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Abstract 

 This paper addresses battery-aware static scheduling in battery-
powered distributed real-time embedded systems. As suggested by 
previous work, reducing the discharge current level and shaping 
its distribution are essential for extending the battery lifespan. We 
propose two battery-aware static scheduling schemes. The first 
one optimizes the discharge power profile in order to maximize 
the utilization of the battery capacity. The second one targets 
distributed systems composed of voltage-scalable processing 
elements (PEs). It performs variable-voltage scheduling via 
efficient slack time re-allocation, which helps reduce the average 
discharge power consumption as well as flatten the discharge 
power profile. Both schemes guarantee the hard real-time 
constraints and precedence relationships in the real-time 
distributed embedded system specification.  Based on previous 
work, we develop a battery lifespan evaluation metric which is 
aware of the shape of the discharge power profile. Our 
experimental results show that the battery lifespan can be 
increased by up to 29% by optimizing the discharge power file 
alone.   Our variable-voltage scheme increases the battery lifespan 
by up to 76% over the non-voltage-scalable scheme and by up to 
56% over the variable-voltage scheme without slack-time re-
allocation.  
 
1.   Introduction 

 Battery-powered portable systems have been widely used in 
many applications, such as mobile computing, wireless 
communications, information appliances, wearable computing as 
well as various industrial and military applications. As systems 
become more complex and incorporate more functionality, they 
become more power-hungry. Thus, reducing energy consumption 
and extending battery lifespan have become a critical aspect of 
designing battery-powered systems. 

High-performance battery-powered distributed embedded 
systems are generally composed of a network of heterogeneous 
processing elements (PEs). The PEs can be general-purpose 
processors, application-specific integrated circuits, field 
programmable gate arrays or analog circuits.  The input 
specifications of such systems are typically in the form of task 
graphs. A task graph is a directed acyclic graph in which each 
node is associated with a task and each edge is associated with the 
amount of data that must be transferred between the two 
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connected tasks. The period associated with a task graph indicates 
the time interval after which it executes again.  A hard deadline, 
the time by which the task associated with the node must complete 
its execution, exists for every sink node and some intermediate 
nodes. All the hard deadlines must be met. The embedded system 
can be a multi-rate system, i.e., it may contain multiple tasks 
graphs with different periods. The goal of real-time scheduling 
algorithms is to guarantee the deadlines of periodic task graphs 
while honoring the precedence relationship among tasks. Due to 
the importance of energy in battery-powered systems, the 
scheduling scheme should be energy -aware and battery-efficient 
as well. 

Many system-level power optimization techniques have been 
presented in the literature. The representative work includes 
voltage scaling [9,10,11], which refers to varying the speed of a 
processor by changing the clock frequency along with the supply 
voltage, and power management, which refers to the use of power-
down modes when a processor or device is idle in order to reduce 
power consumption [7,8]. Instead of focusing on reducing power 
consumption alone, researchers have begun to study the battery 
behavior and the effect of the battery discharge pattern on the 
battery capacity as well [1,2,5,6].  

This paper addresses the issue of battery-aware variable-voltage 
scheduling for multi-rate real-time distributed embedded systems. 
The goal of our scheduling algorithm is to extend the battery 
lifespan while meeting the hard real-time constraints and 
precedence relationships among tasks.  The scheduling algorithm 
is able to vary the voltage of PEs that are voltage scalable in order 
to reduce the power consumption, and manage the power profile 
of the whole system in order to achieve improved battery 
efficiency. Our work is motivated by the ideas presented in [2,5], 
which suggest that reducing the discharge current level and 
shaping its distribution are essential for reducing the battery 
capacity loss. The reduction of the average discharge current level 
is achieved through voltage scaling and PE shutoff.  The 
optimization of the discharge current profile is achieved through a 
series of schedule transformations starting from an initially valid 
schedule. The schedule transformations aim to shape the discharge 
current profile to improve the utilization of the ideal battery 
capacity, while maintaining the validity of the original schedule.  
Our work has several contributions: (1) We simultaneously 
address the issues of optimizing the overall power consumption 
profile of the distributed embedded system to improve the battery 
efficiency, and guaranteeing the hard real-time constraints and 
precedence relationships which are traditional tasks in real-time 
distributed scheduling. This has not been done in any previous 
work. (2) For distributed embedded systems consisting of voltage-
scalable PEs, we perform variable-voltage scheduling via efficient 
slack time allocation, which helps reduce the average discharge 
power consumption as well as flatten the discharge power profile, 
while still guaranteeing the hard real-time constraints and 
precedence relationships.  Therefore, the scheme is very powerful 
in maximizing the battery lifespan.     

