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ABSTRACT 
Typically, good automated ASIC designs may be two to five times 
slower than handcrafted custom designs. At last year's DAC this 
was examined and causes of the speed gap between custom 
circuits and ASICs were identified. In particular, faster custom 
speeds are achieved by a combination of factors: good 
architecture with well-balanced pipelines; compact logic design; 
timing overhead minimization; careful floorplanning, partitioning 
and placement; dynamic logic; post-layout transistor and wire 
sizing; and speed binning of chips. Closing the speed gap requires 
improving these same factors in ASICs, as far as possible. In this 
paper we examine a practical example of how these factors may 
be improved in ASICs. In particular we show how techniques 
commonly found in custom design were applied to design a high-
speed 550 MHz disk drive read channel in an ASIC design flow. 
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1. INTRODUCTION 
Typically, speeds of good application-specific integrated circuits 
(ASICs) lag that of the fastest custom circuits in the same 
processing geometry by factors of two or more. In decreasing 
order of importance, we have shown [3] that custom designs are 
faster due to use of dynamic logic on critical paths; speed-binning 
of chips; timing overhead minimization with clock tree design for 
clock skew minimization, and good latch and flip-flop design; and 
custom transistor and wire sizing. 

Table 1 gives our overview of the maximum contributions of 
various factors to the speed differential between ASICs and 
custom ICs. These are similar to those presented in [3], but 
clocking related issues have been gathered in a single heading.  

A custom processor designer has a full range of design style 
choices. These include architecture and micro-architecture, logic 
design, floorplanning and physical placement, and choice of logic 
family. Also, circuits can be optimized by hand and transistors 
individually sized for speed, lower power, and lower area. 

Table 1. Maximum differences between custom and ASIC. A 
factor of ××××1.00 indicates no difference. 

FACTORS CONTRIBUTING TO 
CUSTOM BETTER THAN ASICs 

vs. poor 
ASIC 

vs. best practice 
ASIC 

micro-architecture: pipelining; logic design ×4.20 ×1.00

process variation and accessibility  ×2.00 ×1.20

dynamic logic on critical paths  ×1.50 ×1.50
timing overhead: clock tree distribution; 
latch/flip-flop design  ×1.40 ×1.15

floorplanning and placement  ×1.25 ×1.00

sizing of transistors and wires  ×1.25 ×1.05

ASIC tools cannot handle dynamic logic and the process variation 
gap cannot be closed fully, but ASIC designs can be improved in 
a variety of ways [3]. To show how the gap between ASIC and 
custom can be closed, we examine an ASIC disk drive read 
channel chip that achieves a clock frequency of 550 MHz in    
0.21 µm CMOS [22]. The speed of 550 MHz is comparable to 
custom design speeds. This example illustrates the importance of 
some of the principles outlined in last year’s presentation, such as 
partitioning and duplication of logic to achieve higher throughput. 
Additionally, we show that the clocking overhead in ASIC 
designs can be reduced with careful clock tree design to ensure 
predictable clock skew, and latch-based design. 

The key opportunities for closing the gap between ASIC and 
custom form the organizing principle of this paper. Specifically, 
in Section 2 we overview the design example, and examine its 
micro-architecture in Section 3. In Section 4 we discuss timing 
and latch design, and Section 5 discusses clock tree distribution. 
Section 6 compares ASIC and custom logic designs. Section 7 
examines cell and wire sizing, while Section 8 looks at controlling 
process variability. Finally, Section 9 reflects our conclusions. 

2. A DESIGN BRIDGING THE SPEED GAP 
BETWEEN ASIC AND CUSTOM 

Disk drive read channels are a high-speed signal processing 
application. Data rates in current high-performance commercial 
products are in the range of 500-1200 Mb/s [1, 11, 17] and 
demand increasingly high speeds. For example, Marvell’s 
88C5500 has a throughput of 1.2Gbit/s with 0.18 um technology 
and 3.3 V supply [11].  

