
Achieving 550 MHz in an ASIC Methodology
D. G. Chinnery, B. Nikolić, K. Keutzer

Department of Electrical Engineering and Computer Sciences

University of California at Berkeley

{chinnery, bora, keutzer}@eecs.berkeley.edu

ABSTRACT
Typically, good automated ASIC designs may be two to five times
slower than handcrafted custom designs. At last year's DAC this
was examined and causes of the speed gap between custom
circuits and ASICs were identified. In particular, faster custom
speeds are achieved by a combination of factors: good
architecture with well-balanced pipelines; compact logic design;
timing overhead minimization; careful floorplanning, partitioning
and placement; dynamic logic; post-layout transistor and wire
sizing; and speed binning of chips. Closing the speed gap requires
improving these same factors in ASICs, as far as possible. In this
paper we examine a practical example of how these factors may
be improved in ASICs. In particular we show how techniques
commonly found in custom design were applied to design a high-
speed 550 MHz disk drive read channel in an ASIC design flow.

General Terms
Performance, design.

Keywords
ASIC, clock, frequency, speed, throughput, comparison, custom.

1. INTRODUCTION
Typically, speeds of good application-specific integrated circuits
(ASICs) lag that of the fastest custom circuits in the same
processing geometry by factors of two or more. In decreasing
order of importance, we have shown [3] that custom designs are
faster due to use of dynamic logic on critical paths; speed-binning
of chips; timing overhead minimization with clock tree design for
clock skew minimization, and good latch and flip-flop design; and
custom transistor and wire sizing.

Table 1 gives our overview of the maximum contributions of
various factors to the speed differential between ASICs and
custom ICs. These are similar to those presented in [3], but
clocking related issues have been gathered in a single heading.

A custom processor designer has a full range of design style
choices. These include architecture and micro-architecture, logic
design, floorplanning and physical placement, and choice of logic
family. Also, circuits can be optimized by hand and transistors
individually sized for speed, lower power, and lower area.

Table 1. Maximum differences between custom and ASIC. A
factor of ××××1.00 indicates no difference.

FACTORS CONTRIBUTING TO
CUSTOM BETTER THAN ASICs

vs. poor
ASIC

vs. best practice
ASIC

micro-architecture: pipelining; logic design ×4.20 ×1.00

process variation and accessibility ×2.00 ×1.20

dynamic logic on critical paths ×1.50 ×1.50
timing overhead: clock tree distribution;
latch/flip-flop design ×1.40 ×1.15

floorplanning and placement ×1.25 ×1.00

sizing of transistors and wires ×1.25 ×1.05

ASIC tools cannot handle dynamic logic and the process variation
gap cannot be closed fully, but ASIC designs can be improved in
a variety of ways [3]. To show how the gap between ASIC and
custom can be closed, we examine an ASIC disk drive read
channel chip that achieves a clock frequency of 550 MHz in
0.21 µm CMOS [22]. The speed of 550 MHz is comparable to
custom design speeds. This example illustrates the importance of
some of the principles outlined in last year’s presentation, such as
partitioning and duplication of logic to achieve higher throughput.
Additionally, we show that the clocking overhead in ASIC
designs can be reduced with careful clock tree design to ensure
predictable clock skew, and latch-based design.

The key opportunities for closing the gap between ASIC and
custom form the organizing principle of this paper. Specifically,
in Section 2 we overview the design example, and examine its
micro-architecture in Section 3. In Section 4 we discuss timing
and latch design, and Section 5 discusses clock tree distribution.
Section 6 compares ASIC and custom logic designs. Section 7
examines cell and wire sizing, while Section 8 looks at controlling
process variability. Finally, Section 9 reflects our conclusions.

2. A DESIGN BRIDGING THE SPEED GAP
BETWEEN ASIC AND CUSTOM

Disk drive read channels are a high-speed signal processing
application. Data rates in current high-performance commercial
products are in the range of 500-1200 Mb/s [1, 11, 17] and
demand increasingly high speeds. For example, Marvell’s
88C5500 has a throughput of 1.2Gbit/s with 0.18 um technology
and 3.3 V supply [11].