    
2. Battery Behavior Models 

The capacity of a battery cell can be defined in terms of ampere-
hours or watt-hours [4]. Many factors influence the performance 
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characteristics and the actual capacity that can be drawn from the 
battery. Normally, the battery capacity decreases as the discharge 
current increases. Fig. 1 shows the curve of battery capacity versus 
the discharge current, i.e., the discharge rate. The load current is 
represented as the value normalized to the battery's rated capacity. 

The work in [5] explores the fact that battery efficiency is 
influenced by the average discharge current as well as the average 
discharge current profile. They define the actual power drawn out 
of the battery as  

dIIPIcIVpact )(*))(/*(
∧

∫=     (1) 
where I is the average discharge current for some period of time. 
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 is the probability density function  of  I.  V is the discharge 
voltage and is assumed to be fixed.  c(I) is  the utilization factor, 
which is the ratio of the battery capacity (in terms of watt-hours) at 
discharge current I to the ideal battery capacity 0CPA . Hence, it can 
represent the battery efficiency compared to the ideal condition. 
The duration of battery service life should equal 0CPA  divided 

by actp . This work shows that even under the constraint that the 
average power consumption is the same, i.e., 

∫
∧
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current distributions still lead to different actp . The maximum 
battery life is achieved when the variance of the discharge current 
distribution is minimized. Their results are supported by 
experimental study based on PSPICE simulations.  

 
 
 
 
 
 
 
 
 
 
 
          
 
      
 
 

The work in [2] studies the effect of intermittent discharges on 
the capacity of Lithium rechargeable batteries and demonstrates 
that peak power predicts battery capacity better than average 
power. The work in [6] employs a cycle-accurate battery model 
and evaluates the instantaneous battery capacity on a cycle-by-
cycle basis. The battery recovery effect in communication devices 
is studied in [1].  

       
3.  Motivational Examples 

This section presents two examples that motivate our work in 
this paper.  We use Equation (1) to evaluate the actual power actp  
drawn from the battery. If the battery cell voltage is assumed to be 
nearly constant, the relationship between the battery capacity and 
the discharge current would hold for discharge power as well. In 
this section, we use Peukert’s formula [4], an empirical equation 
to evaluate the relationship between the battery capacity and the 
discharge current  

αIkIc /)( =             (2) 
where k and α  are constants. We assume 5.0=α .        
Example 1: Fig. 2 gives an embedded system specification 
consisting of three task graphs. Assume for simplicity that all these 
have a period of 16.0 seconds. The embedded distributed system 
implementing the task graphs consists of two PEs, PE1 and PE2, 

connected by a bus. Figs. 3 and 4 give two feasible schedules for 
one period. The worst-case execution time of t1, t3, t4, t5, t6, t7 
and t8 on their allocated PE are all 4 seconds, while the worst-case 
execution time of t2 on its allocated PE is 2 seconds. The execution 
time of inter-PE communication edge e1 on the bus is also 2 
seconds.  The average power consumption number for each 
scheduled event is shown in brackets in the schedule, e.g., for t1 it 
is 5 units. Based on the traditional assumption in distributed 
computing, we assume intra-PE communications, e2, e3, e4 and e5, 
all take zero time. We assume both PE1 and PE2 are buffered. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     
 
 
      
 
 
 
 
 
 
 
 
 
 

