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ABSTRACT
We propose an intra-task voltage scheduling algorithm for low-
energy hard real-time applications. Based on a static timing anal-
ysis technique, the proposed algorithm controls the supply volt-
age within an individual task boundary. By fully exploiting all
the slack times, a scheduled program by the proposed algorithm
always complete its execution near the deadline, thus achieving a
high energy reduction ratio. In order to validate the effectiveness of
the proposed algorithm, we built a software tool that automatically
converts a DVS-unaware program into an equivalent low-energy
program. Experimental results show that the low-energy version
of an MPEG-4 encoder/decoder (converted by the software tool)
consumes less than 7�25% of the original program running on a
fixed-voltage system with a power-down mode.

1. INTRODUCTION
Recently, the reduction of energy consumption is emerging as a

key technology in the VLSI system design, especially for battery-
powered portable systems such as digital cellular phones, personal
digital assistants, and mobile videophones. For these systems, the
low energy consumption is a primary design goal, since the battery
operation time is one of the most significant performance measures.
Even for non-portable VLSI systems such as high performance mi-
croprocessors, the energy consumption is an important design con-
straint, because large heat dissipations in high-end microprocessors
often result in the device thermal degradation, system malfunction,
or in some cases, non-recoverable crash. These problems demand
low-power technologies over a wide range of hardware and soft-
ware design abstractions, including device, circuit, logic, architec-
ture, compiler, operating system, and application levels.

When the required performance of a given task is lower than the
maximum performance of a VLSI system, the clock speed and its
corresponding supply voltage can be dynamically lowered to the
lowest possible level while meeting the task’s deadline constraint.
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This is the key idea of dynamic voltage scaling (DVS) technique.
For example, consider a task with a deadline of 25msec, running on
a processor with the 50MHz clock speed and 5.0V supply voltage.
If the task requires 5� 105 cycles for its execution, the processor
executes the given task in 10msec, and becomes idle for the re-
maining 15msec. However, if the clock speed and supply voltage
are lowered to 20MHz and 2.0V, it finishes the given task just at its
deadline (=25msec), resulting in 84% energy reduction.

For hard real-time systems where timing constraints must be
strictly satisfied, a fundamental energy-delay tradeoff makes it more
challenging to adjust the supply voltage dynamically (so that the
energy consumption is minimized) while not violating the timing
requirements. Recently, several researchers have investigated the
DVS problem [12, 4, 9, 11, 7]. Most research effort focused on
real-time systems with multiple tasks. Given multiple tasks, the
key question is how to assign the proper speed to each task dy-
namically while guaranteeing all their deadlines. Note that these
techniques determine the supply voltage on task-by-task basis. For
each task activation, only one supply voltage is assigned to the task,
and it is not changed during the task execution. In this paper, we
call these techniques as inter-task voltage scheduling.

However, inter-task voltage scheduling has several practical lim-
itations. For example, it requires OS modifications, since a task
scheduler in OS determines the supply voltage of a task. Further-
more, it cannot be applied to a single-task environment, since the
supply voltage is determined as a constant value for a given task.
This implies that for many practical small-sized embedded mobile
applications, DVS cannot be used.

Even in a multi-task environment, inter-task voltage schedul-
ing may not be effective in reducing the energy consumption if
one task is dominant in both the slack times and execution times.
In this case, a dominant task (with the highest energy consump-
tion) exploits slack times from other tasks (with small slack times),
thus ineffective in reducing the energy consumption. For example,
consider a typical mobile videophone application with four tasks
shown in Table 1. Using an inter-task voltage scheduling of [11],
only 17% of energy reduction is observed while an off-line (theo-
retical) optimal voltage scheduling can achieve 90% power reduc-
tion.

These limitations lead to the idea of intra-task voltage schedul-
ing, where a given task is partitioned into several segments, and
different supply voltages are assigned for each segment. Lee and
Sakurai [6] proposed an intra-task voltage scheduling where each
task is partitioned into fixed-length timeslots. Although [6] shows
a significant improvement in the energy reduction, it provides no
systematic methodology for developing DVS-aware intra-task ap-
plications. For example, there exists no systematic guideline of se-



MPEG-4 Video MPEG-4 Video VSELP Speech VSELP Speech
Encoding Decoding Encoding Decoding

Period (= Deadline) (msec) 66.667 66.667 40.000 40.000
Average Slack Time (msec) 37.287 8.366 0.937 0.703

Average Execution Time (msec) 13.099 1.460 0.907 0.680
NEC(Inter)a 0.826
NEC(Ideal)b 0.106

aNormalized energy consumption by an inter-task voltage scheduling [11].
bNormalized energy consumption by an off-line optimal voltage scheduling.
�The base case of normalization is DVS-unaware systems using only power-down mode.