We examine a competitive ASIC disk drive read channel design,
the Texas Instruments’ SP4140 in 0.21 µm CMOS (0.18 µm Leff)
with 1.9 V supply [22]. It is based on EPR4 equalization [21],
operates at 550 MHz, dissipates at most 1.7 W at full speed, and
has 525 Mb/s user data rate. This speed is comparable to custom-
designed read channels in similar technology [13].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
DAC 2001, June 18-22, 2001, Las Vegas, Nevada, USA.
Copyright 2001 ACM 1-58113-297-2/01/0006…$5.00.

][][][
0
∑

=

−=
n

k
knxkhny (1)

VGA CT Filter Equalizer Detector ADC Decoder Descrambler

Encoder Scrambler Precomp
Read
Signal

Read
Data

Write
Data

Write
Signal

Servo Timing recovery

Figure 1: Disk drive read channel block diagram.
 Delay element

e.g. flip-flop:
D Q D Q D Q

×h0 ×h1 ×h2 ×hn

x(n)

y(n)

D Q

+ + +

Figure 2: Direct form FIR.
 x(n)

y(n) D Q

×h0

D Q

×h1

+ D Q

×h2

+ D Q

×hn

+

Figure 3: Transpose-form FIR.
Good synthesis requires a rich library with sufficiently many drive
strengths [3]. This ASIC used TI’s standard cell library, with 3 to
4 gate sizes for standard cells, and 5 buffer/inverter sizes. To
reduce timing overhead, some custom designed cells were
characterized for an ASIC flow and used in the SP4140, (e.g. the
memory elements on the critical paths, such as the SAFF), and
their drive strength was matched to their typical load.

The SP4140 was an entirely new design taken from application
concept, including new algorithms and architecture, to circuit
realization, in a new process, in nine months. We concentrate on
techniques to speed up bottlenecks (the Viterbi detector and
adaptive equalizer in the read path) in the chip’s digital portion.

2.1 Read and Write Data
The block diagram in Figure 1 represents most of today’s read
channels. The write data is scrambled, runlength encoded, pre-
compensated for magnetic channel nonlinearities, and fed to the
write head. The read signal is read by the read head, preamplified,
and processed by the read channel.

On the read side, the signal from the preamplifier is conditioned
by the variable-gain amplifier (VGA) and continuous-time (CT)
filter, before analog-to-digital conversion (ADC). Besides anti-
aliasing, the continuous time filter partially equalizes the data.
After the ADC, the data is processed digitally. The key blocks are
the digital adaptive equalizer, the Viterbi detector, the runlength
decoder and the descrambler. Then the data is converted from
serial bit data to byte data, and can then be processed at a lower
speed. The timing recovery and servo blocks use equalized and
detected data.

2.2 Digital Portion Speed Bottlenecks
Due to increasing storage densities, to limit noise enhancement
read channels use partial-response equalization, which is often
done by finite impulse response (FIR) filtering. Viterbi detection
resolves the remaining inter-symbol interference. The FIR filter
performs partial-response equalization, with least-mean squares
(LMS) algorithm adapted taps. The FIR filter critical path has a
slow multiply-accumulate operation, which is not recursive, so
pipelining and parallelization can achieve the desired throughput,
at the expense of increased area. Whereas, the single-cycle
dependency of the Viterbi algorithm prevents pipelining, and
reducing the timing overhead is the only way to increase speed.

 x(n)odd

y(n)odd D Q

×h0

D Q

×h1

+ D Q

×h2

+ D Q

×hn

+D Q

×h2

+

x(n)even

y(n)even D Q

×h0

D Q

×h1

+ D Q

×h2

+ D Q

×hn

+D Q

×h2

+

Figure 4: Two-path parallel transpose FIR.

sm2n-1

time tn-1 tn

bm1

sm2n

sm1n-1 sm1n

bm4

bm2 bm3

Figure 5: Viterbi algorithm two-state trellis.

3. MICRO-ARCHITECTURE:
PIPELINING AND LOGIC DESIGN

Frequently, micro-architectural transformations reduce the critical
path in signal processing datapaths. Different transformations are
applicable to structures with and without cycle dependency (e.g.
FIR filter and Viterbi detector respectively) [12].

Micro-architectural exploration is much easier using an HDL
description, making ASIC design iteration an order of magnitude
faster. Custom layouts have to be redone by hand to explore
alternative structures [6], whereas, high-level HDL can be quickly
rewritten and then ASIC tools produce the corresponding layout
for evaluation. As Table 1 shows, micro-architecture offers the
greatest potential for speed improvement, and we will dedicate
most of this paper to detailing the micro-architectural
improvements that netted the principal speed gains.