For simplicity, we assume that the power consumption in the 
shut-off state (shaded parts in the schedule) is zero and that  there 
is no overhead in entering and leaving this state. Note, that our 
algorithm, which is presented later, does not need to make the 
above assumptions. The overall discharge power of the system is 
the summation of all the power consumptions in all the PEs and 
buses.  For the schedule in Fig. 3, the discharge power distribution 

is approximately 2/1)10( ==
∧

pP and 2/1)2( ==
∧

pP , while for the 
schedule in Fig. 4, the discharge power distribution is 

1)6( ==
∧

pP .  Using Equations (1) and (2), the actual power drawn 
from the battery in the schedule in Fig. 3 is 17.23*c, while the 
value for the schedule in Fig. 4 is 14.70*c, where c is some 
constant. The latter schedule results in a 15% reduction in the 
actual power drawn out of the battery, and correspondingly a 17% 
improvement in the battery lifespan.  

Example 2 below is used to illustrate the effect of voltage 
scaling in real-time distributed embedded systems composed of 
voltage-scalable PEs. The relationships among clock period, 
supply voltage and power consumption, which is used in this 
example to calculate power consumption, are presented next.  

The processor clock  period, T, can be expressed in terms of the 
supply voltage, ddV , and threshold voltage, tV , as follows: 

  2)/( tdddd VVkVT −=  (3) 
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where k is a constant. We assume tV =  0.8V.  The processor 
power, p, can be expressed in terms of the frequency,  f,  switched 
capacitance, N,  and the supply voltage,  ddV , as:  

2

2
1

ddfNVp =   (4) 

Example 2:  Consider the task graphs shown in Fig. 5. Fig. 6(a) 
gives an as-soon-as-possible feasible static schedule on a 
distributed system consisting of PEs, PE1 and PE2, connected by a 
bus. Assume a power supply voltage of 3.3V. The worst-case 
execution time of t1, t3, t4, t5 and t7 on their allocated PE are all 
0.2 seconds.  The worst-case execution time of t2 and t6 on their 
allocated PE are both 0.3 seconds.  The execution time of inter-PE 
communication edges e1 and e2 are both 0.1 seconds. We assume 
the average power consumption for each task is 1 unit, while the 
average power consumption for each inter-PE communication 
edge is 0.2 unit.  Fig. 7(a) gives a new feasible schedule after 
schedule slots interchanging and shifting of the schedule in Fig. 
6(a).  
 
  
 
 
 
 
 
 
 
 
 
 
 
    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

We perform voltage scaling on these two schedules by 
extending the execution time of the tasks to their latest finish time. 
The new schedules are shown in Fig. 6(b) and Fig. 7(b), 
respectively. For example, in Fig. 6(a), t2 is scheduled at time 
instant 0.2. Since it can finish as late as time instant 0.6, the speed 
of PE1 can be scaled down by a ratio of   (0.6 – 0.2) / 0.3 for t2. 
Correspondingly,  the supply voltage can be scaled down from 
3.3V to 2.8V,  extending the actual running length of t2 from 0.3 
to 0.4. In Fig. 6(b), the working voltages for task t1, t2, t3, t4, t5, 
t6 and t7 are 3.3, 2.8, 3,3, 3.3, 1.8, 2.8, and 2.7V, respectively. In 
Fig. 7(b), the working voltage for tasks t1, t2, t4 and t6 are all 3V, 
while for task t3, t5 and t7 are all 2.3V. The performance metrics 
for the different schedules, including the average power 
consumption and battery service life evaluated by Equation (2) 
using average power consumption, are shown in Table 1. In Table 
1, c′ is some constant. 

 
Table 1: Performance characteristics of different schedules 

 
Schedule Overall average 

power consumption 
of the system 

Service life evaluated 
based on average 

power consumption 
Fig. 6(a) 1.37 0.62 * c′ 
Fig. 6(b) 1.05 0.93 * c′ 
Fig. 7(b) 0.96 1.06 * c′ 

 
Compared to the schedule in Fig. 6(a), the schedule in Fig. 6(b)  

results in a 23% reduction in average system power consumption 
and a 50% improvement in battery service life evaluated based on 
average power consumption. For the schedule in Fig. 7(b), there is 
a 30% reduction in the average system power consumption and  a 
71% improvement in battery service life evaluated based on 
average power consumption, compared to the schedule in Fig. 
6(a). This example shows, not supprisingly, that voltage scaling 
reduces system power consumption and increases the battery 
lifespan. Moreover, a more efficient voltage scaling scheme can 
lead to better results, as the difference between Fig. 6(b) and Fig. 
7(b) shows. 

