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ABSTRACT
We describe two things. First, we present a uniform framework
for object oriented specification and verification of hardware. For
this purpose the object oriented language ‘e’ is introduced along
with a powerful run-time environment that enables the designer to
perform the verification task. Second, we present an object
oriented synthesis that enhances ‘e’ and its dedicated run-time
environment into a framework for specification, verification, and
synthesis. The usability of our approach is demonstrated by real-
world examples.

Keywords
Object oriented hardware modeling, verification, high-level
synthesis.

1. INTRODUCTION
The ever increasing complexity of hardware systems along with
the growing importance of hardware/software systems and FPGA-
based reconfigurable systems impose great demands on the
hardware designers. This challenge must be met by up-to-date
design techniques. An adequate technique has to feature primarily
the support of three problem domains: specification, verification,
and synthesis. In current approaches, these problems are handled
independently and there is barely any approach to embrace these
problem domains within an uniform framework.
Hardware description languages like VHDL and Verilog are
widely used for specification. These HDLs are indeed qualified
for specification at the register-transfer level, but at the
algorithmic level they are rather unsuitable and, due to the lack of
clear semantics, verification of VHDL and Verilog at the
behavioral level is impractical. Furthermore, these HDLs were
designed as  hardware description languages and therefore do not
adequately address hardware/software codesign.

Recently languages like C++ and Java were employed to take

advantage of their object oriented concepts. These concepts
enable the designer to specify a system at a higher level of
abstraction and to thereby increase productivity, readability, and
reusability. However, all these languages suffer from insufficient
concepts for verification and therefore do not allow coverage of
all three problem domains mentioned above.
This shortcoming is solved by the ‘e’ language presented in this
paper. ‘e’ is an object oriented language that was designed in the
style of Java and enhanced by various constructs and concepts for
verification. These concepts are supported by the dedicated run-
time environment Specman™ [1]. Thus ‘e’ and Specman provide
an efficient verification platform for hardware design. The ‘e’
language allows designers to make use of the abstract design
techniques previously available only in software languages.
Furthermore, it provides constructs for register-transfer level
specification. Therefore we consider ‘e’ as a highly qualified
language for specification.
The paper is organized as follows: In Section 2, we present an
overview of some related work. In Section 3, we first introduce
the design flow of the framework and give a short summary of
specification and verification with ‘e.’ The remainder of that
section presents our synthesis approach. Section 4 presents
examples and discusses the results. Section 5 concludes the paper.

2. PREVIOUS WORK
In the past, various approaches have been made to specify
hardware and hardware/software systems on the basis of objects.
Object oriented VHDL [2,3] enhances VHDL with object oriented
concepts. SystemC [4] and CynLib [5] are based on C++ class
libraries and are intended for design at the system/ algorithmic
and register-transfer levels. Recently, successful efforts have been
made to specify [6,7,8] and to synthesize [9] from Java.
Validation, simulation and formal verification have a long
tradition and various commercial tools are in the market (e.g.
Mentor Graphics, Cadence, Synopsys etc.). With the increasing
complexity of today’s hardware and hardware/software systems
with millions of gates on a single chip, traditional simulation
often reaches its limits due to the exploding number of test cases.
In contrast to simulation, formal verification [11,12] guarantees
100% test coverage. However, formal proofs often suffer from
combinatorial explosion of the search space  (e.g., model checking
or Boolean equivalence checking). Formal verification was mostly
academic for many years, but is now on the verge of being an
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integrated part of industrial design flows. In order to take
advantage of both methods, several attempts to combine
simulation with formal verification have been proposed [10].

3. THE FRAMEWORK
The design flow (figure 1) starts with the specification of the
hardware module in ‘e.’ This specification can be either an
algorithmic description or a description at the register-transfer
level. The correctness of the specification can be verified by
executing the ‘e’ code in the Specman environment. The results of
this first step in the verification process can be used to refine the
test bench, also written in ‘e,’ around the hardware module.
The ‘e’ specification of the hardware module is processed by our
‘e’ Synthesis System (eSS). The output of eSS is an intermediate
format that contains no more object oriented constructs and is
therefore ready to be further processed by standard EDA tools.
One output format is synthesizable Verilog. Depending on the
description style used in the specification (algorithmic or register-
transfer level)  the generated code is either behavioral Verilog,
suitable for high-level synthesis with Synopsys Behavioral
Compiler™, or a Verilog description at the register-transfer level
that can be synthesized by Design Compiler. Additionally, eSS
generates Verilog code that comprises several enhancements for
simulation. Other formats like VHDL or C/C++ are also generated
by eSS and can be further processed by standard tools.
During all phases of the synthesis process the results can be
verified by simulation in the Specman environment. An HDL