3.1 FIR filter
Several transformations can speed up the multiply-accumulate
operation in the FIR filter critical path. LMS update of
coefficients adds feedback recursion to the FIR implementation,
but employing delayed or semi-static LMS allows the critical path
to be pipelined (LMS coefficients are updated before the read
cycle with the training sequence). The SP4140 uses several
techniques to shorten the critical path [17]. The FIR equation is:

Direct implementation of the FIR equation gives the direct-form
FIR [9], shown in Figure 2. Some possible transformations for
reducing the critical path are shown in Figures 3 and 4. Inherent
pipelining can be achieved by transposing the data flow graph,
giving a transpose-form FIR, shown in Figure 3. To further reduce
the delay, the FIR can be interleaved and computed in parallel
[17]. For m parallel paths, the area increases linearly with m, and
the multiply-add is performed at 1/m of the data rate. Figure 4
shows a two-path parallel transpose type FIR, performing
multiply-add at half the data rate.

Booth recoding can speed up multiplication, reducing the
multiply-accumulate delay more [23]. With these architectural
improvements, the SP4140 FIR achieves a 275 MHz clock
frequency, and 525 Mb/s throughput (encoded data is read at 550
Mb/s, and the throughput is 525 Mb/s after redundancy removal).

 ()
()

sm sm bm sm bm
sm sm bm sm bm

n n n
n n n

1 1 1 2 3
2 1 2 2 4

1 1
1 1

= + +

= + +
− −
− −

min ,
min ,

Add Add
Compare Select

Figure 6: Illustration of the add-compare-select recursive cycle
dependence in the Viterbi algorithm.

5

7
6

0
1
4

2
3

0
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7

n n +1 n + 2
0
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7

n n +1 n + 2
0

1

2

3

4

5

6

7

n n +2
0

1

2

3

4

5

6

7

0
1
2
3
4
5
6
7

Figure 7: One-step lookahead applied to 8-state Viterbi
decoder [2].

3.2 Viterbi decoder
The Viterbi algorithm has tight, single-cycle recursion. The
Viterbi algorithm is commonly expressed in terms of a trellis
diagram, which is a time-indexed version of a state diagram. The
simplest 2-state trellis is shown in Figure 5. Maximizing
probabilities of paths through a trellis of state transitions
(branches) determines the most likely sequence, for an input
digital stream with inter-symbol interference.

The branch metric (bm) is the cost of traversing along a specific
branch, as indicated in Figure 5. State metrics (sm) accumulate the
minimum cost of ‘arriving’ into a specific state. The path finally
taken through the trellis is a survivor sequence, the most likely
sequence of recorded data. Figure 6 shows a two-state example.

The Viterbi detector is a processor that implements the Viterbi
algorithm, and consists of three major blocks: the central part is
the add-compare-select unit (ACS); the branch metric calculation
unit; and the survivor path decoding unit.

Efficient design of the ACS, which is a nonlinear feedback loop,
is crucial to achieve a high throughput to circuit area ratio. The
ACS calculates the sums of the state metrics (sm) with
corresponding branch metrics (bm) and selects the maximal (or
minimal) to be the new state metrics. The throughput depends
highly on the ACS addition and comparison implementations. The
comparison is frequently done via subtraction, and the carry
profile inside the adders and subtractors determines the speed.

Architectural transformations, like loop unrolling and retiming
can be applied to an ACS recursion to reduce the critical path.
Applying a one-step look-ahead to the ACS theoretically roughly
doubles the throughput. However, in the deep submicron, this
speed gain is reduced only to 40% by increased wiring overhead
while the area increases by a factor of ×2.7. Figure 7 shows the
transformed algorithm, using a four-way ACS operation.

Often, retiming is used to increase throughput, and it can be used
for recursive algorithms. Transforming and retiming the ACS to
perform compare-select-add (CSA) [4, 10] removes the
comparison from the critical path, as shown in Figure 8 [4].