 
4. Static Resource Allocation, Assignment and 
Scheduling      

The static resource allocation, task/communication assignment 
and scheduling algorithms we use are from a system synthesis tool 
presented in [12]. It uses a slack-based list scheduling algorithm to 
generate static PE and communication link schedules for each task 
and communication event along the hyperperiod, which is the least 
common multiple of all the task graph periods in a multi-rate 
system specification. It is well known that there exists a feasible 
schedule for the periodic task graphs if and only if there exists a 
feasible schedule for the hyperperiod [15]. A slack-based list 
scheduling scheme is used in the inner-loop of system synthesis in 
order to generate a cost-efficient distributed architecture and a 
feasible schedule. The scheduling scheme is not optimized for 
battery-aware power consumption. We modify the static schedule 
in a post-processing stage through a series of schedule 
transformations, which we discuss in Sections 5 and 6. 

 
5.  Battery-aware Scheduling Scheme 

In this section, we present a battery-efficient scheduling scheme 
which aims to optimize the system discharge power profile. 
Heuristics to optimize the battery efficiency, as suggested in 
Section 3, are based on minimization of the peak power 
consumption and reduction of the variance of the discharge current 
profile. The goal of our scheduling scheme is to reduce the overall 
average of the actual power drawn out of the battery, actp , which 
is evaluated by 
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where p(t) is  the power consumption at time t, and )(tc p is the 
battery utilization factor evaluated at time t. Note that Equation (5) 
is just a variation of Equation (1). p(t) is the summation of all the 
power consumptions in all the PEs and buses, or any other system 
component which draws power from the battery.  Thus, we assume 

∑
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=
)  PEs  (
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busesallalli

i tptp .  Other components of system power 

consumption can be easily incorporated as well, which normally 
can be represented as a fixed contribution. For each task, we 
assume we know its average power consumption and its worst-case 
execution time through simulation and analysis tools [16,17]. The 
energy consumption of a PE in the idle period ip  of a system 
entering sleep state i can be modeled as 

iiiwieii pweippwpeEC
ii

*)(** −−++=  [8], where ie ( iw ) is the 

delay overhead and
iep (

iwp ) is the power consumption in entering 

(leaving) sleep state i, and ip  is the power consumption in this 
state.  A PE always assumes a sleep state that minimizes EC.  

First, we define some variables and functions that are used later 
in presenting our heuristics. We define event_list as a list of 
statically scheduled events in the order of their start times on each 
PE or bus for one hyperperiod.  sched is an array of event_list for 
all the PEs and buses. The scheduled event can be a periodic task 
or a communication event. In the static schedule, every event is 
characterized by a start time, a finish time, and a duration, which 
is the worst-case execution time for that event. For a scheduled 
event, next_event is the next scheduled event in the same 
event_list.  For a task, in-edges (out-edges) refers to all the inter-
PE communication edges entering (coming out of) the task, where 
inter-PE communication edges refer to those edges for which the 
parent task and child task are assigned to different PEs. A deadline 
may be associated with a task. For a task i,   

))_(,,min(min
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The battery-aware schedule optimization scheme is composed of 
two parts. The initial schedule is first optimized through global 
shifting with a goal to reduce the peak power consumption and to 
increase the flexibility in the schedule. Then local schedule 
transformations are employed to optimize the discharge power 
profile. The details of the scheduling scheme are presented in sub-
sections 5.1 and 5.2.   

