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ABSTRACT is much more likely that one has to start from an already existing

In this paper we present an approach to incremental design of disSystem running a certain application and the design problem is to
tributed embedded systems for hard real-time applications. We staifnplement new functionality on this system. In such a context it is

from an already existing system running a set of applications and th&ery important to operate no (or as few as possible) modifications to
design problem is to implement new functionality so that the alreadjhe already running application. The main reason for this is to avoid
running applications are not disturbed and there is a good chancelnnecessarily large design and testing times. Performing modifica-
that, later, new functionality can easily be added to the resulted systions on the (potentially large) existing application increases design
tem. The mapping and scheduling problem are considered in the coriime and, even more, testing time (instead of only testing the newly

text of a realistic communication model based on a TDMA protocol.implemented functionality, the old application, or at least a part of
1. INTRODUCTION it, has also to be retested). However, this is not the only aspect to be

. ._considered. Such an incremental design process, in which a design
In this paper we concentrate on aspects related to the synthesis g? gnp g

Lo h L periodically upgraded with new features, is going through several
distributed embedded systems for hard real-time applicationse ations. Therefore, after new functionality has been imple-
There are several complex design steps to be considered during theyteq  the resulting system has to be structured such that addi-
development' of s_uch_a system: the_underlylng archltecture has to lﬂ%nal functionality, later to be mapped, can easily be accommodated.
allocated(which implies the allocation of components like proces- The contribution of this paper is twofold. First, we consider
sors, memories, and buses together with the decision on a certaj, oing and scheduling for hard real-time embedded systems in the
interconnection topology), tasks and communication channels havg

4 I ontext of a realistic communication model. Because our focus is on
to bemappecbn the architecture, and all the activities in the systemy 4 re5| time safety critical systems, communication is based on a
have to bescheduledThe design process usually implies an itera-

i " £ th A il lution is found h that th time division multiple access (TDMA) protocol as recommended for

ive ix%cu |otn o f_sf? S epst un Ida solution Its ,Oltm 75“0 at M@pplications in areas like, for example, automotive electronics [12].

resulted system satisfies certain design constraints [7]. . For the same reason we use a hon-preemptive static task scheduling
Several notable results have been reported, aimed at supporti

the desi ith thodoloai d 100ls during the hard heme. We accurately take into consideration overheads due to

?twe5|gner Wlth me ]9 0%9'33 ‘3” (;OS ulrlf:_g” € har W?]re ommunication and consider, during the mapping and scheduling
software cosynthesis of embedded systems. Initially, reSearcheis,.ass the particular requirements of the communication protocol.
have considered architectures consisting of a single programmable

; > e As our main contribution, we have considered, for the first time
processor and an ASIC. Their goal was to partition the application ., knowledge, the design of distributed embedded systems in
between the hardware and software domain, such that perf '

Ormangfie context of an incremental design process as outlined above.

constraints are satisfied while the total hardware cost is kept at g;g implies that we perform mapping and scheduling of new func-

minimum [8, 6, 10, 4]. Currently, similar architectures are becorn.'tionality so that certain design constraints are satisfied and:

ing increasingly interesting, with the ASIC replaced by a dynami- a. the already running functionality is not disturbed:

cally reconfigurable hardware coprocessor [14]. . b. there is a good chance that, later, new functionality can easily
Distributed embedded systems with multiple processing elebe mapped on the resulted system.

ments are becoming common in various application areas ranging Supporting such a design process is of critical importance for

from multimedia to robotics, industrial control, and automotive ¢, . ent and future industrial practice, as the time interval between
electronics. In [19] allocation, mapping, and scheduling are formu-,

h ; . : _-'successive generations of a product is continuously decreasing,
lated as a mixed integer linear programming (MILP) problem. A dis- 9 P y 9

advantage of this approach is the complexity of solving the M'LP\t,iV:rlnlaeliig?scgr@vﬁ)/li?\)gtryagilé?y.to increased sophistication of new func-

model. Therefore, alternative problem formulations and solutions The i Ay ; ; ;
. A paper is divided into 6 sections. The next section presents the
basi(lj r?n efgment ?‘eu?si']cs hzve been Erqpodseg [21, dlS’ 22,3, # Hardware architecture, the process model and a brief introduction of
though much of the above work Is dedicated to SPECHiC o 1yanning problem. Section 3 presents the detailed problem formu-

aspects of d.'smbl.ned. systems, rese_archers have of@en _lgnqred @tion and the quality metrics we have introduced. Our mapping strat-
very much simplified issues concerning the communication infra

i , : “egies are outlined in Section 4, and the experimental results are

structure. One notable exception is [20], in which system symhes'egresented in Section 5. The last section presents our conclusions.