We examine a competitive ASIC disk drive read channel design, 
the Texas Instruments’ SP4140 in 0.21 µm CMOS (0.18 µm Leff) 
with 1.9 V supply [22]. It is based on EPR4 equalization [21], 
operates at 550 MHz, dissipates at most 1.7 W at full speed, and 
has 525 Mb/s user data rate. This speed is comparable to custom-
designed read channels in similar technology [13].  
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Figure 1: Disk drive read channel block diagram. 
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Figure 2: Direct form FIR. 
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Figure 3: Transpose-form FIR. 
Good synthesis requires a rich library with sufficiently many drive 
strengths [3]. This ASIC used TI’s standard cell library, with 3 to 
4 gate sizes for standard cells, and 5 buffer/inverter sizes. To 
reduce timing overhead, some custom designed cells were 
characterized for an ASIC flow and used in the SP4140, (e.g. the 
memory elements on the critical paths, such as the SAFF), and 
their drive strength was matched to their typical load.  

The SP4140 was an entirely new design taken from application 
concept, including new algorithms and architecture, to circuit 
realization, in a new process, in nine months. We concentrate on 
techniques to speed up bottlenecks (the Viterbi detector and 
adaptive equalizer in the read path) in the chip’s digital portion. 

2.1 Read and Write Data 
The block diagram in Figure 1 represents most of today’s read 
channels. The write data is scrambled, runlength encoded, pre-
compensated for magnetic channel nonlinearities, and fed to the 
write head. The read signal is read by the read head, preamplified, 
and processed by the read channel.  

On the read side, the signal from the preamplifier is conditioned 
by the variable-gain amplifier (VGA) and continuous-time (CT) 
filter, before analog-to-digital conversion (ADC). Besides anti-
aliasing, the continuous time filter partially equalizes the data. 
After the ADC, the data is processed digitally. The key blocks are 
the digital adaptive equalizer, the Viterbi detector, the runlength 
decoder and the descrambler. Then the data is converted from 
serial bit data to byte data, and can then be processed at a lower 
speed. The timing recovery and servo blocks use equalized and 
detected data. 

2.2 Digital Portion Speed Bottlenecks 
Due to increasing storage densities, to limit noise enhancement 
read channels use partial-response equalization, which is often 
done by finite impulse response (FIR) filtering. Viterbi detection 
resolves the remaining inter-symbol interference. The FIR filter 
performs partial-response equalization, with least-mean squares 
(LMS) algorithm adapted taps. The FIR filter critical path has a 
slow multiply-accumulate operation, which is not recursive, so 
pipelining and parallelization can achieve the desired throughput, 
at the expense of increased area. Whereas, the single-cycle 
dependency of the Viterbi algorithm prevents pipelining, and 
reducing the timing overhead is the only way to increase speed.  
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Figure 4: Two-path parallel transpose FIR. 
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Figure 5: Viterbi algorithm two-state trellis. 

3. MICRO-ARCHITECTURE: 
PIPELINING AND LOGIC DESIGN 

Frequently, micro-architectural transformations reduce the critical 
path in signal processing datapaths. Different transformations are 
applicable to structures with and without cycle dependency (e.g. 
FIR filter and Viterbi detector respectively) [12].  

Micro-architectural exploration is much easier using an HDL 
description, making ASIC design iteration an order of magnitude 
faster. Custom layouts have to be redone by hand to explore 
alternative structures [6], whereas, high-level HDL can be quickly 
rewritten and then ASIC tools produce the corresponding layout 
for evaluation. As Table 1 shows, micro-architecture offers the 
greatest potential for speed improvement, and we will dedicate 
most of this paper to detailing the micro-architectural 
improvements that netted the principal speed gains. 

3.1 FIR filter 
Several transformations can speed up the multiply-accumulate 
operation in the FIR filter critical path. LMS update of 
coefficients adds feedback recursion to the FIR implementation, 
but employing delayed or semi-static LMS allows the critical path 
to be pipelined (LMS coefficients are updated before the read 
cycle with the training sequence). The SP4140 uses several 
techniques to shorten the critical path [17]. The FIR equation is:  

Direct implementation of the FIR equation gives the direct-form 
FIR [9], shown in Figure 2. Some possible transformations for 
reducing the critical path are shown in Figures 3 and 4. Inherent 
pipelining can be achieved by transposing the data flow graph, 
giving a transpose-form FIR, shown in Figure 3. To further reduce 
the delay, the FIR can be interleaved and computed in parallel 
[17]. For m parallel paths, the area increases linearly with m, and 
the multiply-add is performed at 1/m of the data rate. Figure 4 
shows a two-path parallel transpose type FIR, performing 
multiply-add at half the data rate. 

Booth recoding can speed up multiplication, reducing the 
multiply-accumulate delay more [23]. With these architectural 
improvements, the SP4140 FIR achieves a 275 MHz clock 
frequency, and 525 Mb/s throughput (encoded data is read at 550 
Mb/s, and the throughput is 525 Mb/s after redundancy removal). 