 
5.1 Battery-aware local schedule transformations  

In the battery-aware local schedule transformation scheme, we 
first rank the time point along the hyperperiod in the order of p(t). 
Then from the highest power consumption time point to the lowest 
point, we try to interchange adjacent events or shift forward or 
shift backward events around that time point, with a goal to reduce 
cost function actp evaluated by Equation (5).  In order to guarantee 
the validity of the schedule in each transformation, if 
interchanging two scheduled events i and j, or shifting forward a 
scheduled event i, or shifting backward a scheduled event j 
violates the precedence relationship, we evaluate the possibility of 
shifting forward the out-edges of i and/or shifting backward the in-
edges of j for exactly the amount needed in case i and j are tasks, 
or shifting forward the child task of i and/or shifting backward the 
parent task of j exactly for the amount needed in case i and j are 
communication events, and take into consideration these effects on 

actp  as well. No local schedule transformation is performed if it 
violates the precedence relationship or hard timing constraints, or 
it does not reduce actp . After each round of transformations, the 
power profile is re-ranked and the above process repeats until 
sched is no longer changed. The following example illustrates the 

scheme. 
Example 3: Consider the task graphs in Fig. 2 and the initial 
schedule in Fig. 3 once again.   Fig. 8 illustrates the steps involved 
in applying the above-mentioned method  to the schedule in Fig. 
3. The ranking of time periods in terms of power profile p(t) 
initially is {(0,4),(12,16),(4,8),(8,10),(10,12)}. There are four steps 
involved. In the first step, t1 and t3 are interchanged to reduce the 
power consumption in time period (0,4). Similarly, in the second 
step, t2 and t8 are interchanged. Then t8 is shifted backward to 
deal with time period (10,12).  The resulting schedule is shown in 
Fig. 8(b). The ranking of time periods in terms of p(t) is then 
updated. In the second round, e1 is shifted forward to relax the 
current peak  power consumption in time period (8, 10). The 

resulting schedule is shown in Fig. 4. At each step, actp is 
reduced. 
 
 

       
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5.2 Global shifting scheme     

The above local transformation scheme is greedy, and is 
dependent upon a good initial solution. This can be illustrated 
through Example 4.  
Example 4: Fig. 9 shows an embedded system specification 
consisting of three task graphs. Fig. 10(a) gives a feasible static 
schedule on a distributed system consisting of two PEs, PE1 and 
PE2, connected by a bus. The worst-case execution time of t1, t2, 
t3, t4, t5 and t6 on their allocated PE are all 2 seconds, while the 
worst-case execution time of t7 and t8 on their allocated PE are 
both 1 second. The execution time of inter-PE communication 
edge e1 on the bus is 1 second.  The power consumption number 
for each scheduled event is shown in brackets  in the schedule. 
There is no opportunity for local movements in order to reduce 

actp  in the schedule of Fig. 10(a). However, the schedule is not 
optimal for battery efficiency.   

 
 
 
 
 
 
 

 
 

 
  

 In order to get a good initial solution, we process the schedule  
through a battery-aware global shifting stage, which tries to shift 
the schedule slots in a global manner with the goal of reducing the 
peak power consumption and increasing the flexibility in the 
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schedule. This process starts from an initial schedule where every 
scheduled event is shifted backward to its as early as possible 
position. Then we create an event processing queue and initialize 
it by inserting the last event on every event_list which does not 
have out-going communication edges. Then we try to shift the 
tasks and communication events in the processing queue as late as 
possible, so long as in the new position where the tasks and 
communication events are shifted to, the overall average power 
consumption for that duration does not exceed some given 
threshold value (power_threshold), while the negative effect, if 
any, resulting from the changing of the grouping of idle periods, 
are less than some threshold value (side_effect_threshold). If there 
is no such position, we shift forward the scheduled events to the 
best position in terms of the reduction in actp . A new task or 
communication event is added into the processing queue if its 
next_event and all those events which have data dependency on it 
have finished shifting. Shifting forward as late as possible helps 
increase the flexibility of the overall schedule so that more 
opportunities can be opened up for further schedule 
transformation.  