is discussed in the context of a distributed architecture based o

arbitrated buses. Many efforts dedicated to communication synth PRELIMINARIES

sis have concentrated on the synthesis support for the communic2.1 System Architecture

tion infrastructure but without considering hard real-time We consider architectures consisting of nodes connected by a

constraints and system level scheduling aspects [11, 16, 17]. broadcast communication channel. Every node consists of a CPU, a
Another characteristic of research efforts concerning the codecommunication controller, a local memory and an I/O interface to

sign of embedded systems is that authors concentrate on the desigansors and actuators.

from scratch, of a new system optimized for a particular applica-  Communication between nodes is based on a TDMA protocol

tion. For many application areas, however, such a situation isike, for example, the TTP [12] which integrates a set of services

extremely uncommon and only rarely appears in design practice. liecessary for fault-tolerant real-time systems.

The communication channel is a broadcast channel, so a mes-
sage sent by a node is received by all the other nodes. The bus access
scheme is TDMA (Figure 1): each notlecan transmit only during
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Figure 1. Bus Access Scheme



a predetermined time interval, the so called TDMA $Sotin such But finding a valid schedule is not enough if we are to support
a slot, a node can send several messages packaged in a frame. An incremental design process as discussed in the introduction. In
sequence of slots corresponding to all the nodes in the architecturethis case, starting from a valid design, we have to improve the
is called a TDMA round. A node can have only one slot in a mapping and scheduling so that not only the design constraints are
TDMA round. Several TDMA rounds can be combined together in satisfied, but also there is a good chance that, later, new functional-
a cycle that is repeated periodically. ity can easily be mapped on the resulted system.

Every node has a communication controller that implements To illustrate the role of mapping and scheduling in the context
the protocol services, and runs independently of the node’s CPU.of an incremental design process, let us consider the example in
The communication controller provides each CPU with a timer Figure 3. With black we represent the already running set of appli-
interrupt based on a local clock, synchronized with the local clocks cationsy while the current applicatiof ¢ rent to be mapped and
of the other nodes. Thus, a global time-base of known precision is scheduled is represented in grey. We consider a single processor,
created throughout the system. and we present three possible scheduling alternatives for the cur-

We have designed a software architecture which runs on therent application. Now, let us suppose that in future a third applica-
CPU in each node, and which has a real-time kernel as its maintion, g, has to be mapped on the system. In Figur&,re iS
component. Each kernel has a schedule table that contains all thedepicted in more detail, showing the two proced3eandP; it is
information needed to take decisions on activation of processescomposed of. We can observe that the new application can be
and transmission of messages, based on the current value of timescheduled only in the first two cases, presented in Figure 3a and b.
For more details about the software architecture and the messagéf I, renshas been implemented as in Figure 3c, we are not able to
passing mechanism the reader is referred to [18]. schedule proceds, of qyyre The way our current application is
2.2 The Process Graph mapped and scheduled will influence the likelihood of successfully

As an abstract model for system representation we use a directed, acyM@PPing additional functionality on the system without being
clic, polar graptG(V, E). Each nodé, 0V represents ongrocess. An forced to redesign and test already running applications.

edgeeu- OE from P; to P; indicates that the output &% is the input of 3. PROBLEM FORMULATION

Pj. A process can be activated after all its inputs have arrived and it e model an applicatior . ent @ @ Set of process graphs
issues its outputs when it terminates. Once activated, & Processs,r e €ach with a periodg; and a deadlin®g< Tg;. For
executes until it completes. Each process gr@ph characterized  each procesB; in a process graph we know the $&t; of potential

by its periodTg and its deadlin®¢ < Tg. The functionality of an  nodes on which it could be mapped and its worst case execution
application is described as a set of process graphs. time on each of these nodes. The underlying architecture, as
2.3 Application Mapping presented in section 2.1, is based on a TDMA protocol. We
Considering a system architecture like the one presented in sectiorconsider a non-preemptive static cyclic scheduling policy for both
2.1, the mapping of a process grap(V, E) is given by a function processes and message passing.