 ( ) 
( ) 

sm sm bm sm bm 
sm sm bm sm bm 

n n n 
n n n 

1 1 1 2 3 
2 1 2 2 4 

1 1 
1 1 

= + +

= + + 
− − 
− − 

min , 
min , 

    
    

Add Add 
Compare Select 

Figure 6: Illustration of the add-compare-select recursive cycle 
dependence in the Viterbi algorithm. 
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Figure 7: One-step lookahead applied to 8-state Viterbi 
decoder [2].  

3.2 Viterbi decoder 
The Viterbi algorithm has tight, single-cycle recursion. The 
Viterbi algorithm is commonly expressed in terms of a trellis 
diagram, which is a time-indexed version of a state diagram. The 
simplest 2-state trellis is shown in Figure 5. Maximizing 
probabilities of paths through a trellis of state transitions 
(branches) determines the most likely sequence, for an input 
digital stream with inter-symbol interference. 

The branch metric (bm) is the cost of traversing along a specific 
branch, as indicated in Figure 5. State metrics (sm) accumulate the 
minimum cost of ‘arriving’ into a specific state. The path finally 
taken through the trellis is a survivor sequence, the most likely 
sequence of recorded data. Figure 6 shows a two-state example. 

The Viterbi detector is a processor that implements the Viterbi 
algorithm, and consists of three major blocks: the central part is 
the add-compare-select unit (ACS); the branch metric calculation 
unit; and the survivor path decoding unit.  

Efficient design of the ACS, which is a nonlinear feedback loop, 
is crucial to achieve a high throughput to circuit area ratio. The 
ACS calculates the sums of the state metrics (sm) with 
corresponding branch metrics (bm) and selects the maximal (or 
minimal) to be the new state metrics. The throughput depends 
highly on the ACS addition and comparison implementations. The 
comparison is frequently done via subtraction, and the carry 
profile inside the adders and subtractors determines the speed. 

Architectural transformations, like loop unrolling and retiming 
can be applied to an ACS recursion to reduce the critical path. 
Applying a one-step look-ahead to the ACS theoretically roughly 
doubles the throughput. However, in the deep submicron, this 
speed gain is reduced only to 40% by increased wiring overhead 
while the area increases by a factor of ×2.7. Figure 7 shows the 
transformed algorithm, using a four-way ACS operation. 

Often, retiming is used to increase throughput, and it can be used 
for recursive algorithms. Transforming and retiming the ACS to 
perform compare-select-add (CSA) [4, 10] removes the 
comparison from the critical path, as shown in Figure 8 [4]. 

Further speed improvements are possible using a redundant 
number system and carry-save addition [5]. This allows deeper 
bit-level pipelining of the ACS, increasing the speed. A practical 
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Figure 8. Transforming ACS to CSA. 
realization with a dynamic pipeline and latches was shown in 
[24]. The SP4140 Viterbi decoder runs at a clock frequency of 
550 MHz, with a user throughput of 525 Mb/s (recording code 
rate reduces the user data rate). 

4. TIMING AND LATCH DESIGN 
With deep pipelining achieved by architectural transformations, 
the timing overhead fraction of cycle time increases. Reducing the 
impact of clock skew and better timing element design can 
significantly improve ASIC speeds. Typical high-performance 
custom designs keep the timing overhead down to 20% to 30%  
[7, 8]. In a 550 MHz design, this is as little as 0.4 ns, whereas in 
common ASIC methodology the timing overhead is about 1.0 ns.  

ASIC designs typically use flip-flops, which present hard 
boundaries between the pipeline stages, which must be well 
balanced as there is no slack passing. Also, the timing budget has 
to include clock skew. Latches allow slack passing and are clock 
skew insensitive. Latches are well supported by the synthesis tools 
[20], but are rarely used other than in custom designs. We believe 
that with latches and good clocking methodology, the speed 
impact of timing overhead on ASIC designs can be reduced from 
about 40% worse than custom to about 15% worse. 

4.1 Latch Slack Passing and Time Borrowing 
Time (slack) not used by the combinational logic delay in one 
pipeline stage is automatically passed to the next stage in latch 
based designs. Likewise, a logic stage can borrow time from the 
succeeding stage to complete the required function [15]. 