The global shifting scheme is illustrated through Example 4. In 
the initial schedule in Fig. 10(a), there are no valid local 
movements possible to reduce actp . We take the average power 
consumption (4.675) as the power_threshold and assume the 
side_effect_threshold is zero. During global shifting, first, t8 is 
shifted to the as-late-as-possible slot. The average power 
consumption for the new time period (7, 8) of t8 is 4, hence, the 
power_threshold is not exceeded. Similarly, t7 is shifted as late as 
possible to time period (6,7). Then e1 is shifted as late as possible 
to (5,6). After this global shifting procedure, the new schedule is 
shown in Fig. 10(b).  Now t6 and t3 can be interchanged to reduce 

actp , without violating the precedence relationships and hard 
real-time constraints. The final schedule is shown in Fig. 10(c). 
Compared to the schedule in Fig. 10(a), the variance of the 
discharge power profile is reduced in the schedule in Fig. 10(c). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
6. Variable-voltage Scheduling Scheme 

Some embedded systems may be composed of voltage-scalable 
PEs, for example, Crusoe processors [14]. Since voltage scaling 
has a high potential for reducing system energy consumption, our 
algorithm is tuned to facilitate the possibility of scaling down the 
voltage for each task whenever possible. 

We define slack time for each scheduled task as the difference 
between its finish_constraint and its finish time. The slack time in 

the distributed schedule makes it possible to scale down the 
voltage without sacrificing the real-time constraint. Our 
scheduling scheme tries to allocate the slack time in a close-to 
optimal way to improve the performance of the consequent 
voltage scaling. Assume for each task i, id  is its execution time 
plus its slack time, ie is its execution time, and ip is its power 
consumption under maximum voltage maxV . For a PE, total_slack 
is the summation of the slack times of all the tasks on that PE in 
the initial schedule, and total_duration is the summation of the 
execution times of all the tasks on that PE.  We use total_slack to 
approximate the total available slack time for all the tasks. Using 
Equations (3) and (4) to evaluate the effects of voltage scaling, for 
a task i, the speed reduction ratio should be iii edscale /= , and the 
corresponding working voltage should be 
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Our objective is to minimize the energy consumption of all the 
tasks after voltage scaling, which is  
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 If the threshold voltage tV  is close to zero, the optimal solution 

can be approximated by 
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The allocation of slack time is performed through global 

schedule shifting and schedule slots interchanging to match the 
optimal slack assignment, which is ii ed −  for task i. 

 
7. Experimental Results 

In this section, we present the experimental results. The task 
graphs in our example are generated with the aid of a randomized 
task graph generator, TGFF [13].  

In the first experiment, we evaluate the performance of our 
battery-aware scheduling scheme presented in Section 5. The 
actual power consumption drawn out of the battery is evaluated by 
Equation (5), where )(tc p  is evaluated using the short-term 
average power consumption. The duration of the short-term 
average should match the order of the battery’s time constant for 
response to the change of the discharge rate, which is assumed to 
be 1 second [2].  The evaluation of the battery efficiency is based 
on data extracted from the specifications for Lithium-Ion Polymer 
batteries in [3]. We evaluate two test sets, a and b, based on the 
same four task graphs. For the purpose of evaluation, we set the 
rated battery capacity (in terms of W-hours) for test set a(b) to be 
2X(1.67X) of the average power consumption of the system. The 
results for the original schedule and the schedule optimized in 
terms of the discharge power profile are compared in Table 2. In 
Table 2, avep  is the average power consumption of the system. 
The optimized schedule results in an improvement of battery 
lifespan in the range of 8.5% to 16.6% and 12.6% to 28.8% for 
test sets a and b, respectively. This experiment shows that without 
sacrificing the performance constraints and introducing overheads 
into the system, the shaping of the discharge power profile alone 
can help boost the battery performance effectively. The 
optimization scheme would be more powerful under stringent 
discharge conditions, for example, at lower temperatures or 
limited battery capacity, where the battery capacity loss is more 
pronounced when the discharge rate is high.  As shown for test set 

Fig. 10    Battery-aware optimization for Example 4 
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b, as the rated battery capacity decreases compared to test set a, 
the optimization of the battery discharge power profile is more 
effective in increasing battery performance.   