Table 1: A typical videophone application.

lecting the best program locations where voltage scaling code is in-
serted. Since average programmers are generally not familiar with
low-energy software issues as well as timing analysis techniques, it
is in practice very difficult to use intra-task voltage scheduling for
real-time applications without support for any systematic program-
ming methodology.

In this paper, we propose a novel intra-task voltage scheduling
algorithm based on a static timing analysis of a target application
program. The proposed algorithm has the following features: It
fully exploits all slack times coming from execution time varia-
tions within a single task, achieving a significant improvement in
the energy consumption. Since it does control the supply voltage
within each task, it is applicable to a single-task environment. It
provides a systematic methodology for developing an automatic
conversion tool that converts DVS-unaware programs into DVS-
aware ones. This means that a programmer of the original program
requires no knowledge on DVS, making the proposed algorithm
very practical. It enables each individual task to control supply
voltage independent of other tasks, without any support from op-
erating systems. Therefore, it can be directly applied to a conven-
tional DVS-unaware OS without any modification.

The rest of this paper is organized as follows. Basic notations
and the target variable voltage processor model are described in
Section 2. In Section 3, the proposed intra-task voltage schedul-
ing is presented. Software framework and simulation results are
discussed in Section 4. Section 5 concludes with a summary and
directions for future work.

2. PRELIMINARIES

2.1 Program Representation
We consider a real-time task τ with the deadline Dτ

1. The task τ
is represented by its control flow graph (CFG) Gτ . If the task τ has
N basic blocks, b1;b2; � � � ;bN , Gτ consists of N nodes. (We assume
that b1 is the entry basic block of the task τ.) We associate each ba-
sic block bi with its basic block information (BBI) structure. The
BBI structure BBI(bi) of the basic block bi consists of the following
three entries: CEC(bi), CRW EC(bi), and S(bi). CEC(bi) denotes the
number of clock cycles needed to execute bi. CRWEC(bi) represents
the remaining worst case execution cycles (RWEC) among all the
execution paths that start from bi. S(bi) represents the processor
clock speed in frequency at which bi is executed. Note that, in the
BBI definition, we did use execution cycles instead of execution
times. This is because, as we adjust the clock speed on a variable
voltage processor, the execution time is changing but the number
of execution cycles remains constant. Given the number of execu-
tion cycles, the execution time can be computed by multiplying the
clock cycle time with the number of execution cycles.

1Since our discussions are limited to a single or dominant task τ as explained Section
1, for the description purpose, we omit the subscript τ from our notations.

We also define similar notations for execution paths. pi denotes
an execution path of a task τ. pi can be expressed as a sequence of
basic blocks. The worst case execution path is denoted as pworst .
CEC(pi) represents the number of execution cycles when pi is ex-
ecuted. The number of execution cycles of pworst is denoted as
CWCEC.

2.2 Variable Voltage Processor Model
Throughout this paper, we make the following assumptions on a

target variable voltage processor: (1) The processor provides a spe-
cial instruction, change f V( fCLK), that can dynamically con-
trol clock frequency fCLK and its corresponding voltage VDD of the
processor. (2) fCLK and VDD can be set continuously within the op-
erational range of the processor. (3) When the processor changes
( fCLK1,VDD1) to ( fCLK2,VDD2), there is a clock/voltage transition
overhead period of CVTO cycles2. (4) During clock/voltage tran-
sition, the processor stops running (denoted as Processor Type I)
or runs at fCLK=min( fCLK1; fCLK2) (denoted as Processor Type II).
Assumptions (1)-(3) are valid for most existing variable voltage
processors [1, 2, 6]. Recent frequency synthesizers and DC-DC
converters achieve clock/voltage transition time of less than 200µsec,
corresponding to 20,000 cycles at 100MHz. Assumption (4) spec-
ifies the target processor’s execution status during clock/voltage
transition. Processor Type depends on its hardware architecture.
For example, the DVS architecture appropriate for off-the-shelf
processors [6] belongs to Type I while Transmeta’s Crusoe proces-
sor [2] is of Type II. Our work described in this paper can support
both processor types with a slight modification of clock/voltage
transition overhead modeling.