Further speed improvements are possible using a redundant
number system and carry-save addition [5]. This allows deeper
bit-level pipelining of the ACS, increasing the speed. A practical

 bmi,k

smk
n

pj

sel

(a) Standard ACS

(b) Transformation to CSA

(c) Retimed CSA

pi

bmj,k

smi
n-1

smj
n-1

pi
n-1

pj
n-1

sel

SEL

SEL

smk
n

bmi,k

bmj,k

pi
n-1

pj
n-1

bmi,k

bmi,k

bmj,k

sel

sel

SEL

SEL

pi
n

pj
n

pi
n

pj
n

Figure 8. Transforming ACS to CSA.
realization with a dynamic pipeline and latches was shown in
[24]. The SP4140 Viterbi decoder runs at a clock frequency of
550 MHz, with a user throughput of 525 Mb/s (recording code
rate reduces the user data rate).

4. TIMING AND LATCH DESIGN
With deep pipelining achieved by architectural transformations,
the timing overhead fraction of cycle time increases. Reducing the
impact of clock skew and better timing element design can
significantly improve ASIC speeds. Typical high-performance
custom designs keep the timing overhead down to 20% to 30%
[7, 8]. In a 550 MHz design, this is as little as 0.4 ns, whereas in
common ASIC methodology the timing overhead is about 1.0 ns.

ASIC designs typically use flip-flops, which present hard
boundaries between the pipeline stages, which must be well
balanced as there is no slack passing. Also, the timing budget has
to include clock skew. Latches allow slack passing and are clock
skew insensitive. Latches are well supported by the synthesis tools
[20], but are rarely used other than in custom designs. We believe
that with latches and good clocking methodology, the speed
impact of timing overhead on ASIC designs can be reduced from
about 40% worse than custom to about 15% worse.

4.1 Latch Slack Passing and Time Borrowing
Time (slack) not used by the combinational logic delay in one
pipeline stage is automatically passed to the next stage in latch
based designs. Likewise, a logic stage can borrow time from the
succeeding stage to complete the required function [15].

Figure 9 illustrates slack passing and time borrowing. Let tD-Q
 be

the time from data being ready at the latch input D to the latch
output Q becoming valid, when the data transitions when the latch
is transparent. Let tClk-Q

 be the time from clock arriving to the
latch output Q becoming valid, when the data is ready prior to the
latch becoming transparent. The delay of combinational block i is
tcombi. As data at D1 is available before the latch becomes
transparent, output Q1 becomes valid after tClk-Q, and
combinational logic 1 block can start evaluating – but D1 could
have arrived as late as the setup time, so it is passing slack on to
evaluation of combinational logic 1 block. The latest
combinational logic 1 block can finish is by the setup time of the
transparent low latch and it does so, as it has a long critical path –
but D2 could have arrived as early as tClk-Q after the clock to latch
L2 went low, so time has been borrowed from when
combinational logic 2 block could have started evaluating.

QDcombQDcomb tttt −− +++ 21 (2)

skewsucombQClk ttttT 2+++≥ − (3)

combinational
logic 2

Latch setup times:

D1

Q1

tClk-Q

slack passed to
combinational logic 1

D2

clock

tcomb1

L1 and L3 are transparent high latches, L2 is a transparent low latch.

Q2

tD-Q

D3

tcomb2

Q3

tD-Q

tClk-Q

time borrowed by
combinational logic 1

H L

clock

L2

L1

L3

H

L H transparent low transparent high

D1
Q1

D2
Q2

D3
Q3

combinational
logic 1

Figure 9: Maximum slack passing and time borrowing
between the stages [15].

Latch setup times:

D1

Q1

tD-Q

D2

clock

tcomb1

L1 is a transparent high latch, L2 is a transparent low latch.

Q2

tD-Q

tcomb2

tD-Q

H L

clock

L2

L1

H

L H transparent low transparent high D1
Q1

D2
Q2

combinational
logic 1

combinational
logic 2

cycle time

Clock slew:

Figure 10: Skew-tolerant level sensitive clocking [15].

4.2 Skew Tolerance
Figure 10 shows skew tolerance. The clock skew does not affect
the minimum cycle time if the longest combinational logic path
always arrives after the latch becomes transparent, and before the
setup time plus the clock skew. The minimum cycle time is:

4.3 Latch-Based FIR Filter Design
The SP4140 FIR filter uses latches and time borrowing [17]. The
parallel transpose-type FIR architecture has two critical timing
paths: from the ADC output through the multiply-accumulate; and
from the previous latch output through addition to the next latch
stage. In this implementation, the third path, for the coefficient
update, is not an issue since the coefficients are semi-static. As the
architecture is split into two paths, the timing critical multiply-
accumulate operation is implemented at half the data rate.