M: V- PE, wherePE={Ny, N,, .., N4 is the set of nodes (processing Our goal is to map and schedule an applicaliQqyent ON @
elements). For grocessP,(0V, M(P;) is the node to whictP; is system that already implements aetf applications so that:
assigned for execution. Each proc&san potentially be mapped a.the constraints o entare satisfied without any modifica-
on several nodes. L&tp,0PE be the set of nodes to whid? can tion on the implementation of the set of applicatigns

potentially be mapped. For eabhINp;, we know the worst case b. new applicationB,;,Can be mapped on the resulting system.
execution timet,';" of proces#;, when executed oN;. If no solution is possible that satisfies a) (the algorithm IM dis-

In order to i'mplement an application, represented as a set of cussed in section 4 fails) we have to change the scheduling and
process graphs, the designer has to map the processes to the systgp@ssibly the mapping of applicationsynin order to meet the con-
nodes and to derive a schedule such that all deadlines are satisfiedstraints on ¢, one However, even with serious modifications per-
We first illustrate some of the problems related to mapping and formed ony, it is still possible that certain constraints are not
scheduling, in the context of a system based on a TDMA commu- satisfied. In this case the hardware architecture has to be changed.
nication protocol, before going on to explore further aspects spe- In this paper we will not discuss the modification of the running
cific to an incremental design approach. applications or of the hardware architecture. We will concentrate

Let us consider the example in Figure 2 where we want to map an on the situation where a possible mapping and scheduling which
application consisting of four process@gto Py, with a period and satisfies requirement a) can be found and this solution has to be
deadline of 50 ms. The architecture is composed of three nodes thatfurther improved by considering requirement b).

communicate according to a TDMA protocol, such tNatransmits In order to achieve our goal we need certain information to be
in slotS. According to the specification, proces$gsandP; are con- available concerning the set of applicatiapgs well as the possi-
strained to nod#&l,, while P, andP, can be mapped on nodks or N N N N
L 2 1 2 3

N3, but notN,. The worst case execution times of processes on each @; (slow)
potential node, the sizg; ; of the messages passed betwlémnde, P| 4ms| - -
and the sequence and size of TDMA slots, are presented in Figure 2. @é N3 P - 12ms| 8ms

In [5] we have shown that by considering the communication N; (fast) 5 . .
protocol during scheduling, significant improvements can be made I 3| 4ms
to the schedule quality. The same holds true in the case of map- S =4, 5-45-4 Pal - 12ms| 8ms
ping. Thus, if we are to maP, andP, on the faster processodl, TDMAI I I I My o= My 4= Mp 3= My 3= 4

the resulting schedule length (Figure 2a) will be 52 ms which does N
not meet the deadline. However, if we mpandP, on the slower N;
processoiN,, the schedule length (Figure 2b) is 48 ms, which is

the best possible solution and meets the deadline. Note, that the — Bus [_| | m | Fm:m:m:l
s sl slslslsls s lslstslsls

total traffic on the bus is the same for both mappings and the initial

processor load is 0 on bott, andNs. This result has its explana- a) Processes,Rnd B are mapped on the fast node
tion in the impact of the communication protocBg cannot start N1

before receiving messages, 3 andmy 3 However, slotS, corre- N2 | P | P,
sponding to nodeN, precedes in the TDMA round sld; on Bus [ [ ] ﬁ [ m [ m [ ]
which nodeN; communicates. Thus, the messages wiRigheeds sl sl slsls,lslslslsls S, !

are available sooner in the caBgandP, are, counter-intuitively, b) Processes,rand B are mapped on the slow node

mapped on the slower node. Figure 2. Mapping and Scheduling Example



ble future application8y e We assume that the only information
available on the existing applicatiogsconsists of the local sched-
ule tables for each node. This means that we know the activation
time for each process on the respective node and its worst case exe
cution time. As for messages, their length as well as their place in
the particular TDMA frame are known.

