
A Universal Client for Distributed
Networked Design and Computing ∗

Franc Brglez
Dept. of Computer Science

NC State University
Raleigh, NC 27695, USA

brglez@cbl.ncsu.edu

Hemang Lavana
†

Cisco Systems, Inc.
7025 Kit Creek Road, P.O. Box 14987

Research Triangle Park, NC 27709, USA

hlavana@cisco.com

ABSTRACT
We introduce a universal client (OmniFlow) whose GUI can
be readily configured by the user to invoke any number of
applications, concurrently or sequentially, anywhere on the
network. The design and the implementation of the client is
based on the principles of taskflow-oriented programming,
whereby we merge concepts from structured programming,
hardware description, and mark-up languages. A mark-up
language such as XML supports a well-defined schema that
captures the decomposition of a program into a hierarchy of
tasks, each representing an instance of a blackbox or a white-
box software component. The HDL-like input/output port
definitions capture data-task-data dependencies. A highly
interactive hierarchical GUI, rendered from the hierarchical
taskflow descriptions in extended XML, supports structured
programming language constructs to control sequences of
task synchronization, execution, repetition, and abort.

Experimental evaluations of the prototype, up to 9150
tasks and the longest path of 1600 tasks, demonstrate the
scalability of the environment and the overall effectiveness of
the proposed architecture for a number of networked design
and computing projects.

1. INTRODUCTION
The Internet is not only changing ways of how designers
access tools and data but also how designers organize their
projects, given the environments in which they execute them.
A ToolWire client [1], executable in a web-browser, is an
example of a commercial service, pacing the user to click
through a sequence of tasks, using icons such as upload a
VHDL file, analyze file, synthesize an FPGA device, generate
a report. The user has no opportunity to expand the reper-

∗This work has in part been supported by the contract from
DARPA/ARO (DAAG55-97-1-0345).
†Hemang Lavana performed this work while affiliated with
NC State University.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2001June 18-22, 2001 Las Vegas, Nevada USA
Copyright 2001 ACM 1-581113-297-2/01/0006 ...$5.00.

toire of available tools or to change the sequence of tasks per-
formed by the tools. University-based environments such as
Reuben [2], JavaCADD [3], WELD [4], CollabTop [5], Open-
Design [6], are more diversified. With the JavaCADD client,
user can access a number of tools in the sequence of their
choice, however no sequence is enforced explicitly by the
interface. The CollabTop client allows two or more users
to edit a schematic and invoke a simulator. The Reuben
client represents the first generation of a user-configurable
GUI environment to create executable workflows of tools and
data on the network, an approach that has been formalized
and extended to asynchronous and synchronous collabora-
tive OmniFlow/OmniDesk environments in [7]. The Open-
Design is a prototype environment created with the first
generation of the OmniFlow [6], bringing together partici-
pants from MIT, MSU, and NCSU, to prototype a design
flow demo of distributed tools residing on servers at MIT
(CollabTop), MSU (JavaCADD), and NCSU (Xact) [8].

The current workflow technologies address the configura-
tion problem mostly from the perspective of the workflow
designer rather than the workflow user. Once accessed by
the user, the domain-specific workflow supports executions
of sequences of predefined tasks, e.g. [9, 10]. The under-
lying schemas of such workflows are too complex to sup-
port re-configurability by the average user [11, 12]. On the
other hand, the universal client (OmniFlow) introduced in
this paper, supports distributed networked design and com-
puting and is also readily reconfigurable by the user. The
ease of reconfigurability is achieved by the simplicity of the
underlying taskflow schema based on taskflow-oriented pro-
gramming: well-defined encapsulation and composition of
only two types of software components, a blackbox and a
whitebox.

The paper is organized into several sections as follows: (2)
Background and Motivation; (3) Taskflow Architecture; (4)
Taskflow Programming; (5) Conclusions.

2. BACKGROUND AND MOTIVATION
We use a simple example to illustrate a typical GUI created
by the OmniFlow client. The example introduces a sim-
plified experimental design environment whose purpose is to
evaluate the performance of distributed algorithms with dis-
tributed participants. A comprehensive description of Om-
niFlow project drivers, including the one in Figure 1, is given
in [7]; related experiments with an earlier OmniFlow version
are also described in [6].