simulator can be attached to Specman; while the same test bench
as in step one of the verification process can be loaded into
Specman, the generated Verilog code is now executed by the
simulator. All steps of the verification process are supported by
Specman’s sophisticated verification methodologies, and the
object oriented concepts of the ‘e’ language allow a high degree
of reusability of the design and the test bench.

3.1 Specification with ‘e’
The main benefit of specifying with ‘e’ is that all common object
oriented concepts like data abstraction and inheritance can be
used to keep the specification understandable, manageable, and
reusable while  the syntax of ‘e’ allows the imperative description
of hardware specific concepts like word lengths of variables,
in/out-ports, clocks etc. as well as the declarative description of
constraints and type extensions. We only give a short insight to
syntax of ‘e’. For a detailed description please refer to [1,15].
The main language construct are classes. Classes are expressed
using the keyword struct and can be subclasses using like:

struct SubTest like Test {
// data field declarations
// method declarations

};
Instances of a struct are made by using the keyword new. Objects
can be accessed by typed references.

t : Test; t = new Test; t.foo();
Scalar data types, bit slices etc. are also supported as well as the
commom arithmetical, logical, and boolean operators:

x : uint(bits: 4); x = 5; x = 0b1010;
b : bool; b = FALSE;

Time Consuming Methods (TCM) are concurrent threads of
control that execute over multiple simulated time units. They are
used to specify concurrency as well as driving information for the
Device Under Test (DUT). In contrast,  non-TCMs are executed
in one simulation unit. TCMs are invoked using the start
command. An example for a struct ‘S’ with a TCM is shown
below in figure 2, where the definition of the clock ‘clk’ indicates
that the method ‘tcm’ is a TCM  The client code in the lower box
of figure 2 calls the TCM ‘tcm’ on an instance of the struct ‘S.’
Events can be emitted upon change of state either in the DUT or
the verification environment. Events are the basic synchronization
primitives in ‘e.’ Events can be used for asynchronous or
synchronous communication. They can define simulator clocks
which drive TCMs. Only when the defined event occurs, the TCM
is executed by the scheduler.

Wait statements are avialable to synchronize write operations on
data field members which are used as out-ports or for inter-TCM
communication.

The ‘e’ language also features constraints  which allow precise
data generation and system definition. The object oriented and
constraint driven definition of a system provides a valuable
resource for the verification of a system under test. In the code
sequence below, the declarative keyword keep defines a constraint
for the data fields ‘a’ and ‘b.’

a : int; b : int; keep a + b < 32;

The sum of the generated data for the variables is always kept
lower than 32. Two legal values for the variables ‘a’ and ‘b’ are
‘-256’ and ‘+128.’
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Figure 1: Design flow



struct S {
event clk is @ sys.HWO.clk;

tcm() @ clk is { ... };
nontcm() is { ... };

};

s : S;
s = new S;
start s.tcm();
wait[2];

Figure 2: struct with one TCM and one non-TCM
We have enhanced e with the following constructs for HW design:
The programmer of a hardware component uses the struct HWO
(HardWare Object) that is predefined by the synthesis framework.
The HWO struct is used as superclass for each hardware
component of the system. An example is shown in figure 3.

struct Test like HWO {
n : uint(bits: 4);
init() is { n = 0b1101; };
runHWO() @ clk is {

n = n & 0b0100;
};

};

Figure 3: Example for a hardware component
The hardware component has to implement two methods: an init
method that is like a constructor and is used for the initialization
of data field members of the struct, and  a ‘runHWO’  method that
is used to describe the functionality. Components communicate
through ports. In/out-ports of HWOs are implemented as data
field members of the HWO struct. Access to a port is realized by
setter and getter methods for each port.