TheT ¢yrrent@pplication can interact with the previously mapped
applicationsy by reading messages generated on the bus by pro-
cesses inp. In this case, the reading process has to be synchro- min(80, 80, 40) = 40ms
nized with the arrival of the message on the bus, which is easy to ° S S 83|81 S, 83|81|82 S3|31 $,S3| T Ch =120ms
solve during scheduling &fcyrent . © Round O] Round I Round P RoundI3

What do we suppose to know relative to the faniibyyre of = Figure 4. Example for the Second Design Criterion

applications which do not exist yet? Given a certain limited appli reflects how well the resulted slack sizes fit to a future application, and

cation area (e.g. automotive electronics), it is not unreasonable to he second criterion expresses how well the slack is distributed in time
assume that, based on the designers’ previous experience, th P :

nature of expected future functions to be implemented, profiling of 3-1.1 Slack Sizes (the first criterion)
previous applications, available uncomplete designs for future ver- The slack sizes resulted after implementatio gf;yen;0n top of
sions of the product, etc., it is possible to characterize the family of Y should be such that they best accommodate a given family of
applications which possibly could be added to the current imple- applicationd ;1o Characterized by the sefs S, and the proba-
mentation. This is an assumption which is basic for the concept of bility distributionsfg;andfs, as outlined before.
incremental design. Thus, we consider that, relative to the future Let us consider the example in Figure 3, where we have a sin-
applications, we know the se={tyin.---t.--Imaxq Of possible gle processor and the applicatiods and I'ent are already
worst case execution times for processes, and the setmapped. Suppose that applicatibgy,e consists of the two pro-
S={Bmir---0:--bmaxg Of possible message sizes. We also assume cesses; andP,. It can be observed that the best configuration,
that over these sets we know the distributions of probaldfi§(y) taking in consideration only slack sizes, is to have a contiguous
for tOS andfgyb) for bOS,. For example, we might have worst ~ slack. Such a slack, as depicted in Figure 3a, will best accommo-
case execution time§={50, 100, 200, 300, 500 ms}. If there isa  date any future application. However, in reality it is almost impos-
higher probability of having processes of 100 ms, and a very low sible to map and schedule the current application such that a
probability of having processes of 300 ms and 500 ms, then our contiguous slack is obtained. Not only is itimpossible, but it is also
distribution function fg{t) could look like this: f5(50)=0.20, undesirable from the point of view of the second design criterion,
f5(100)=0.505(200)=0.20{5(300)=0.05, andis(500)=0.05 discussed below. As we can see from Figure 3c, if we schedule
Another information is related to the period of process graphs I'cyrent SO that it fragments too much the slack, it is impossible to
which could be part of future applications. In particular, the small- fit ¢, Decause there is no slack that can accommodate process
est expected periotly,, is assumed to be given, together with the  P,. A situation as the one depicted in Figure 3b is desirable, where
expected necessary processor tiggy and bus bandwidthy,geq the resulted slack sizes can accommodate the characteristics of the
inside such a period;i,. As will be shown later, this information e @pplication.
is treated in a flexible way during the design process and is used in  In order to measure the degree to which the slack sizes in a
order to provide a fair distribution of slacks. given desilgn alternative fit the future applications, we provide two
The execution times i as well ast,geqare considered rela-  metrics,C;{” andCy™. C{” captures how much of the largest future
tive the slowest node in the system. All the other nodes are charac-application which theoretically could be mapped on the system if
terized by a speedup factor relative to this slowest node. A the slacks would be contiguous, can be mapped on the current
normalization with these factors is performed when computing the design alternativeC{" is similar relative to the slacks in the bus
metricsClP andC2P discussed in the following section. slots. The largest application is determined knowing the total size
For the sake of simplifying the discussion, we will not address of the available slack, and the characteristics of the applicafon:
here the memory constraints during process mapping and thef;, S, f,. For example, if our total slack size on the processors is of
implications of memory space in the incremental design process. 2800 ms then, considering the numerical example given in section
3.1 Quality Metrics 3, the largest application will result as having a total of 20 pro-

