a design represented by a DFG G V E , we first initialize it
into a canonical SFG G0 V0 E0 with signal representation proper-
ties, in which there exists no zero-weight single-fanout edge connect-
ing two addition operators, and where a timing-optimal CSA tree [7]
is used to implement each addition operator. The initialization algo-
rithm identifies addition trees in the combinatorial blocks of a syn-
chronous circuit according to the rules in [1], then merges all addition
operators of the same addition tree into one addition operator vertex.
The signal representation properties on each edge are then assigned
accordingly. Since the algorithm in [1] does not recognize registers,
we assign all registered edges e : w e 0 a signal representation
s e 1.

With carry-save arithmetic, if a transformation affects the input
data-arrival-times of an addition operator X , we must reconstruct the
CSA tree that implements X . This is because we want to implement
each addition operator vertex using a timing-optimal CSA tree [7]
which is constructed according to the data-arrival-times of its inputs.
After each transformation, we need to update the implementation and
timing information of all affected vertices.

During our transformations, we always seek to maintain the SFG
in its canonical form, so that the largest combinatorial addition tree
is identified and implemented with a single CSA tree to obtain the
best timing performance.

4.2 Signal Representation Guided
Transformation Algorithms

The problem of minimizing the clock period T using transforma-
tions is approached by generating a sequence of SFGs that are T -
feasible for decreasing values of T . Transformations are applied to
the timing critical vertices in an SFG to eliminate critical paths. The
problem of minimizing the circuit area under a given clock period T
assumes that we already have a T -feasible SFG G0 V0 E0 . Local
transformations are applied to reduce the circuit area. In this section,
we discuss how to identify a candidate vertex for a signal represen-
tation guided transformation and how to apply a transformation for
timing or area optimization.

4.2.1 Operation Forward
The operation forward transformation could be used to optimize

the timing or the area of a synchronous circuit. Due to space limita-
tions, we only elaborate on the use of operation forward for timing
optimization.

(a)

X

o(X)

(b)

X

s(e)=o(X)

Y

(c)

X

e

Y

(d)

X

(e)

Y

e

X

o(Y)=o(X)

(f)

Y

e

X

e1 e2 e3

e1

e2 e3

e1

e2 e3

Figure 5: Operations Forward and Backward.

A candidate vertex X for the operation forward transformation in
timing optimization is a tail vertex of a critical path in the SFG. If
X is an addition operator, operation forward seeks to increase the
output signal representation of X until X is no longer timing-critical.
If X is a non-addition operator, operation forward simply retimes
X by 1. The following algorithm describes the operation forward
transformation for timing optimization with a target clock period T .

ALGORITHM 1 (OP-FWD(X,T))

1. Given a target clock period T , and vertex X which is a tail of a
critical path and has an output signal representation o X .

2. if type X addition
retime X by 1, goto 4.

endif

3. if type X addition

Substitute X with addition vertices X , Y and edge e : X
e

Y ,
with w e 0, s e o X .
Retime Y by 1.
Transform the SFG to its canonical form.
while ((s e i X) or (X is timing-critical))

s e s e 1.
Update implementation and timing of affected operators.

endwhile
endif

4. If no new critical path is created, accept transformation.

An example of the operation forward transformation for timing
optimization is given in Figs. 5-(a), (b) and (c). Fig. 5-(a) shows a
candidate addition operator X with output signal representation o X .
We first replace X with X

e
Y , as in Fig. 5-(b), where Y is an ad-

dition operator which passes all of its input vectors directly to its
output. Next, we retime Y by 1 to obtain Fig. 5-(c), and transform
the SFG into its canonical form if possible. Finally, we reduce s e
until X is no longer timing critical.