3. INTRA-TASK VOLTAGE SCHEDULING

3.1 Basic Idea
Consider a hard real-time program P with the deadline of 2µsec

shown in Figure 1(a). The CFG GP of the program P is shown in
Figure 1(b). In GP, each node represents a basic block of P and
each edge indicates the control dependency between basic blocks.
The number within each node indicates the number of execution
cycles of the corresponding basic block. The back edge from b5 to
bwh models the while loop of the program P.

In developing hard real-time systems where tasks have strict tim-
ing constraints (i.e., deadlines), the worst case execution times (WCETs)
of the tasks are estimated in advance (prior to run time) to guarantee
that required timing constraints are met. Such WCETs can be pre-
dicted by existing WCET analysis tools that produce safe and accu-
rate WCET prediction results [3, 8]. Using a WCET analysis tool,
we can find the path pworst = (b1,bwh,b3,b4,b5,bwh, b3,b4,b5,bwh,b3,

2Since we represent the fixed clock/voltage transition overhead period by the number
of cycles, it can vary depending on the current clock frequency. For a simpler analysis,
we assume that CVTO cycles were counted under the maximum clock frequency.



b4,b5,bwh,bi f ,b6,b7) as the worst case execution path (WCEP) for
the example program P, assuming that the maximum number of
while loop iterations is set to 3 by user. The predicted execu-
tion cycles of pworst is, therefore, 160 cycles, which is the worst
case execution cycles (WCEC). If a target processor operates at the
maximal clock frequency of 80MHz, the program P completes its
execution in 2µsec, resulting in no slack time.
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Figure 1: An example program P; (a) an example real-time
program with the 2µsec deadline, (b) its CFG representation
GP, and (c) an augmented CFG GA

P with CRWEC(bi) values.

Intra-task voltage scheduling is based on a simple observation
that there are large execution time variations among different ex-
ecution paths. In particular, it exploits the fact that the average
case execution paths (ACEPs) complete their executions much ear-
lier than the WCEP(s) does [11]. For the example program shown
in Figure 1(b), there exist 32 different execution paths. While
the WCEP pworst takes 160 cycles, eight of 32 possible execution
paths take less than 80 cycles. For such short execution paths,
if we were able to identify them in the early phase of its exe-
cution, we can lower the clock speed substantially, thus saving
a significant amount of energy consumption. Consider the path
p1 = (b1;b2;bi f ;b6;b7) of Figure 1(b) whose execution takes 40
cycles. In the ideal case, when we can perfectly predict in advance
that the actual execution path will be p1, we can start the execution
with the clock speed of 20MHz without violating the 2µsec dead-
line. Although this will improve the energy efficiency significantly,
we cannot start with the 20MHz clock speed from b1 because we do
not generally know in advance which execution path will be taken
by the next program execution.

In the proposed intra-task voltage scheduling technique, we take
an adaptive approach with the help of a static program analysis
technique on worst case execution times. Using a modified WCET
analysis tool such as one in [8], for each basic block bi, we compute
CRW EC(bi) in compile time. For example, Figure 1(c) shows an
augmented CFG GA

P with CRW EC(bi) values. The GA
P graph is stat-

ically constructed by a modified WCET tool. For the basic blocks
related to the while loop (i.e., bwh, b3;b4;b5), the corresponding
nodes are associated with multiple CRWEC(bi) values, reflecting
the maximum three iterations of the while loop. Once GA

P is con-
structed, we can statically identify branching edges (of a CFG G)
that drops the remaining worst case execution cycles faster than the
current execution rate. For example, in Figure 1(c), we can iden-
tify four such edges, i.e., (b1;b2), (bwh;bi f ), (bi f ;b7) and (b3;b5).
In Figure 1(c), these edges are marked by the symbol �. When the
thread of execution control branches to the next basic block through
one of these edges, say (b1;b2), the clock speed can be lowered
because the remaining work is reduced by the difference between
CRW EC(bwh) and CRW EC(b2). By reducing the clock speed so that
the CRW EC(b2) cycles can be completed exactly at the deadline, the
proposed technique always meets the required timing constraint.
Since the voltage scaling decisions are made in compile time, not

run time, there exists no run time overhead directly related to the
selection of voltage scaling edges. In addition, the compile-time
static analysis procedure does not require special programmer’s in-
terventions other than ones typically required in developing normal
hard real-time programs (e.g., the maximum number of loop itera-
tions).