A state of a typical GUI created by

the OmniFlow client. While features

of the selector panel at the top do

not change, the tree view panel on

the left, and the graph view panel

on the right are generated dynami-

cally, in response to user interaction.

As described in the paper, user inter-

acts with objects in each panel, e.g.

buttons to invoke/abort a task, cir-

cles to view/edit data associated with

each task, and directed edges (that

close/open) to control task execution

sequence, including iteration, or to

induce task aborts. Synchronization

of tasks that execute concurrently is

implicit in the XML-based task en-

capsulation.

The hierarchical taskflow in this example modifies the distributed MSU-NCSU experiment initiated in [6] and described in [7].

Rather than invoking the placement tool manually through a web-browser for each of the three placement algorithms and netlist

instances, a mentor flow description in OmniFlow renders three instances of mentor flow, each scheduled to repeat concurrently

N -times for different netlist instances from each of the M netlist equivalence classes.

Figure 1: An OmniFlow rendering of a hierarchical, distributed taskflow, executing concurrent tasks.

OmniFlow creates the GUI by rendering an XML de-
scription of the taskflow, with each task representing an in-
stance of an encapsulated blackbox component or an encap-
sulated whitebox component. The blackbox component can
be any (legacy) program on the Internet that is accessible
via the TCP protocol using telnet-, ssh-, http-, or socket-
based clients. The whitebox component is represented as a
directed graph of blackbox and whitebox components. The
OmniFlow client thus provides a programmable taskflow-
oriented programming and computing environment that is
highly interactive, as we will show shortly.

A single view of a taskflow with many components is dif-
ficult to represent clearly. The GUI in OmniFlow consists
of three main panels, shown in Figure 1: selectors for pro-
gram execution and data viewing/editing as the panel at the
top; dynamically expandable tree view of the entire taskflow
hierarchy as the panel on the left; and the dynamically gen-
erated graph view of the taskflow at any level of hierarchy on
the right. A log message panel at the bottom is not shown.

Selector Panel. Using the controls in the selector panel,
user can execute the taskflow in any of the three modes: sim-

ulation, execution with local data, execution with flow data.
The simulation mode allows the user to execute the entire
taskflow structure without specifying any data dependencies
between tasks, with each task assigned a random variable to
‘sleep’ for a few seconds. Alternatively, user can enter fixed
time to ‘sleep’ in the selector panel. This mode is useful to
set-up and test the taskflow control structure as specified in
user-defined TaskGraph description, including the verifica-
tion for concurrent execution. The execution with local data
is useful when verifying the performance of each task in the
taskflow in a stand-alone context, with originally archived
test data for each task. The execution with flow data implies
that each task relies on data that may be generated dynam-
ically by other tasks, as specified in user-defined DataGraph
description. Clicking on the selector for data editing, user
can view and edit a data file associated with a given task.

Tree View. Upon invocation, only the main task instance
is displayed as the root of the tree view. The children of the
main task instance can be opened or closed by clicking on a
‘+’ or a ‘-’ symbol located near the task instance node. On
opening the main task instance, it displays the data I/O, if

any, of the main task, such as InputList, InOutList, OutIn-
List and OutputList and also its TaskList. Each TaskList
can be expanded similarly until we reach the task repre-
sented by the blackbox component. The name of the task
instance, displayed in the tree view, is itself a button widget.
Users can click on the task button to invoke the execution
of the corresponding task. Once the task is executing, the
Abort button corresponding to that task becomes active so
that users may click on it if they decide to abort the task.
On the other hand, an additional button Clean is provided
to initialize or delete the output files before task invocation.
In general, the tree view provides a simple, compact user-
interface for browsing the hierarchy of the task instances
as well as for its interactive execution. However, in the tree
view, we do not see the task-to-task, data-to-task and task-to-
data dependencies explicitly – hence the need for the graph
view.