4.2.2 Operation Backward
The operation backward transformation can similarly be used for

both timing and area optimization. A candidate vertex X for opera-
tion backward is a head node of a critical path. If X is not an addition
operator, we simply examine whether we can retime X by 1. An
example of the operation backward transformation for timing opti-
mization with candidate addition vertex X is shown in Fig. 5-(d). We
first allocate a new addition operator Y . We disconnect all registered
input edges of X (e2 and e3), and reconnect them to the input of Y .
Next, we connect the output of Y to the input of X via zero-weight
edge e. Let Y pass all of its input vectors directly to its output, i.e.,
s e o Y i Y s e2 s e3 . The result of this step is shown in
Fig. 5-(e). We then retime Y by 1 to obtain Fig. 5-(f), and transform
the SFG into its canonical form if possible. Finally, we reduce s e
and seek to find the minimum s e so that X is not timing-critical,
and Y is not a new critical vertex.

(b)

X

U V W

eu ev ew

Y

(a)

X
o(X)

U V W

eu ev ew

(c)

X
o(X)

U V W

eu ev ew

Figure 6: Operation Duplicate and Merge.

4.2.3 Operation Duplicate
The operation duplicate transformation is used for timing opti-

mization and its candidate operator X is a timing-critical addition
operator with multiple fanouts. An example of using operation du-
plicate for timing optimization is shown in Fig. 6-(a) where the can-
didate operator X has three addition operator fanouts U , V and W .
For fanout operator U of X we increase o X and find the minimum
o X that makes U non-critical. We record this value as s eu . We
do the same to V and W . In this example, let us assume we obtained
s eu 4 and s ev s ew 3 for Fig. 6-(a). Next, we set the new
value of o X max s eu s ev s ew 4, and we allocate a new
addition operator Y with o Y s ev s ew 3 and connect it
with X , V and W as in Fig. 6-(b). We then update the implementation
of affected vertices to conclude our operation duplicate transforma-
tion. If we combine operation duplicate with operation forward, we
will have a transformation across register boundaries. We will not
elaborate due to space limitations.

4.2.4 Operation Merge
The operation merge transformation targets a non-critical addition

operator X with multiple fanouts. It is mainly used for area opti-
mization. For the multiple-fanout network in Fig. 6-(c), we assume
X and its fanout operators U , V and W are not timing-critical. Op-
posite to the operation duplicate transformation, the operation merge
transformation first decreases o X to find the minimum signal repre-
sentation for each fanout edge eu, ev and ew of X so that U , V and W
are not timing-critical. Next, we reconstruct the multiple-fanout net-
work according to s eu , s ev and s ew . If we allow the change of
signal representation on registered edges (w eu , w ev or w ew are
non-zero), we have an operation merge transformation across register
boundaries.

4.3 Efficient Search Algorithm
A transformation-based optimization method applies a series of

transformations to optimize the timing or the area of an SFG. If we
are restricted to one kind of transformation at a time, we may soon
find that the timing or area of an SFG may not be further improved
by this transformation alone, while it actually can be improved by
other transformations or combinations of two (or more) transforma-
tions. However, if we consider multiple transformations or combined
transformations at a single time, we expand the local search space but
this requires more CPU time and more memory to store temporary
SFGs. To solve this problem efficiently, we propose an efficient yet
effective local search algorithm using the following strategies:

1. Use combined transformations. Combined transformations are
used in both timing and area optimizations.

(a) In timing optimization, we consider all transformations that
could improve the timing of a timing-critical vertex. As we
apply a transformation to optimize the cycle time of a syn-
chronous circuit, we usually need to check whether the trans-
formation creates new critical vertices and we can only accept
transformations that reduce the number of critical paths. How-
ever, we would not like to limit our local search space by this

Table 1: Hardware Module Library
Module Cost Delay (ns)

16-bit carry-propagate adder 252 10
16-bit carry-save adder 128 2

16-bit register 128 0

criterion. Instead, if a transformation creates new critical paths
that can be eliminated using another transformation, we ap-
ply the combination of the two transformations to increase the
scope of our local search.

(b) In circuit area optimization, we consider all transformations
that could reduce the circuit area under clock period T . If a
transformation creates new critical paths, we seek to eliminate
these critical paths by using transformations for timing opti-
mization.