3.2 Verification with ‘e’ and Specman
Simulation based verification requires the introduction of stimuli
to the DUT being simulated, as well as the collection of DUT
responses for the purpose of checking and coverage analysis
(figure 4). Specman and the ‘e’ language provide powerful
support for these verification tasks.  The supported verification
methodology can be applied to DUTs implemented in ‘e,’ those
implemented in HDLs such as Verilog and VHDL as well as
numerous other modeling languages. Many SoC designs involve
both hardware and software components, therefore the integrated
hardware/software environment will be the target of verification.
The ‘e’ and Specman based methodology can effectively be
applied to hardware/software co-verification [13], with the
optional addition of a processor modeling system such as Mentor
Graphics’  Seamless™

3.2.1 Input Modeling and Generation
In ‘e,’ input stimuli are modeled as a hierarchy of objects with
interrelating constraints. By defining object types the user
specifies
the universe of data elements or an alphabet for an input
sequence. Constraints can both remove parts of the alphabet and
restrict the composition of members of the alphabet into
sequences. Constraints may depend on the state of the system.
They are conjunctive by nature, hence one can direct the
generated input sequence by addition of constraints. These

additions can be made per feature to be tested, or as a way to
avoid areas of known defects and work in progress.

‘e’ Specification
Input model, Checking rules,
Functional coverage points

Specman Elite™

Generation
Engine

Checking
Engine

Coverage
Engine

HDL Simulator

DUT
RTL Model

Figure 4:  A typical  'e' driven test bench

3.2.2 Driving and Checking
A directed random input generation methodology requires
automated checking, since the input model does not predict a
unique response. The ‘e’ language offers three major features in
support of driving and checking: Events, TCMs, and a complete
temporal language. The temporal language uses events and state
formulae as atomic entities. Temporal and logical operators are
used to express protocol rules the DUT must adhere to.  Specman
features a temporal engine that interprets temporal expressions.

3.2.3 Functional Coverage
The generation process ensures non-zero probability for any legal
input sequence. However, given the huge input space and state
space of modern devices, a practical approach would control the
distribution of input sequences in view of the accumulated
coverage. The ‘e’ language provides a way to define functional
coverage metrics. Functional coverage points are user defined
combinations of states, or sequences of states that have some
architectural or micro-architectural significance. Because of its
sequential nature, functional coverage is a more rigorous metric
than code coverage. The accumulated functional coverage and its
breakdown to architectural and micro-architectural features
provide status information about the verification effort. This
information is used to steer the process and to eventually certify
that the DUT has a high probability of being functional.

3.2.4 Hardware/Software Co-Verification
A key aspect of verifying SoC designs, which typically have one
or more processors on board, is verifying the embedded software
together with the hardware (figure 5). This will flush out
integration errors, beside hardware-only and software-only
defects. In order to apply the same methodology to the integrated
system it is crucial that generation, coverage, and checking are
applied to the software part, as well as the hardware part. This will
facilitate tests, checks, and coverage metrics that capture hardware
and software dependencies.
This requirement is achieved by the combination of Specman with
a hardware/software co-verification tool, which is running the
software components. Such deep integration exists for the Mentor



Graphics Seamless™ tool. This integration provides Specman
with the capability of reading and writing to any variable and
memory location. This is the support required for the application
of generated stimuli to the software parts, checking based in part
on the state of the software and collecting functional coverage
while taking into account the state of the software along with the
hardware components.

3.3 Synthesis from ‘e’
For synthesis, the object oriented system description in ‘e’ has to
be transformed into an equivalent description in Verilog. The ana-
lysis steps and the resulting data structures are shown in figure 6.
The last step of the transformation is the output of intermediate
formats, which is based on the results of the control data flow
analysis and the concurrency analysis.

Specman Elite™
HW/SW Verification environment

HDL Simulator
Seamless™  HW/SW
Co-verification

Embedded SW

HW debug tools
Waveform display

SW debug
environment

Integrated verification environment

HW model

Figure 5: Hardware/software co-verification  environment

3.3.1 Control Data Flow Analysis
After the lexical and semantical analysis done by the scanner and
parser for ‘e,’ a static control and data flow analysis is performed
on the set of syntax trees for each ‘e’ struct. The result of the
analysis is a control flow graph (CFG) where the data flow
information is stored in a scope table within each node of the
graph. Because of the combination of data and control flow
information, no separate data flow graph has to be generated and
the analysis traverses the syntax tree only once. The CFG has two
different types of nodes. The control flow nodes divide the CFG
in multiple sub-trees (each node has multiple children). For
example nodes for while loops or if statements. The second type
of nodes in the CFG are the data flow nodes, which don’t change
the control flow, like arithmetic operations or assignments.
The main problem of the transformation is the usage of references.
Deciding  which object is accessed when a method is called on a
variable can only be done at runtime. Objects may have several
references, or aliases at the same time, so it is hard to tell which
statements affect which object.
The analysis determines a set of possible objects for each variable
within the scope of a statement. Each node of the CFG has one
scope table, where all variables in the scope of the node are stored
together with a set of objects that may be referenced by this