Graph View. As shown in Figure 1, each encapsulated
task instance is represented as a button widget (a single click
will invoke the instance), surrounded by (a) user-clickable
control fields including an (optional) repeatInvocation edge,
(b) circles and directed data-edges, connecting I/O files and
variables with associated task I/O ports, (c) task boundary
which is bold if the task encapsulates a whitebox, and thin if
the task encapsulates a blackbox. The control fields include:
a skip checkbox that can be selected if the user wants to skip
the execution of the task instance; an exec checkbox that
can be selected if the user wants to force the execution of
the task instance without checking for the timestamps of the
input/output data dependencies; a LGV button for loading
the graph view if the task instance corresponds to whitebox
component; an Abort button, which becomes active only
when the corresponding task instance is executing; a Clean

button, that can be used to delete the output files for the
task instance before invocation; a repeatInvocation edge
which is rendered in the ‘connected’ state if and only if user
specified the repeat task condition in the taskflow descrip-
tion. However, user may subsequently decide to ‘open’ this
edge by clicking on it, and close it again later with another
click.

At any level of taskflow hierarchy, we capture the task
instance dependencies in two directed graphs: DataGraph
and TaskGraph. The data-edges in DataGraph connect I/O
files and variables represented as circles with associated task
I/O ports. By clicking on the circle, each file and variable
can be accessed for viewing or editing. We can consider the
view depicted in Figure 1 as an explicit representation of
data used and generated in the mode labeled as ‘execution
with local data’. However, the actual description entered by
the user as DataGraph consist of data-to-task and task-to-
data edges between different tasks. To avoid clutter, these
edges are not shown explicitly.

Dependencies that are shown explicitly in the graph view
are control edge dependencies and they are of three types:
singleInvocation, repeatInvocation, and abortInvocation. Only
the first two types are shown in Figure 1. By supporting
abortInvocation edges, taskflow synchronization can be ren-
dered more efficient and versatile. Consider the situation
where a task B is to proceed as soon as k-out-of-n tasks Ai
have completed. By setting up the taskflow with n abort
edges from B to each of Ai, we can abort the completion of
the remaining n − k tasks Ai that would otherwise still be
executing and their results never used upon completion. By

maintaining the distinct control edge types, we can main-
tain the TaskGraph as a directed acyclic graph that is also
polar, with the ‘begin’ and ‘end’ task nodes at each level of
hierarchy. As such, the TaskGraph can be readily scheduled
for concurrent and sequential execution of all tasks. Once
the edges are rendered in the taskflow graph view, user can
interact with them by clicking on them to open/close any of
them, thereby interacting with the taskflow scheduling en-
gine as needed. A total of 8 states is associated with each
task instance, and during execution, the ‘white boxes’ asso-
ciated with the head of each singleInvocation edge changes
color to indicate the current state of the task.

The selector panel, the tree view, and the graph view
of the taskflow hierarchy provide an interactive and uni-
form environment not only for creating versatile taskflow
structures but also for creating an environments that lend
themselves to collaborative computing projects [7]. In the
sections that follow, we formalize the taskflow architecture
and highlight taskflow programming projects that test the
scalability of this environment.

3. TASKFLOW ARCHITECTURE
In contrast to hardware components, the notion of a com-
ponent in software technology is no simple matter. In [14],
a chapter entitled What a component is and is not, provides
an authorative analysis on the subject. Not surprisingly, no-
tions of blackbox, whitebox, and encapsulation used in this
paper have context that is specific to the proposed taskflow
architecture [7].

Blackbox component (Definition). A blackbox compo-
nent (BBC) k is a stand-alone program executable on a spe-
cific host. It is represented as a box with several ports: an
invocation control port, a status control port, any number
of input data ports, and any number of output data ports.
When invoked and executing, it may read input data sets
DIk , it may write output data sets DOk , and it is expected
to terminate and signify completion. We may deduce also
the completion status by comparing time-stamps of input
and output data sets.

An encapsulated blackbox component is a finite-state- ma-
chine (FSM) arrangement with a blackbox component, where
the blackbox component is an extension of the data path,
communicating with the FSM by way of two handshaking
signals. A finite-state-machine with a data path (FSMD) is
common in high-level synthesis and hardware design. [13].
The blackbox is invoked by the companion FSMD, which in
turn is invoked by the user or another program.

Whitebox component (Requirements). Informally, a
whitebox is a composition of blackbox and whitebox com-
ponent instances that support:
• creation of task sequences that execute sequentially

as well as concurrently;
• data-dependent decisions for a block of task sequences;
• data-dependent iterations for a block of task sequences;
• component encapsulation for a block of task sequences;
• single entry and single exit point for each encapsulated

component.
The proposed task instance architecture satisfies these tenets.