(c) The combination of operation duplicate and operation merge
can be used to find the optimal signal representation for each
fanout edge of a multiple fanout operator. When operation du-
plicate is applied on a critical addition vertex with multiple
fanouts and a non-critical addition vertex with multiple fanouts
is created, we can apply operation merge to reduce the circuit
area. It can be shown that operation merge does not create new
critical paths in an SFG.

2. Rank the priority of different transformations. During timing op-
timization, operations forward, backward, duplication, and trans-
formations across non-addition operator boundaries, can all be ap-
plied to a timing-critical vertex in an SFG. However, we give these
transformations different priorities. In general, operation forward
and operation backward are likely to be able to eliminate critical
paths with lower cost than operation duplicate or allowing carry-
save input representation to multipliers. (Intuitively, operation du-
plicate increases circuit area in all fanout vertices of the candidate
vertex, and allowing carry-save input representation vs. a vector-
merge representation for a multiplier will cost us approximately
another multiplier circuit.) Therefore, we give a higher priority to
the use of operation forward and operation backward to prevent
the circuit area from increasing too fast. Such priority is achieved
by searching for acceptable operation forward and operation back-
ward transformations first. If such transformations are found, we
choose one with minimum area cost. Otherwise, we search for ac-
ceptable operation duplicate transformations and increasing input
signal representations of non-addition operators.

Using these strategies, we overcome the limitations of local search
by expanding the local search space selectively using our combined
transformations and by reducing the local search space selectively
with prioritized transformations.

5. EXPERIMENTAL RESULTS
We have applied our method to several digital signal processing

applications. Sample hardware delay and cost models are summa-
rized in Table 1; they have been extracted from the Synopsys LSI 10k
logic library.

We first initialized the combinatorial blocks between registers us-
ing the algorithm of [1] and then applied our algorithm to reduce
the clock period of the design. The synthesis job took several sec-
onds of CPU time on a Sparc Ultra-10 workstation and the synthe-
sis results for timing optimization are summarized in Table 2. The
proposed transformations across register boundaries significantly re-
duced the cycle time of the circuits generated using the algorithm
in [1]. We also compare, in Table 2, with the result of joint retiming

Table 2: Timing Optimization
Design Initial [1] MILP model [5] Multiple-vector Compare with [1] Compare with [5]

Timing Area Timing Area Timing Area Timing Area Timing Area
BIQUAD2 70 21108 56 25460 46 25712 -34.3% +21.8% -17.9% +1.0%

FIR16 22 36672 14 39420 12 36860 -45.5% +0.5% -14.3% -6.5%
FIR8D 32 17276 50 17276 22 17404 -31.3% +0.7% -56.0% +0.7%
EWF5 94 24004 78 35404 66 38472 -29.8% +60.3% -15.4% +8.7%
EWF 66 14804 56 18772 50 21592 -24.2% +48.9% -10.7% +15.0%
JAU4 64 12124 46 17512 40 18652 -37.5% +53.8% -13.0% +6.5%
LAT4 116 11360 90 18920 78 20068 -32.7% +76.6% -13.3% +6.1%
LWDF 34 6120 28 9712 28 8812 -29.0% +35.5% 0% -9.3%

LWDF2 62 12244 48 15952 44 16596 -17.6% +44.0% -8.3% +4.0%
SS 28 18804 24 27892 20 27892 -28.6% +48.3% -16.7% 0%

Table 3: Area Comparison
Design Clock MILP Multiple- Area

Period T model [5] vector Comparison

BIQUAD2 66 23412 21360 -8.8%
56 25460 21360 -16.1%

EWF5 92 25664 23744 -7.5%
82 33096 28984 -12.4%
78 35404 30264 -14.5%

EWF 64 16592 15052 -9.3%
60 18512 16976 -8.3%
56 18772 19028 +1.4%

JAU4 54 13536 12372 -8.6%
46 17512 16344 -6.7%

LAT4 100 16876 15200 -9.9%
92 18796 17120 -8.9%

LWDF 30 8172 8300 +1.6%
28 9712 8812 -9.3%

LWDF2 60 12360 12364 0%
52 15828 14416 -8.9%

SS 26 23412 19188 -18.0%
24 27892 23412 -16.1%

with carry-save representation using mixed-integer linear program-
ming (MILP) [5]. These results show that our signal representation
guided transformation method is capable of generating faster circuits
than those produced by the MILP method with a small area penalty.