variable. The scope tables are built together with the whole CFG.
When a new node is created, the scope table of the parent node is
cloned and the set of references (‘reference set’) of each variable
changed by the statement is updated.

Verilog

e Source

Output of Intermediate Format

Concurrency Analysis

Scanner / Parser

Semantic Analysis

Control Flow Analysis
Data Flow Analysis

Syntax Tree

Symbol Tables

Control  Flow
Graph

 Figure 6: The transformation process from ‘e’ to Verilog

A reference set Rs(a) is the maximal set of all references on
objects, which can be hidden by the alias ‘a’ after the execution of
statement ‘s’ under consideration of the type of the variable and
the preceding control flow. All reference sets Rs(a) of variables
accessible in a CFG node ‘n’, build the scope table S(n).
The analysis for the TCM ‘runHWO‘ of the example ‘e’ code in
figure 7 results in the CFG shown in figure 8. At node 5 in the
CFG, the scope table includes three reference sets R5(x), R5(y) and
R5(z). Each reference set has been initialized in the init method,
where three objects of the struct S  have been instantiated. The
objects S_1, S_2 and S_3 are labeled with subsequent numbers.
For each type of statement, a different algorithm is implemented
to update the scope table of a node in the CFG.
Table 1 shows the evolution of the reference sets for each iteration
of the algorithm. The body of the while loop has to be re-analyzed
four times to get the final reference sets for the while loop node
(without determining the exact number of iterations during
execution). The analysis terminates because there are no changes
in the reference sets of step three and four. The merged reference
sets in the last column of table 1 are the resulting sets contained in
the scope table S(7) of node 7.

Table 1: Reference sets for the whole loop
1. 2. 3. 4. result

R7(x) {S_1} {S_2} {S_2} {S_2} {S_1, S_2}

R7(y) {S_2} {S_2} {S_2} {S_2} {S_2}

R7(z) {S_3} {S_1} {S_2} {S_2} {S_3, S_1, S_2}

The scope table S(7) is the input for the analysis of node 12. The
method call z.foo() uses variable ‘z’ where R12(z) contains the
objects S_3,  S_1 and  S_2. On which object the method foo()
will be called depends on the number of iteration within the while



The analysis splits the CFG into three sub-trees, one for each
object that may be referenced by the variable ‘z.’ .

For each method call, a new node in the CFG is created. The body
of the method builds a sub-tree of the node. When the method is a
TCM, the new CFG node builds an independent CFG with the
method call node as root node.
A copy of the reference sets of the actual scope is the initial scope
of the new CFG. The analysis always terminates because of the
constant number of objects in the whole system. This is
guaranteed since the instantiation of objects is only allowed in
within loops with fixed number of iterations.

struct S {
foo() is {

...
};

};

struct Test like HWO {
x : S; y : S; z : S;

init() is {
x = new S;
y = new S;
z = new S;

};

runHWO() @clk is {
var i : uint;
i = 0;
while (i < 10)
{

z = x;
x = y;
i = i + 1;

};
z.foo();

};
};

 Figure 7: HWO struct ‘Test’ and struct ‘S’

3.3.2 Concurrency Analysis
During the concurrency analysis, the reference sets and the CFGs
of the data and control flow analysis are used to create a set of
variables which are accessed by different TCMs. A variable can
be accessed by a TCM in two different ways:

•  write access: The variable is on the left hand side of an
assignment and becomes an alias for another object.

•  read access: The variable is on the right hand side of an
assignment or is passed to another method as parameter or a
method is called on the variable.

If a node in the CFG accesses a variable the following cases have
to be handled by the analysis:

1. There is no other TCM which reads or writes the variable.
The variable is a normal variable that does not require any
special treatment.

2. At most one TCM has write access to the variable and
multiple TCMs have read access. This variable has to be
declared in a global scope to enable multiple TCMs to access
the referenced object.