Figure 9 illustrates slack passing and time borrowing. Let tD-Q
 be 

the time from data being ready at the latch input D to the latch 
output Q becoming valid, when the data transitions when the latch 
is transparent. Let tClk-Q

 be the time from clock arriving to the 
latch output Q becoming valid, when the data is ready prior to the 
latch becoming transparent. The delay of combinational block i is 
tcombi. As data at D1 is available before the latch becomes 
transparent, output Q1 becomes valid after tClk-Q, and 
combinational logic 1 block can start evaluating – but D1 could 
have arrived as late as the setup time, so it is passing slack on to 
evaluation of combinational logic 1 block. The latest 
combinational logic 1 block can finish is by the setup time of the 
transparent low latch and it does so, as it has a long critical path – 
but D2 could have arrived as early as tClk-Q after the clock to latch 
L2 went low, so time has been borrowed from when 
combinational logic 2 block could have started evaluating. 
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4.2 Skew Tolerance 
Figure 10 shows skew tolerance. The clock skew does not affect 
the minimum cycle time if the longest combinational logic path 
always arrives after the latch becomes transparent, and before the 
setup time plus the clock skew. The minimum cycle time is:  

4.3 Latch-Based FIR Filter Design  
The SP4140 FIR filter uses latches and time borrowing [17]. The 
parallel transpose-type FIR architecture has two critical timing 
paths: from the ADC output through the multiply-accumulate; and 
from the previous latch output through addition to the next latch 
stage. In this implementation, the third path, for the coefficient 
update, is not an issue since the coefficients are semi-static. As the 
architecture is split into two paths, the timing critical multiply-
accumulate operation is implemented at half the data rate. 

This implementation of the FIR filter is based on one-hot Booth 
encoding of 6-bit data. Encoded data is distributed to all the taps 
of the filter. Each tap coefficient is pre-multiplied for –4C, -3C,    
-2C, -C, 0, C, 2C, 4C, 8C, and a correct partial product is selected 
(using a custom 9:1 multiplexer) by the encoded data. This 
significantly simplifies the multiplication. The use of latches 
naturally allows time borrowing between the FIR taps. Also, since 
the equalizer is the first block that follows the ADC, its clock tree 
insertion delay can be increased to absorb the additional delay 
required for data encoding. 
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Figure 11: Hybrid latch-flip-flop (HLFF). 
 

 
Figure 12: Modified sense-amplifier-based flip-flop (SAFF). 

4.4 Viterbi Decoder 
As the Viterbi decoder has tight recursion, slack passing cannot 
be used. Instead, faster flip-flops can reduce the clocking 
overhead. In an edge-triggered system, cycle time T has to meet 
the following relationship: 

In the critical path, the flip-flop delay is the sum of setup time and 
the clock-to-output delay, tsu + tClk-Q. The clock skew is tskew, the 
combinational delay is tcomb, and the hold time is th. Pulsed latches 
have less total delay, latency, than (master-slave) latch pairs. 
Examples are the hybrid latch-flip-flop (HLFF) [16], Figure 11, 
and modified sense-amplifier-based flip-flop (SAFF) [14], Figure 
12. Their first stage is a pulse generator, and the second stage is a 
latch to capture the pulse. The HLFF generates a negative pulse 
when D = 1, which is captured by the D-type latch. The SAFF 
generates a negative pulse on either S  or R , which triggers the 
SR latch. Similar flip-flop designs are used in custom processors 
such as the DEC Alpha 21264 and the StrongArm. 



 

From gated 
clock source 

To about 100 
clocked elements 

                     
Figure 13: Prescribed clock tree. 
Some pulsed latches exhibit a soft edge property, which can be 
accounted for during cell characterization for clock skew 
tolerance [18]. However, characterization must include the long 
hold time of pulse triggered latches. For example, synthesis 
inserts buffers in the scan chain when clock skew is comparable to 
tClk-Q – th, significantly increasing the area. The HLFF has a 
transparency period of about three inverter delays, while the 
SAFF has very small skew tolerance, controlled by sizing MN6. 

The SP4140 Viterbi decoder uses a flip-flop derived from the 
SAFF, characterized as a standard cell, where needed in the ACS. 
An advantage of the SAFF is its differential output structure, 
doubling the drive strength if both outputs are used in synthesis. 