This implementation of the FIR filter is based on one-hot Booth
encoding of 6-bit data. Encoded data is distributed to all the taps
of the filter. Each tap coefficient is pre-multiplied for –4C, -3C,
-2C, -C, 0, C, 2C, 4C, 8C, and a correct partial product is selected
(using a custom 9:1 multiplexer) by the encoded data. This
significantly simplifies the multiplication. The use of latches
naturally allows time borrowing between the FIR taps. Also, since
the equalizer is the first block that follows the ADC, its clock tree
insertion delay can be increased to absorb the additional delay
required for data encoding.

Vdd

D

Clk

Q

Q

Figure 11: Hybrid latch-flip-flop (HLFF).

Figure 12: Modified sense-amplifier-based flip-flop (SAFF).

4.4 Viterbi Decoder
As the Viterbi decoder has tight recursion, slack passing cannot
be used. Instead, faster flip-flops can reduce the clocking
overhead. In an edge-triggered system, cycle time T has to meet
the following relationship:

In the critical path, the flip-flop delay is the sum of setup time and
the clock-to-output delay, tsu + tClk-Q. The clock skew is tskew, the
combinational delay is tcomb, and the hold time is th. Pulsed latches
have less total delay, latency, than (master-slave) latch pairs.
Examples are the hybrid latch-flip-flop (HLFF) [16], Figure 11,
and modified sense-amplifier-based flip-flop (SAFF) [14], Figure
12. Their first stage is a pulse generator, and the second stage is a
latch to capture the pulse. The HLFF generates a negative pulse
when D = 1, which is captured by the D-type latch. The SAFF
generates a negative pulse on either S or R , which triggers the
SR latch. Similar flip-flop designs are used in custom processors
such as the DEC Alpha 21264 and the StrongArm.

From gated
clock source

To about 100
clocked elements

Figure 13: Prescribed clock tree.
Some pulsed latches exhibit a soft edge property, which can be
accounted for during cell characterization for clock skew
tolerance [18]. However, characterization must include the long
hold time of pulse triggered latches. For example, synthesis
inserts buffers in the scan chain when clock skew is comparable to
tClk-Q – th, significantly increasing the area. The HLFF has a
transparency period of about three inverter delays, while the
SAFF has very small skew tolerance, controlled by sizing MN6.

The SP4140 Viterbi decoder uses a flip-flop derived from the
SAFF, characterized as a standard cell, where needed in the ACS.
An advantage of the SAFF is its differential output structure,
doubling the drive strength if both outputs are used in synthesis.

5. CLOCK TREE INSERTION AND
CLOCK DISTRIBUTION

Partitioning an ASIC design into blocks of 100,000 gates or less
can improve synthesis results and help convergence, by limiting
the maximum wire length [19]. The read channel presents a
natural opportunity for design partitioning. All of the timing
critical signal processing blocks are about 10,000 to 30,000 gates,
with layout areas of 1 to 2 mm2 in 0.25 µm CMOS. Block
partitioning the design requires gated clock trees to be inserted in
the blocks. Also, limiting clock distribution over a smaller area
minimizes clock skew. However, the local clock trees have to be
merged into a global clock tree with added clock gating, which is
not generally well supported in standard ASIC methodologies.

The local clock trees in SP4140 are designed for equal clock rise
and fall times, and minimum skew, by buffer sizing and
placement. Fixing the fan-out at each clock tree level controls the
insertion delay, and ‘prescribed’ clock trees control the insertion
delay to allow later matching. For example, for given total flip-
flop/latch load and block size the total clock load is computed.

By prescribing the size and number of buffers in the last stage the
clock slope is met. Based on the post layout extraction data, the
clock tree can be trimmed (by shorting or leaving open clock
buffer outputs) to match the insertion delays, as illustrated in
Figure 13. This reduces the clock skew to 60ps.

6. CUSTOM LOGIC VERSUS SYNTHESIS
ASIC designs can reach high speeds at the price of larger area and
higher power. Figure 14 summarizes the basic tradeoff between
the area and speed in synthesized designs. ACS and CSA based
Viterbi decoders with fixed micro-architecture were synthesized
for different clock cycles. For longer cycles (3 ns for ACS),
synthesis easily achieves the speed goal. To achieve shorter cycle
times synthesis increases gate sizes, to drive the interconnect and
loads more strongly. Interestingly, the ACS is smaller for lower
speeds, but the two ASIC curves intersect at a period of 2.3 ns.