Figure 2 compares how the speed and voltage change depending
on whether the intra-task voltage scheduling is used or not. Assum-
ing that no energy is consumed in an idle state and E ∝ CL �Ncycle �

VDD
2, when the execution follows the path p1 =(b1;b2;bi f ;b6;b7),

the energy consumption ratio of Figure 2(b) to Figure 2(a) is 0.31.
With the intra-task voltage scheduling, the energy consumption is
reduced by 69%.
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Figure 2: Speed and voltage changes by the intra-task schedul-
ing.

3.2 Speed Assignment Algorithm
The speed assignment algorithm assigns to each basic block a

proper speed at which the basic block is executed. For a hard real-
time task, the goal of the speed assignment algorithm is to assign
the speed to each basic block so that the energy consumption is
minimized while the timing requirements are satisfied.

If the actual execution path pact of a task τ were known in ad-
vance, the optimal execution speed could be easily computed as
shown in [5]: for each basic block bi in pact , S(bi) =CEC(pact)=D.
However, since the exact execution path is generally unknown until
the program execution is completed, we adjust S(bi) based on the
remaining worst case execution cycles CRWEC(bi). By a modified
version of the static WCET prediction algorithm such as one in [8],
we can estimate CRWEC(bi) for each basic block bi. S(bi) is set to
the clock speed S at which the remaining CRWEC(bi) cycles can be
completed exactly at the deadline.

At the entry basic block b1, CRWEC(b1) is set to CWCEC and the
starting speed is set to CWCEC=D. If we denote CRW EC(t) to in-
dicate the remaining worst case execution cycles at time t, as the
execution proceeds, CRWEC(t) is linearly decreased at the rate of
clock speed when the execution follows the worst case execution
path pworst . However, if the execution deviates from the basic block
bi in the worst case execution path pworst to a basic block bj not in
pworst , CRW EC(t) drops after the execution of bi is completed by
the difference between CRW EC(bi)�CEC(bi) and CRW EC(b j).

Figure 3 shows how CRWEC(t) dynamically changes as the path
p = (b1;b2;bi f ;b7) of the example program P shown in Figure 1 is
executed. In Figure 3(a) which uses no speed scheduling, CRW EC(t)
drops at two points, CEC(b1)/80MHz and (CEC(b1)+CEC(b2)+
CEC(bi f ))/80MHz. Since no speed scheduling is used at Figure
3(a), CRWEC(t) is decreased at the rate of 80MHz, resulting in a
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Figure 3: The changes of CRWEC(t) over different speed scaling
algorithms: (a) no intra-task scheduling and (b) RWEC-based
intra-task scheduling.

slack time interval of 1.5625µsec. Figure 3(b) shows the effect
of speed scheduling for the same execution path. Since CRW EC(t)
drops right after the execution of b1 is completed, speed is changed
from 80MHz to 16MHz, which is the minimum speed at which the
processor can complete the remaining program execution before
the deadline. When CRW EC(t) drops right after bi f , speed is also
changed due to the same reason.

Since the proposed RWEC-based intra-task scheduling makes
all the execution paths to complete their executions near the re-
quired deadline, the RWEC-based technique provides two benefits:
1) There is little slack times, thus it is energy efficient and 2) it
is guaranteed that the scheduled program always meets the timing
constraint. We call the points at which CRWEC(t) is dropped verti-
cally in Figure 3, Voltage Scaling Edges (VSEs), because the speed
and voltage can be scaled at these points. We denote the number of
cycles reduced at VSEs as Csaved .