5. CLOCK TREE INSERTION AND 
CLOCK DISTRIBUTION 

Partitioning an ASIC design into blocks of 100,000 gates or less 
can improve synthesis results and help convergence, by limiting 
the maximum wire length [19]. The read channel presents a 
natural opportunity for design partitioning. All of the timing 
critical signal processing blocks are about 10,000 to 30,000 gates, 
with layout areas of 1 to 2 mm2 in 0.25 µm CMOS. Block 
partitioning the design requires gated clock trees to be inserted in 
the blocks. Also, limiting clock distribution over a smaller area 
minimizes clock skew. However, the local clock trees have to be 
merged into a global clock tree with added clock gating, which is 
not generally well supported in standard ASIC methodologies.  

The local clock trees in SP4140 are designed for equal clock rise 
and fall times, and minimum skew, by buffer sizing and 
placement. Fixing the fan-out at each clock tree level controls the 
insertion delay, and ‘prescribed’ clock trees control the insertion 
delay to allow later matching. For example, for given total flip-
flop/latch load and block size the total clock load is computed.  

By prescribing the size and number of buffers in the last stage the 
clock slope is met. Based on the post layout extraction data, the 
clock tree can be trimmed (by shorting or leaving open clock 
buffer outputs) to match the insertion delays, as illustrated in 
Figure 13. This reduces the clock skew to 60ps. 

6. CUSTOM LOGIC VERSUS SYNTHESIS 
ASIC designs can reach high speeds at the price of larger area and 
higher power. Figure 14 summarizes the basic tradeoff between 
the area and speed in synthesized designs. ACS and CSA based 
Viterbi decoders with fixed micro-architecture were synthesized 
for different clock cycles. For longer cycles (3 ns for ACS), 
synthesis easily achieves the speed goal. To achieve shorter cycle 
times synthesis increases gate sizes, to drive the interconnect and 
loads more strongly. Interestingly, the ACS is smaller for lower 
speeds, but the two ASIC curves intersect at a period of 2.3 ns. 

Figure 14: Area – delay comparison of synthesized and custom 
ACS and CSA Viterbi detectors. 
To obtain some data points on the implementation efficiency of 
synthesized combinational logic, a functionally equivalent Viterbi 
decoder ACS array was implemented in custom logic. The design 
was based on complementary and pass transistor logic, and 
supported the same clocking style.  

Even though the adders and comparators were implemented using 
differential logic, the custom ACS was roughly half the size at the 
same speed as the synthesized version, because the custom logic 
used much smaller transistors and had less wiring capacitance. 

When the custom design was doubled in size to the synthesized 
area, it ran only 20% faster than the synthesized design. However, 
the flip-flops were not changed, and the design was not re-
optimized (wiring or placement) for the new gates. 

7. PROCESS VARIATION  
After micro-architecture, process can account for the greatest 
difference between ASIC and custom designs. Speed-binning is 
not practical for ASICs, but in our example the disk drive read 
channel has an on-chip voltage regulator that gives better control 
over supply voltage and allows tighter worst and best-case voltage 
corners. This does require re-characterization of the library for 
non-standard corners, but results in a 5-10% speed increase. 

8. SUMMARY AND CONCLUSIONS 
We have examined techniques used to achieve high speeds in a 
550 MHz chip with an ASIC design methodology. We have 
identified several design techniques, common to custom designs, 
that were used to improve the performance of a disk drive read 
channel designed in an ASIC methodology. Having identified the 
FIR filter and Viterbi detector speed bottlenecks, architectural 
transformations and alternative clocking styles were used to 
increase their speed. The FIR filter could be pipelined, and 
computation in parallel doubles the speed at the price of doubling 
the area. Architectural transformation of the add-compare-select 
(ACS) in the Viterbi detector to compare-select-add (CSA) 
reduced the critical path length. Pipelining wasn’t possible 
because of the recursive nature of the Viterbi algorithm, but 
reducing the clocking overhead can increase the speed further. 

Reducing clock skew and high speed latches (instead of flip-flops) 
can reduce the clocking overhead. The timing overhead factor 
improves from about ×1.40 worse than custom to ×1.15 worse. 
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With this example, we have independently confirmed the thesis of 
[3], that ASIC designs can be brought to within custom speeds 
with a proper design methodology orchestration, and attention to 
key design factors. Nevertheless, compared to custom 
implementations, ASICs will still be larger at the same speed, or 
slower for the same area, which was illustrated comparing custom 
CSA implementations to CSA and ACS ASIC versions. 
Quantifying and exploring the area and power gap between ASIC 
and custom designs is a good direction for future work. 
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