The following comments are directed toward the relative useful-
ness of the proposed transformations in timing optimization. The
proposed operation forward and backward transformations are most
powerful in minimizing the clock period for designs that have few
operators with multiple fanouts, such as BIQUAD2, FIR16, FIR8D.
For designs that contain many operators with multiple fanouts, such
as EWF5, EWF, JAU4, LAT4, LWDF, LWDF2, SS, the use of opera-
tions forward and backward alone cannot successfully improve the
circuit timing. The power of operation duplicate and its combination
with operations forward and backward is reflected in these design
examples and results.

The advantage of using signal representation guided carry-save
transformations across register boundaries is clearest for clock pe-
riod optimization, as shown in Table 2. However, our algorithm is
also capable of producing circuit implementations having relatively
small area. We compare, in Table 3, the circuit area optimization re-
sults with those of the MILP model [5] under various clock period
T constraints. Since transformations relieve the timing bottlenecks,
the proposed algorithm using signal representation guided transfor-
mations achieves lower or similar circuit area cost when compared
with [5]. However, since our method is based on local transforma-
tions, rather than global optimization using mixed-integer linear pro-
gramming [5], there are cases where we obtain a circuit with larger
area than the result obtained using MILP. But such area increases,
when they occur, are very limited, as indicated in Table 3.

6. CONCLUSIONS
In this work we have exploited carry-save arithmetic transforma-

tions together with the moving of the register positions. To enable
such transformations, we have proposed a new multiple-vector sig-
nal representation and have shown the properties of a signal rep-
resented by multiple-vectors. We have used multiple-vector signal
representation as a common guide for all our simultaneous carry-
save arithmetic transformations with the moving of the register posi-
tions. Specifically, we have proposed operation forward and opera-
tion backward carry-save transformations, which are transformations
across the register boundaries. We have also proposed operation du-
plicate and operation merge transformations to exploit the timing
and area trade-offs for operators with multiple fanouts. These trans-
formations are also performed across register boundaries. To use sig-
nal representation guided transformations to optimize a synchronous
circuit, we have proposed an efficient local search algorithm for tim-
ing and area optimization. Experimental results have shown that the
proposed techniques out-perform previous approaches.

7. REFERENCES
[1] T. Kim, W. Jao, and S. Tjiang, “Arithmetic optimization using

carry-save-adders,” in Proc. Design Automation Conf., Jun.
1998, pp. 433–438.

[2] T. Kim and J. Um, “A timing-driven synthesis of arithmetic
circuits using carry-save-adders,” in Proc. Asia and South
Pacific Design Automation Conf., Jan. 2000, pp. 313–316.

[3] Y. Kim and T. Kim, “An accurate exploration of timing and area
trade-offs in arithmetic optimization using carry-save adder
cells,” in Proc. Midwest Synposium on Circuit and Systems,
Aug. 2000.

[4] C.E. Leiserson, F.M. Rose, and J.B. Saxe, “Optimizing
synchronous circuitry by retiming (preliminary version),” in
Third Caltech Conf. on Very Large Scale Integration, Mar.
1983, pp. 87–116.

[5] Z. Yu, K.-Y. Khoo, and A. N. Willson Jr., “The use of carry-save
representation in joint module selection and retiming,” in Proc.
Design Automation Conf., Jun. 2000, pp. 768–773.

[6] G. De Micheli, “Synchronous logic synthesis: Algorithms for
cycle-time minimization,” IEEE Trans. on Computer-Aided
Design of Integrated Circuits and Systems, vol. 10, pp. 63–73,
Jan. 1991.

[7] J. Um, T. Kim, and C. L. Liu, “Optimal allocation of carry-save
adders in arithmetic optimization,” in Proc. International Conf.
on Computer-Aided Design, Nov. 1999, pp. 410–413.

	Main
	DAC01
	Front Matter
	Table of Contents
	Session Index
	Author Index