Figure 14: Area – delay comparison of synthesized and custom
ACS and CSA Viterbi detectors.
To obtain some data points on the implementation efficiency of
synthesized combinational logic, a functionally equivalent Viterbi
decoder ACS array was implemented in custom logic. The design
was based on complementary and pass transistor logic, and
supported the same clocking style.

Even though the adders and comparators were implemented using
differential logic, the custom ACS was roughly half the size at the
same speed as the synthesized version, because the custom logic
used much smaller transistors and had less wiring capacitance.

When the custom design was doubled in size to the synthesized
area, it ran only 20% faster than the synthesized design. However,
the flip-flops were not changed, and the design was not re-
optimized (wiring or placement) for the new gates.

7. PROCESS VARIATION
After micro-architecture, process can account for the greatest
difference between ASIC and custom designs. Speed-binning is
not practical for ASICs, but in our example the disk drive read
channel has an on-chip voltage regulator that gives better control
over supply voltage and allows tighter worst and best-case voltage
corners. This does require re-characterization of the library for
non-standard corners, but results in a 5-10% speed increase.

8. SUMMARY AND CONCLUSIONS
We have examined techniques used to achieve high speeds in a
550 MHz chip with an ASIC design methodology. We have
identified several design techniques, common to custom designs,
that were used to improve the performance of a disk drive read
channel designed in an ASIC methodology. Having identified the
FIR filter and Viterbi detector speed bottlenecks, architectural
transformations and alternative clocking styles were used to
increase their speed. The FIR filter could be pipelined, and
computation in parallel doubles the speed at the price of doubling
the area. Architectural transformation of the add-compare-select
(ACS) in the Viterbi detector to compare-select-add (CSA)
reduced the critical path length. Pipelining wasn’t possible
because of the recursive nature of the Viterbi algorithm, but
reducing the clocking overhead can increase the speed further.

Reducing clock skew and high speed latches (instead of flip-flops)
can reduce the clocking overhead. The timing overhead factor
improves from about ×1.40 worse than custom to ×1.15 worse.

0

4000

8000

12000

16000

20000

1.0 1.5 2.0 2.5 3.0 3.5
Clock Period (ns)

A
re

a
(c

el
ls

)

ACS

CSA

Custom CSA

With this example, we have independently confirmed the thesis of
[3], that ASIC designs can be brought to within custom speeds
with a proper design methodology orchestration, and attention to
key design factors. Nevertheless, compared to custom
implementations, ASICs will still be larger at the same speed, or
slower for the same area, which was illustrated comparing custom
CSA implementations to CSA and ACS ASIC versions.
Quantifying and exploring the area and power gap between ASIC
and custom designs is a good direction for future work.

9. ACKNOWLEDGMENTS
Would like to acknowledge the SP4140 design team, especially
Kiyoshi Fukahori, Michael Leung, James Chiu, Bogdan
Staszewski, Vivian Jia, and David Gruetter. James Chiu provided
the area-delay comparison data.

10. REFERENCES
[1] Altekar, S., et al. “A 700 Mb/s BiCMOS Read Channel

Integrated Circuit,” IEEE International Solid-State Circuits
Conference, Digest of Technical Papers, San Francisco CA,
February 2000, 184-185, 445.

[2] Black, P., and Meng, T. “A 140 MB/s 32-state radix-4
Viterbi decoder,” IEEE Journal of Solid-State Circuits, vol.
27-12, December 1992, 1877-1885.

[3] Chinnery, D. G., and Keutzer, K. “Closing the Gap Between
ASIC and Custom: An ASIC Perspective,” Proceedings of
the 37th Design Automation Conference, Los Angeles CA,
June 2000, 637-642.

[4] Fettweis, G., et al. “Reduced-complexity Viterbi detector
architectures for partial response signaling,” IEEE Global
Telecommunications Conference, Singapore, Technical
Program Conference Record, vol. 1, November 1995, 559-
563.

[5] Fettweis, G., and Meyer, H. “High-speed parallel Viterbi
decoding algorithm and VLSI architecture,” IEEE
Communications Magazine, vol. 29-8, May 1991, 46-55.