 In the second experiment, we evaluate the performance of our 
variable-voltage scheduling scheme presented in Section 6. We 
compare three schemes: (1) non-variable-voltage scheme, (2) 
variable-voltage scheduling without slack time re-allocation, and 
(3) variable-voltage scheduling with slack time re-allocation. We 
evaluate both the battery performance with and without 
considering the shape of the discharge power profile. The 
experimental results are shown in Table 3 for another set of task 
graphs. Scheme (3) achieves an average power reduction in the 
range of 17% to 38% and 14% to 31% compared to Scheme (1) 
and Scheme (2), respectively.  In terms of the battery lifespan 
evaluated using actp , Scheme (3) results in an improvement in the 
range of 26% to 76% and 20% to 56% over Scheme (1) and 
Scheme (2), respectively. In terms of the battery lifespan 
computed as the battery capacity (evaluated using average power 
consumption) divided by average power consumption, Scheme (3) 
results in an improvement in the range of 23% to 68% and 17% to 
50% over Scheme (1) and Scheme (2), respectively.  It can be 
observed that the improvement is more pronounced when the 
shape of the discharge power profile is taken into consideration, 
i.e., the evaluation is based on actp , which indicates our scheme is 
helpful in reducing both the average discharge power level and its 
variance. Thus, the scheme is very powerful in boosting the 
battery performance.   
 

Table 2: Comparison of different scheduling schemes for 
battery-aware power consumption 

 

actp (mW) / Battery 
lifespan(hours) 

Test #tasks # PEs / # 
buses 

avep  
(mW) 

Non-
optimized 

Optimized 

Battery 
lifespan 
increase 
(%) 

1(a) 71 2/1 126 164/1.53 152/1.66 8.5% 
2(a) 114 8/16 361 445/1.62 409/1.77 9.3% 
3(a) 94 6/13 359 463/1.55 420/1.71 10.3% 
4(a) 146 6/13 537 738/1.45 636/1.69 16.6% 

       

1(b) 71 2/1 126 185/1.14 159/1.32 15.8% 
2(b) 114 8/16 361 476/1.27 420/1.43 12.6% 
3(b) 94 6/13 359 508/1.18 439/1.36 15.3% 
4(b) 146 6/13 537 857/1.04 669/1.34 28.8% 

 
8. Conclusions 

 In this paper, we presented two schemes to optimize the battery 
lifespan in battery-powered real-time embedded distributed 
systems by reducing the average discharge power profile and 
shaping its distribution. One scheme optimizes the discharge 
power profile. Another scheme performs variable-voltage 
scheduling via efficient slack-time re-allocation in the distributed 
system composed of voltage-scalable PEs. It helps reduce the 
average discharge power consumption as well as minimize the 
variance of the discharge power profile. Both schemes increase the 
battery lifespan while still guaranteeing the real-time constraints 

and precedence relationships in the distributed embedded system, 
based on an evaluation metric which is aware of the shape of the 
discharge power profile. In future work, the evaluation metric 
should incorporate the battery recovery effect as well.   
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Table 3: Comparison of different voltage-scaling and non-voltage-scaling schemes 
 

actp (mW) / Battery lifespan 

evaluated by  actp (hours)  

Battery lifespan (evaluated 

by actp ) increase (%) 

Ave.  power consumption (mW) / Battery lifespan 
evaluated by average power consumption (hours) 

Test  #tasks #PEs/ 
#buses 

(1) (2) (3) (3) vs. (1) (3) vs. (2) (1) (2) (3) 
1 52 2/1 136/1.57 111/1.94 86/2.51 59.9% 29.4% 107/1.8 92/2.14 72/2.77 
2 101 4/6 500/1.70 475/1.79 398/2.14 25.9% 19.6% 425/1.8 406/1.89 351/2.22 
3 114 8/16 476/1.74 418/1.98 338/2.45 40.8% 23.7% 413/1.8 369/2.04 307/2.49 
4 100 5/10 302/1.72 274/1.89 206/2.52 46.5% 33.3% 260/1.8 240/1.96 187/2.58 
5 133 7/16 490/1.70 434/1.92 278/2.99 75.9% 55.7% 416/1.8 375/2.02 258/3.03 
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