A designer will be able to map and schedule an applicatigg,e on cesses: 4 processes of 50 ms, 10 processes {{Hi0)=0.50 of

top of a system implementing andr ¢, en0Nly if there are fsE[\JUﬂriecient 100 ms, 4 of 200 ms, and one of 300 and 500 ms. After we have
resources available. In our case, the resources are processor time afiftermined the largestye we apply abin-packing algorithm

the bandwidth on the bus. In the context of a non-preemptive static [1°] using thebestfit policyin which we consider processes as the
scheduling policy, having free resources translates into having freeOPJects to be packed, and the slacks as containers. The total execu-

time slots on the processors and having space left for messages in thion time of unpacked processes relative to the total execution time
bus slots. We call these free slots of available time on the processor o2f € Process set gives ti&" metric. The same applies for the
on the busslack Itis to be noted that the total quantity of computation C1 Metric. Thus, Cy = 0% in Figure 3a and 3b (both are perfect
and communication power available on our system after we have flom the point of view of slack size), and 75% -- the worst case
mapped and schedul&g,,,en; ON top ofy is the same regardiess of executlon-tlm(_e oP_Z relative the total slack size -- in F_lgur_e 3c.

the mapping and scheduling policies used. What depends on the map3.1.2 Distribution of Slacks (the second criterion)

ping and scheduling strategy is the distribution of slacks along the In the previous section we provided a metric of how well the sizes
time line and the size of the individual slacks. It is exactly this size and of the slacks fit a possible future application. A similar metric is
distribution of the slacks that characterizes the quality of a certain needed to characterize the distribution of slacks over time.
design alternative. In this section we introduce two criteria in order to Let P, be a process with periotp; that belongs to a future
reflect the degree to which one design alternative meets the require-application, andv(P;) the node on whiclP; will be mapped. The
ment b) presented above. For each criterion we provide metrics whichworst case execution time &% is té"(P') . In order to schedul®;
guantify the degree to which the criterion is met. The first criterion we need a slack of sizté"(P') that i$ available periodically, within

a periodTp;, on proceséoM(Pi). If we consider a group of pro-

Periodic slack
min(40, 80, 0)= Oms
min(40, 0, 80)= Oms
min(80, 80, 40) = 40ms

C5 =40ms
a)

2
iy

ound I Round PRound 3

min(40, 40, 40) = 40ms
min(40, 40, 40) = 40ms

rcurrent- SIaCk|:|
2
w

2) Il —————- T Y B e %‘ cesses with period, which are part of g, in order to imple-
b) I Tl | " current BN ﬁl ment them a certain amount of slack is needed which is available
oM I I Wl | Slack[] P, periodically, with a periodT, on the nodes implementing the

Figure 3. Example for the First Design Criterion respective processes.



During implementation of . ,;ent We aim for a slack distribu-
tion such that the future application with the smallest expected
period Ty, and with the minimum necessary processor tipgq
and bandwidthp,eq can be accommodated.

Thus, for each node, we compute the minimum periodic slack,
inside aT,;, period. By summing these minimums, we obtain the
slack which is available periodically e This is theCS met-
ric. The C3" metric characterizes the minimum periodically avail-
able bandwidth on the bus and it is computed in a similar way.

In Figure 4 we consider a situation wilh},j;=120 ms},e780
ms, andb, .40 ms. The length of the schedule table of our sys-
tem implementingp andl o rentiS 360 ms. The system consists of

1 T,=D, T,=3T,
=3T
=30 Ty, T, - periods
D4,D, - deadlines
o dummy processes
with execution times
G,

chrrent
Figure 5. Graph Merging
introduced by us in [5]. MPCP takes into consideration the particu-

three nodes. Let us consider the situation in Figure 4a. In the first |3 ities of the communication protocol for calculation of communi-

period,Period Q there are 40 ms of slack available on nddigin

the second period 80 ms, and in the third period no slack is avail-
able onN;. Thus, the total slack a future application of perigg,

can use on nodBl; is min(40, 80, 0)=0 ms. Neither nodé, can
provide slack for this application as Feriod 1there is no slack
available. However, oiN3 there are at least 40 ms of slack avail-
able in each period. Thus, with the configuration in Figure 4a we
have C{ =40 ms, which is not enough to accommodggg,F80