3. More than one TCM writes to the variable. This case is
reported to the user of the system. An arbiter to resolve the

access must then be inserted. This arbiter is an adapted
variation of the arbiter described in [14].

For the variables which are accessed by multiple TCMs (case 2)
the CFG is extended by a set of global variables called global. To
build up this set, the CFG is traversed to build a set of variables
read by the TCM t called readt and a set of variables written by t,
called writet. When a read access occurs in a node of the TCM t,
the variable v is added to the set readt. If v is in the set writem or
readm, where m is an already analyzed TCM, v becomes element
of global. In case of a write access, v is added to the set writet. If v
is already element of the set writem  an error state is reached.
When v is member of readm v becomes element of the set global.

After the analysis has determined the CFG, the actual synthesis
can be carried out. For that purpose the CFG is tranformed into a
general format that can be processed by all standard tools.
Implemented general formats are Verilog, VHDL and SystemC.

14
S_2_foo_2()

5
Test_1_run

6
Test_1_run_1_i=0

7
While

8
Test_1_run_1_i<10

9
Test_1_z = Test_1_x

10
Test_1_x = Test_1_y

11
Test_1_run_1_i = Test_1_run_1_i+1

12
Methodcall

13
S_1_foo_1()

15
S_3_foo_3()

 Figure 8: CFG for the TCM ‘runHWO’

4. EXAMPLES AND RESULTS
We used our framework to specify, verify, and synthesize several
examples. One example is a part of an ATM header translator
(AHT) another one is the Rana interface. The Rana interface
represents a typical ‘receive’ direction, FIFO buffering scheme
between three proprietary data communication interfaces. The
primary incoming data interface is being buffered into two distinct
FIFOs that are then being transmitted to two identical transmit
interfaces. Thus the data stream is being de-multiplexed from the
incoming data stream into two separate data streams. On all three
interfaces handshake flow control is implemented. The Rana
interface was developed by Cisco Systems and is presently
successfully in production.
The results of the synthesis are depicted in table 2. There is a great
number of objects involved in the Rana module. One of these
objects is a FIFO buffer used to store other objects. We have
synthesized the Rana module with three different sizes for the
depth of the FIFO buffer. While the ‘e’ specifications differ only
in the declaration of the FIFO depth and therefore have the same
size, the resulting Verilog code is growing considerably. The
reason for that is, that polymorphic method calls have to be



resolved. For each module, the number of non-comment lines of
code (ncloc) of both the ‘e’ specification and the resulting Verilog
code, and the time needed by eSS for the translation from ‘e’ to
Verilog are given. The execution time of eSS, as well as the time
spent by Behavioral Compiler and Design Compiler for the
synthesis (BC/DC), were measured  on a 360 MHz SUN Ultra 5
with 256 MBytes RAM. The clock rate for which the module was
synthesized and the area of the resulting circuit are also given in
the table. The area is composed of the cell area and the net
interconnect area. It is estimated by Design Compiler and given in
units of the used library. We used the lca300k library.

Table 2. Results of the synthesized examples

Module ncloc
‘e’

ncloc
Verilog ESS BC/

DC Clk Area

AHT 134 132 11
sec

92
sec

40
MHz 1426

Rana3 945 1535 48
sec

32
min

20
MHz 17239

Rana8 945 1920 55
sec

1h
24m

20
MHz 24707

Rana16 945 2536 68
sec

5h
36m

20
MHz 36707

5. CONCLUSIONS AND FUTURE WORK
This paper presented results from the DFG project OASE and a
cooperation between Cisco Systems, Verisity, and the Computer
Engineering Department from the University of Tübingen. The
developed framework allows the designer to specify, verify, and
synthesize hardware within a uniform environment. All these
tasks can be carried out by the designer by using the object
oriented language ‘e.’ This contribution shows that synthesis from
high-level models written in ‘e’ is practical and that the presented
framework is capable of dealing with real-world applications. So
far we have deployed our framework and the synthesis system to
improve and speed up the implementation flow. When applied to
the verification flow, some components of the test environment
may be subject to synthesis which may facilitate test bench
acceleration and post silicon validation.
Further research will be done in the area of synthesis and
optimization of multiple concurrent tasks within the same
hardware object and hierarchies of hardware objects with no
formal interfaces between them.
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