3.2.1 B-type Voltage Scaling Edges
VSEs can be classified into two categories, i.e., B-type VSEs and

L-type VSEs. A B-type VSE corresponds to the CFG edge between
two basic blocks that are part of conditional statements such as the
if statement. For the if statement, the WCET is predicted to
be the larger of two execution times, one for the then path and
the other for the else path. Assume that the condition of the if
statement is evaluated in bcond , the then path starts from bthen and
the else path starts from belse. If the condition of the if statement
evaluates to true and the then path is shorter than the else path,
CRW EC(t) is decreased by (CRW EC(belse)�CRWEC(bthen)). In this
case, the speed can be decreased before the bthen block is executed

by a ratio of CRWEC(bthen)
CRWEC(belse)

. We call this ratio a speed update ratio and

represent it by r(bcond ! bthen).
In adjusting speed/voltage at VSEs, several instructions are (other

than change f V( fCLK)) are required. We denote the number
of cycles needed to execute these instructions at a B-type VSE as
CV SOB . The total number of overhead cycles CoverheadB

for a B-type
VSE, therefore, is given by CVTO +CVSOB . The speed update ratio
r(bi ! b j) for a B-type VSE (bi;b j) is calculated as follows:

r(bi ! bj) =
CRW EC(bj)

CRW EC(succworst(bi))�CoverheadB

(1)

where succworst(bi) is the basic block bk that is an immediate suc-
cessor of bi and has the largest CRWEC(bk) among all the successors
of bi.

Though the proposed scheduling can support both types (i.e.,
Type I and Type II in Section 2.2) of variable voltage processors,

we assume that the processor stops while voltage is being scaled
for a simpler description. If CRWEC(b j)�CRW EC(succworst(bi))�
CoverheadB

, that is r(bi ! b j) � 1, the edge (bi;b j) is not selected
as a VSE. For a VSE between bi and bj , a speed update ratio
r(bi ! b j) is multiplied to the current speed before bj starts its
execution. For example, assuming CoverheadB

as 0, S(b2) in Figure
1 is updated as follows:

S(b2) = S(b1) � r(b1 ! b2) = S(b1) �
30
150

So the clock speed is changed from 80MHz to 16MHz (=80MHz
�

30
150 ).

3.2.2 L-type Voltage Scaling Edges
Although CWCEC is predicted assuming that a loop will be it-

erated by the user-provided maximum number of loop iterations,
the loop is generally iterated smaller times than the maximum loop
bound. In this case, slack time exists and clock speed can be scaled
down. We call this type of scaling L-type scaling. L-type VSEs
correspond to the loop-exit edges in a CFG. By the L-type scaling,
the number of saved cycles Csaved for a loop l is given by

Csaved(l) =CWCEC(l) � (Nworst (l)�Nexec(l)) (2)

where CWCEC(l) is the number of worst case execution cycles to
execute the loop l once, Nworst(l) is the number of user-provided
maximum loop bound value for the loop l, and Nexec(l) is the num-
ber of actual loop iterations measured at run time. For the L-type
scaling, consider the edge (bwh;bi f ) in Figure 1 which is an exam-
ple L-type VSE. Assuming Nexec(l) = 1, and CoverheadL

= 0, S(bi f )
is updated as follows:

S(bi f ) = S(bwh) �
CRW EC(bi f )

CRW EC(bi f )+Csaved(l)�CoverheadL

(3)

= S(bwh) �
20

20+40 � (3�1)

= S(bwh) � r(bwh ! bi f )

When S(bwh) is 80MHz, S(bi f ) is reduced to 16MHz before exe-
cuting bi f .

Unlike a B-type VSE, calculating the speed update ratio for an L-
type VSE requires the run-time information such as Nexec(l)3. The
speed update ratio may be larger than 1 depending on the value of
Nexec(l) and CoverheadL

. To avoid this problem, we select an L-type
VSE in two phases. First, we select a loop-exit edge of a loop l as
an L-type candidate VSE if CWCEC(l) > CoverheadL

, which means
that if Nexec(l)< Nworst(l), the speed update ratio is always smaller
than 1. When Nexec(l) = Nworst(l), the speed is not changed but
the timing behavior of an original program is changed due to the
code inserted to check if Nexec(l) = Nworst(l) or not. Among the
L-type candidates, we choose the final L-type VSEs by the algo-
rithm explained in Section 3.3. Although L-type VSEs are more
complex than B-type VSEs, since slack times from loop executions
are generally much larger than those from conditional statements,
the contribution of L-type VSEs on the overall energy reduction is
bigger.