[6] Fey, C. F., and Paraskevopoulos, D. E. “Studies in LSI
Technology Economics IV: Models for gate design
productivity,” IEEE Journal of Solid-State Circuits, vol. SC-
24-4, August 1989, 1085-1091.

[7] Gronowski, P., et al. “High-Performance Microprocessor
Design,” IEEE Journal of Solid-State Circuits, vol. 33-5,
May 1998, 676-686.

[8] Harris, D., and Horowitz, M. “Skew-Tolerant Domino
Circuits,” IEEE Journal of Solid-State Circuits, vol. 32-11,
November 1997, 1702-1711.

[9] Jain, R., Yang, P.T., and Yoshino, T. “FIRGEN: a computer-
aided design system for high performance FIR filter
integrated circuits,” IEEE Transactions on Signal Processing,
vol. 39-7, July 1991, 1655-1668.

[10] Lee, I., and Sonntag, J.L. “A new architecture for the fast
Viterbi algorithm,” IEEE Global Telecommunications
Conference, San Francisco CA, Technical Program
Conference Record, vol. 3, November 2000, 1664 –1668.

[11] Marvell Introduces HighPhyTM, the Industry’s First Read
Channel PHY to Exceed Gigahertz Speeds, December 2000.
http://www.marvell.com/news/dec4_00.htm

[12] Messerschmitt, D. G. “Breaking the recursive bottleneck,” in
Skwirzynski, J.K. (ed.) Performance Limits in
Communication Theory and Practice, Kluwer, 1988, 3-19.

[13] Nazari, N. “A 500 Mb/s disk drive read channel in 0.25 µm
CMOS incorporating programmable noise predictive Viterbi
detection and trellis coding,” IEEE International Solid-State
Circuits Conference, Digest of Technical Papers, San
Francisco CA, February 2000, 78-79, 496.

[14] Nikolić, B. et al. “Sense amplifier-based flip-flop,” IEEE
Journal of Solid-State Circuits, vol. 35, June 2000, 876-884.

[15] Partovi, H., “Clocked storage elements,” in Chandrakasan,
A., Bowhill, W.J., and Fox, F. (eds.). Design of High-
Performance Microprocessor Circuits. IEEE Press,
Piscataway NJ, 2000, 207-234.

[16] Partovi, H., et al. “Flow-through latch and edge-triggered
flip-flop hybrid elements,” IEEE International Solid-State
Circuits Conference, Digest of Technical Papers, San
Francisco CA, February 1996, 138-139.

[17] Staszewski, R.B., Muhammad, K., and Balsara, P. “A 550-
MSample/s 8-Tap FIR digital filter for magnetic recording
read channels,” IEEE Journal of Solid-State Circuits, vol. 35-
8, Aug. 2000, 1205 –1210.

[18] Stojanovic, V., and Oklobdzija, V.G. “Comparative analysis
of master-slave latches and flip-flops for high-performance
and low-power systems,” IEEE Journal of Solid-State
Circuits, vol. 34-4, April 1999, 536-548.

[19] Sylvester, D.; Keutzer, K. “Getting to the bottom of deep
submicron,” Proceedings of the International Conference on
Computer Aided Design, San Jose CA, November 1998,
203-11.

[20] Synopsys Design Compiler, Reference Manual, Synopsys.

[21] Thapar, H. K. and Patel, A.M. “A Class of Partial Response
Systems for Increasing Storage Density in Magnetic
Recording,” IEEE Transactions on Magnetics, vol. MAG-23-
5 part 2, September 1987, 3666-3678.

[22] Texas Instruments SP4140 CMOS Digital Read Channel,
1999. http://www.ti.com/sc/docs/storage/products/sp4140/
index.htm

[23] Weste, Neil H.E., and Eshraghian, Kamran. Principles of
CMOS VLSI Design, 2nd Ed. Addison-Wesley, Reading
MA, 1992, 547-554.

[24] Yeung, A.K., and Rabaey, J.M. “A 210 Mb/s radix-4 bit-
level pipelined Viterbi decoder,” IEEE International Solid-
State Circuits Conference, Digest of Technical Papers, San
Francisco CA, February 1995, 88-89, 344.

	Main
	DAC01
	Front Matter
	Table of Contents
	Session Index
	Author Index