ms. However, in the situation presented in Figure@—(B,:120 ms

> theeg @NACI"=60 MS >Bpeeq

3.2 Cost Function and Exact Problem Formulation

cation delays. These delays are not estimated based only on the
message length, but also on the time when slots assigned to the par-
ticular node which generates the message, will be available. For the
example in Figure 2, our initial mapping algorithm will be able to
produce the optimal solution with a schedule length of 48 ms.
However, before using the IM algorithm, two aspects have to
be addressed. First, teocess graphG;l ¢, rentare merged into a
single graphGgrent by unrolling of process graphs and insertion of
dummy nodes as shown in Figure 5dddition, we have to consider
during scheduling the mismatch between the periods of the already
existing system and those of the current application. The schedule

In order to capture how well a certain design alternative meets the table into which we would like to schedu®,, et has a length of
requirement b) stated in section 3, the metrics discussed before arel, which is the global period of the existing systgmHowever,

combined in an objective function, as follows:
p, P2 2 p P
C=w, (C7) +W(CT) +Wymax0, t,eeq-Cs) +Wo max0,b, .o ~Ch)
where the metric values are weighted by the constantOur
mapping and scheduling strategy will try to minimize this function.

The first two terms measure how well a future application fits
to the resulted slack sizes. In order to obtain a balanced solution

that favors a good fitting both on the processors and on the bus, we,

have used the squares of the metrics.

A design alternative that does not meet the second design crite
rion is not considered a valid solution. Thus, using the last two
terms, we strongly penalize the objective function if eithggqor
bheeqiS Not satisfied, by using high values for theweights.

At this point, we can give an exact formulation to our problem.
Given an existing set of applicatiogswhich are already mapped and
scheduled, and an applicatidg,,onto0 be mapped on top af, we
are interested to find a mapping and schedulinggfiensWhich satis-
fies all deadlines and minimizes the objective functiyrtonsidering
a family of future applications characterized by the SetndS,, the
functionsfg;andfgyas well as the paramet@igiy, theeg 8Nd0heed

4. THE MAPPING STRATEGY

the periodTeyprent OF Geyrrent €an be different fromTy,. Thus,
before schedulingSqrent iNto the existing schedule table, the
schedule table is expanded to the least common multiplier of the
two periods. In this context, schedulitg,,;ent means scheduling
it into the expanded schedule table inside each pefi@gen: A
similar procedure is followed in the caBgrent > Ty

Starting from the valid design produced by IM, our next goal is to
mprove on the design in order to minimize the objective funcion
We iteratively improve the design using a transformational approach.
“A new design is obtained from the current one by performing a trans-
formation calledmove We consider the following moves: moving a
process to a different slack found on the same node or on a different
node, and moving a message to a different slack on the bus. In order
to eliminate those moves that will lead to an infeasible design (that
violates deadlines), we do as follows. For each proBgsse calcu-
late the ASAR and ALAR times considering the resources of the
given hardware architectur@SAR is the earliest tim; can start its
execution, whileALAR is the latest timeP; can start its execution
without causing the application to miss its deadline. When mawvjng
we will consider slacks on the target processor only inside the
[ASAR, ALAR] interval. The same reasoning holds for messages,

Our mapping and scheduling strategy has two steps. In the firstwith the addition that a message can only be moved to slacks belong-
step we try to obtain a mapping with a valid schedule (which is a ing to the same slot number, corresponding to the sender node. Any
schedule that meets the deadlines). Starting from such a solution, aviolation of the data dependency constraints is rectified by moving

second step iteratively improves on the design in order to minimize
the objective functiorC. The minimization of the objective func-
tion will hopefully lead to the situation where it is possible to map
new applications on the resulting system.

For the algorithm Initial Mapping (IM) that constructs an initial

processes or messages concerned in an appropriate way.