3.3 VSE Selection Algorithm
While voltage scaling code for B-type VSEs does not increase

CWCEC of a given program, voltage scaling code for L-type VSEs

3Note that the selection of L-type VSEs are done in compile time. The run-time
information such as Nexec(l) is necessary when calculating the speed update ratio.



can increase CWCEC depending on the number of loop iterations
executed. If a loop iterates its maximum number of iterations (i.e.,
the maximum number of loop iterations given by user) and the loop
exit edge was selected as a candidate L-type VSE, CWCEC of the
program will increase by the number of cycles to execute the code
checking the number of loop iterations. This increase, if accumu-
lated, may make the modified program violate the timing constraint
of the original program.

In order to avoid this situation, we select the final L-type VSEs
from the candidate L-type VSEs by the algorithm shown in Figure
4. Assuming that the target processor can execute M cycles (at its
full speed) within the given the deadline interval, we check if can-
didate L-type VSEs (if all selected) will violate the required timing
constraint with the extra cycles added by the L-type VSEs. If the
deadline may not be satisfied in the worst case, we exclude some
candidate L-type VSEs until the increase in CWCEC will satisfy the
given deadline. After L-type VSEs are decided, CRWEC(bi)’s are
recomputed and B-type VSEs are selected.
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Figure 4: Overall VSE selection algorithm.

After VSEs are selected, the voltage scaling code should be in-
serted into a program code. Figure 5 shows an example of code
generated for VSEs. Since the edge (b1;b2) is a B-type VSE, B-
type scaling code, code B, is inserted into (b1;b2) as shown in
Figure 5. To change speed and voltage, the speed update ratio
of the corresponding VSE is read from the speed table which is
constructed at compile time using Equation (1). The current speed
value is multiplied by the speed update ratio and its result is set
to the new speed to use. The special instruction change f V (that
changes the speed and voltage of the target processor) is called with
the new speed value.

Figure 5 also shows an example voltage scaling code, code L, for
an L-type VSE. Because the L-type VSE requires the loop iteration
number when the loop exits, extra code is necessary to maintain the
current loop iteration number. In Figure 5, two boxes in the edges
(b1;bwh) and (bwh;b3) include this extra code.

4. EXPERIMENTAL RESULTS

4.1 Software Framework
We have developed a software tool, the Automatic Voltage Scaler

(AVS), that automates the development of hard real-time programs
on a variable voltage processor using the intra-task scheduling al-
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Figure 5: Code generation for VSEs.

gorithm described in section 3. AVS takes as an input a DVS-
unaware (thus regular) program P and its timing requirements, and
produces a DVS-aware low-energy program PDVS that satisfies the
same timing requirements of P. The converted program PDVS con-
tains voltage scaling code that handles all the idiosyncrasy of scal-
ing speed/voltage on a variable voltage processor. Using AVS,
DVS-unaware hard real-time programs can be converted to DVS-
aware low-energy programs in a completely transparent fashion
to software developers. In the current version of AVS, the MIPS
R3000 instruction set architecture was used as a target processor.

The organization of AVS can be divided into two main modules,
i.e., the WCET Predictor (WP) module and the Voltage Scaler (VS)
module. The WP module is responsible for estimating CRWEC(bi)’s
of all the basic blocks in an input program. In order to estimate
CRWEC(bi) of a given basic block bi, AVS uses a modified version
of a timing tool developed by Lim et al. [8]. Lim et al.’s original
timing tool estimates the WCET of a whole program traversing the
program’s syntax tree. Since AVS needs the RWEC from each basic
block, we have modified the original timing tool accordingly to our
purpose. The WP module, like the original timing tool [8], takes
as an input a high-level language program and the user-provided
information (e.g., loop bound) to estimate CRW EC(bi)’s.

The VS module identifies the VSEs based on CRWEC(bi)’s with
the program syntax tree, assigns proper speeds to these edges, and
generates a converted program.

4.2 Simulation Results
To evaluate the power reduction performance of AVS, we have

experimented with an MPEG-4 video encoder and decoder. Since
we don’t have proper hardware platform with a variable voltage
processor, we developed an energy simulator for the experiment.
The energy simulator takes an assembly program and its execu-
tion trace as inputs, and calculates total energy consumption of the
program execution. In this simulation, we assume that both DVS-
aware and DVS-unaware systems enter into a power-down mode
when the system is idle. Supply voltage for a given clock fre-
quency is obtained from fCLK = 1=TD ∝ (VDD �VT )

α=VDD [10]
where VDD, VT , and α are assumed to be 2.5V, 0.5V, and 1.3,
respectively. Clock/voltage transition overhead CVTO is assumed
to be 0�20,000 cycles, corresponding to 0�200µsec of transition
time with 100MHz clock frequency. For non-zero CVTO values, the
processor stops its execution and enters into a power-down mode
during clock/voltage transition (Processor Type I in Section 2.2).

Figures 6(a) and 6(b) show the energy consumption of the AVS-
converted MPEG-4 encoder and decoder program. (In convert-
ing the MPEG-4 encoder and decoder program, it took less than
100msec for AVS.) Results were normalized over the energy con-
sumption of the original program running on a DVS-unaware sys-



tem. For each program, we experimented assuming that a power-
down mode consumes 5% of the energy consumed by a normal
mode [11]. The AVS-converted MPEG-4 encoder and decoder pro-
grams consume less than 25% and 7% of the original program,
respectively. The large difference of energy efficiencies between
two programs is due to the different timing behaviors of the pro-
grams. There is a large difference between WCET and ACET (av-
erage case execution time) of the MPEG-4 decoder while WCET of
the MPEG-4 encoder is relatively close to ACET. Figure 6(c) and
6(d) shows the number of voltage transitions which represents how
many times voltage scaling code were executed during the program
execution. When CV TO < 3,000 cycles (=30µsec) in the MPEG-4
encoder, the number of voltage transitions decreases sharply, and
energy consumption increase rapidly. When CVTO > 5,000 cycles
(=50µsec) in both the MPEG-4 encoder and decoder, the energy
consumption does not increase rapidly. This is because the number
of discarded voltage scaling edges (due to clock/voltage transition
overhead) is small.
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Figure 6: The normalized energy consumption and the number
of voltage transitions of the AVS-converted MPEG-4 encoder
and decoder program.

The number of VSEs, which represents how many copies of volt-
age scaling code were inserted into the AVS-converted program,
indicates the degree of code size increment by inserting voltage
scaling code using an in-line expansion. For the AVS-converted
MPEG-4 encoder and decoder, about 20 VSEs are inserted when
CV TO > 5,000 cycles, meaning that insertion of voltage scaling
code hardly increases the total code size. This is because a small
number of voltage scaling edges are responsible for quite a large
portion of the total power reduction.

5. CONCLUSION
In this paper, we have proposed an intra-task voltage schedul-

ing algorithm for low-energy hard real-time applications. Based
on the RWEC information of each basic block, which is computed
statically in compile time using a variant of the WCET analysis
technique, the proposed technique automates two time-consuming
and complicated steps of applying intra-task voltage scheduling
to DVS-unaware programs. First, the proposed technique auto-
matically selects appropriate program locations where the supply
voltage is scaled down. Second, the proposed technique inserts
to the selected program locations voltage scaling code in a com-
pletely transparent fashion to programmers. By automating these

two steps, the proposed algorithm makes it possible for program-
mers without any knowledge on DVS to develop DVS-aware pro-
grams on a variable voltage processor. The converted program by
the proposed scheduling algorithm has a unique characteristic that
it always completes its execution near the deadline, thus resulting in
no slack time. By lowering the execution speed and corresponding
voltage to the maximum allowable extent, the proposed algorithm
achieves a significant energy reduction ratio.

We have built an automatic voltage scaling tool, AVS, based on
the proposed intra-task voltage scaling algorithm. AVS automat-
ically transforms a DVS-unaware program to a DVS-aware low-
energy program with the same functional behavior and timing re-
quirement. The experimental results using an MPEG-4 video en-
coder and decoder show that AVS improves the energy efficiency
of the programs by a factor of 4�14 over the programs running on
a non-DVS system with a power-down mode.

The intra-task voltage scheduling algorithm described in this pa-
per can be extended in several directions. For example, we have
used RWECs in selecting VSEs, but different measures such as
ACETs may be more effective in reducing the energy consump-
tion. We are currently investigating a scheduling technique based
on ACETs that guarantees the required timing constraint. In addi-
tion, the energy efficiency of a scheduling technique may be im-
proved significantly by utilizing more run-time information (e.g.,
the elapsed time). We plan to integrate different run-time informa-
tion to proposed scheduling algorithms so that the energy efficiency
can be further improved.
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