For the goal of improving a design as stated above, we first
propose a Simulated Annealing strategy (SA) [4] that aims at find-
ing the near-optimal mapping and schedule that minimizes the
objective functionC. One of the drawbacks of the SA strategy is

mapping with a valid schedule, we used as a starting point the Het-that in order to find the near-optimal solution it needs very large

erogeneous Critical Path (HCP) algorithm presented in [9]. HCP is
based on the classical list scheduling algorithm, and usesady

computation times. Such a strategy, although useful for the final
stages of the system synthesis, cannot be used inside a design

list L of processes ready to execute, i.e. all their predecessors havespace exploration cycle.

been scheduled. In each iteration, a prodesis selected fromL
according to apriority function based on its critical path length
(CP), and assigned to the “best procesdd(P;). Then, proces®;

Thus, we introduce a Mapping Heuristic (MH), outlined in
Figure 6, that aims at finding a good quality solution in a reason-
able time. MH starts from an initial design produced by IM and

is scheduled orM(P;). For details on the process and processor iteratively preforms moves in order to improve the design. Unlike
selections the reader is referred to [9]. We have modified the HCP SA that considers all the neighbors of a solution as potential
algorithm to consider during scheduling a set of previous applica- moves, MH tries to find those neighbors that have the highest
tions Y that have already occupied parts of the schedule table, andpotential to improve the design, without evaluating for each of
to schedule the messages according to the TDMA protocol. Further-them the objective function. MH has two main iterative improve-
more, for the selection of the process from the ready list we have ment loops. In the first loop it tries to find a solution that satisfies
used instead of the CP priority function the MPCP priority function the second design criterion (section 3.1.2). If such a solution can-



MappingHeuristic
ASAP(T currend): ALAP(T currend -- computes ASAP-ALAP intervals

InitialMapping(W, T cyrend
repeat -- try to satisfy the second design criterion
repeat
-- find moves with highest potential to maximi@8 or CJ
move_set=PotentialMoveC5 O PotentialMoveCJ
-- select and perform move which improves n@sor CJ
move = SelectMoveC,(move_set); Perform(move)
until. (C3 2teeqand CP 2bpeeq) OF limit reached
if C <theeqOF C3 <bpeeqthen
dstJggest larger Tpin
nd i

until C5 2t0egand CP =bpeeq

repeat -- try to improve the metric of the first design criterion
-- find moves with highest potential to minimi% orCY
move_set=PotentialMoveC} O PotentialMoveCT'
-- select move which improvegf(Ch)2+wi'(CT)?
-- and does not invalidate the second design criterion
move = SelectMoveC,(move_set); Perform(move)

until wP(CP)2+wr'(CT)? has not changed or limit reached
end MappingHeuristic
Figure 6. Mapping Heuristic to Support Iterative Design
not be found, then a largél,, is proposed to the designer. Pro-
posing a largerT,,, means that the most demanding future
application with the requirementg,eeqand bpeeqthat we can
accommodate, without modifying the existing applications or
changing the architecture, cannot have a period smaller than th
suggested value. The second loop tries to improve on the metric o
the first design criterion (section 3.1.1), without invalidating the
second criterion achieved in the first loop. The loop ends when
there is no improvement achieved on the first two terms of the
objective function, or a limit imposed on the number of iterations
has been reached. The intelligence of the Mapping Heuristic lies in
how the potential moves are selected. For each iteration a set o
potential moves is selected by thetentialMoveX functions.Select-

MoveX then evaluates these moves with regard to the respective met
rics and selects the best one to be performed. We now briefly discuss™!

the fourPotentialMoveX functions with the corresponding moves:

PotentialMoveC5 andPotentialMoveCy'

Consider Figure 4a. IReriod 2on nodeN, there is no avail-
able slack. However, if we move proce3gwith 40 ms to the left
into Period 1, as depicted in Figure 4b, we create a slacRaniod
2 and the periodic slack on nod¢, will be min(40, 40, 40)=40,
instead of 0. Potential moves will be the shifting of processes
inside their ASAP, ALAPRinterval in order to improve the periodic

slack. The move can be performed on the same node or to the less
loaded nodes. The same is true for moving messages. For the
improvement of the periodic bandwidth on the bus, we also consider

g

movement of processes, trying to place the sender and receiver of
message on the same processor and, thus, reducing the bus load.
PotentialMoveC; andPotentialMoveCY'
In order to avoid excessive fragmentation of the slack we will

consider moving a process to a position that snaps to another exist

ing process. A process is selected for potential move if it has the
smallest “snapping distance”, i.e. in order to attach it to other pro-
cesses it has to travel the smallest distance inside the schedul

table. For a given process such a move is considered both on its
node, and to other nodes. We also consider moves that try to

increase the individual slacks sizes. Therefare, we first eliminate

slack that is unusable: it is too small to hold the smallest process of
the future application, or the smallest message. Then, the slacks
are sorted in ascending order and the smallest one is considered for
improvement. Such improvement of a slack is performed through
moving a nearby process or message, but avoiding to create as a
result an even smaller individual slack.

5. EXPERIMENTAL RESULTS

For evaluation of our mapping strategies we first used process
graphs of 40, 160, 240, 320 and 400 processes generated for exper-
imental purpose. 30 graphs were generated for each graph dimen-
sion, thus a total of 150 graphs were used for experimental
evaluation. We considered an architecture consisting of 10 nodes
of different speeds. For the communication channel we considered
a transmission speed of 256 kbps and a length below 20 meters.
The maximum length of the data field in a bus slot was 8 bytes. All
experiments were run on a SUN Ultra 10. Also, throughout the
experiments we have considered an existing set of applicafions
consisting of 400 processes, with a schedule table of 6s on each
processor, and a slack of about 50% the total schedule size.

The first result concerns the quality of the designs produced by
our initial mapping algorithm IM (using the MPCP priority func-
tion which considers particularities of the TDMA protocol) com-
pared to the HCP algorithm. We have calculated the average

ghercentage deviations of the schedule length produced with HCP
fand IM from the length of the best schedule among the two. Results

are depicted in Figure 7a. In average, the deviation with IM is 3.28
times smaller than with HCP. The average execution times for both
algorithms are under half a second for graphs with 320 processes.
For the next experiments we were interested to investigate the
quality of the mapping heuristic MH compared to a so caled

fhoc approach(AH) and to the simulated annealing based algo-

rithm SA. The AH approach is a simple, straight-forward solution

to produce designs which, to a certain degree, support an incre-

ental process. Starting from the initial valid schedule of lergjth
obtained by IM for the grapks with N processes, AH uses a sim-
ple scheme to redistribute the processes inside thB][terval,
whereD is the deadline of the process grahAH starts by con-
sidering the first process in topological order, let it It intro-
duces afteP; a slack of size min(smallest process sizd gfre
(D-S)/N) thus shifting allP,’s descendants to the right. The inser-
tion of slacks is repeated for the next process, with the current
larger value oF as long as the resulted schedule haSsab.
MH, SA and AH have been used to map each of the 150 pro-
cess graphs on the target system. For each of the resulted designs,
the objective functiorC has been computed. Very long and expen-
ive runs have been performed with the SA algorithm for each
graph and the best ever solution produced has been considered as
the near-optimum for that graph. We have compared the objective
function obtained for the 150 process graphs considering each of
the three mapping algorithms. Figure 7b presents the average per-
centage deviation of the objective function obtained with the MH
and AH from the value of the objective function obtained with the
ear-optimal scheme. We have excluded from the results in Figure
b, 37 solutions obtained with AH for which the second design cri-
terion has not been met, and thus the objective function has been
strongly penalized. The average run-times of the algorithms, in
c
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functionality: the already running functionality is not disturbed,

<

zloo R —A—MH | | and there is a good chance that, later, new functionality can easily

o H\A\ —o— AH be mapped on the resulted system. Our approach was considered in
80 the context of a non-preemptive static cyclic scheduling policy and

a realistic communication model based on a TDMA scheme.
We have introduced two design criteria with their correspond-
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seconds, are presented in Figure 7c. The SA approach performs
best in terms of quality at the expense of a large execution time.

ing metrics, that drive our mapping strategies to solutions support-
ing an incremental design process. For constructing an initial valid
solution, we have shown that it is needed to take into account the
features of the communication protocol. Starting from an initial

‘ ‘ : < solution, we have proposed two mapping algorithms, SA based on
a simulated annealing strategy and MH an iterative improvement heu-
ristic. SA finds a near-optimal solution at the expense of a large exe-
cution time, while MH is able to quickly produce good quality results.
The approach has been validated through several experiments.

The execution time can be up to 45 minutes for large graphs of 320 REFERENCES
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