Task Instance Architecture. This architecture is based
on an arrangement of five abstract task primitives: Finite-
State-Machine with a Datapath (FSMD), ControlJoin (CJ),

Default ControlJoin conditions:

PI =
∏M
m=1 Efm ·QVm

PS =
∑M
m=1 Efm · (QNm

= + QSm +QTm)

PA =
∑P
m=1 Eam ·QVm

(For other join conditions, see [7].)

Data multiplexer:

Eg Efi DIi
0 x DIli
1 0 DIli
1 1 DIfi

The architecture of each task instance is based
on the arrangement of five abstract task primi-
tives: 8-state Finite-State-Machine with Datap-
ath (FSMD), ControlJoin (CJ), DataMultiplexor
(DM), ControlFork (CF) and a BlackBox or a
WhiteBox component (BBC/WBC). The func-
tional descriptions of the default CJ and the nom-
inal DM are given below. The descriptions of
other CJs, CF, and FSMD are given in [7].

The purpose of CJ is to synchronize the
status of predecessor tasks before invoking the
current task instance. The three possible sig-
nal pulses generated by CJ are: (1) an invo-
cation pulse PI , (2) a skip pulse PS , or (3)
an abort pulse PA. The decision variables
are: Efm (user-configurations of the singleIn-
vocation control edge from task m represented
by open/closed), Eam (user-configurations of the
abortInvocation control edge) QVm (‘valid’ task
status), QNm (‘invalid’ task status), QSm (‘skip’
task status), and QTm (‘time-out’ task status).
For example, pulse PI is generated if all singleIn-
vocation control edges are closed and the task
status associated with each edge is ‘valid’.

The purpose of DM is to switch between lo-

cal data and flow data during taskflow execution.

When the user-configured global signal Eg is dis-

abled, it selects the local data as represented by

DIli . Note that DM selects the flow data only

when Eg and Efi are both enabled!

Figure 2: The architecture of the task instance.

DataMultiplexor (DM), ControlFork (CF) and a blackbox/
whitebox component, as shown in Figure 2. While the
arrangement of FSMD and blackbox/whitebox component
alone represents the component encapsulation, each task
instance represents an encapsulated component that can
be accessed by other components and data only via Con-
trolJoin, DataMultiplexor, and ControlFork. These primi-
tives represent combinational logic and can be described in
terms of Boolean equations or tables; examples are shown
in Figure 2.

The purpose of the ControlJoin is to synchronize the sta-
tus of predecessor tasks before invoking the current task
instance. A number of such conditions may exist, depend-
ing on the purpose of the current task; a representative set
of alternative ControlJoin conditions is listed in [7].

The purpose of ControlFork primitive is not only to out-
put the state of the FSMD when the task completes but
also to validate it against the user-specified condition, if
any. For example, if the user-specified condition for task k
is ‘size(DOk) > 128’, a ‘valid’ state QVk is generated when
the condition evaluates to true.

The FSMD primitive is at the very core of the proposed
task instance architecture and is described in terms of a
state-transition table and a datapath table [7]. Scheduling
the invocation of a task instance Tk is subject to evaluation
of a number of control signals as well as data values. All
evaluations take place within the ControlJoin, FSMD and
ControlFork associated with the task instance Tk [7].

In choosing the FSM model to encapsulate each com-
ponent, we show preference for the traditional (and rel-
atively simpler) hardware-based solutions over alternative
approaches that may rely on the formalisms of Petri Nets,

Actor Computations, Action Systems, etc. (see [7] for ci-
tations). Electronic circuit design in particular has a long
tradition of addressing problems of concurrency and syn-
chronization. The design of interacting FSMs, synchronous
and asynchronous, is the norm.

TaskFlow Schema. The interconnection of the task prim-
itives such as defined earlier is subject to few simple and
well-defined rules. Each of the interconnection rules defines
a taskflow layer. In effect, the task instance architecture in
Figure 2 is the basis for the task instance layer which en-
capsulates a task, which in turn may be composed of other
task instances, each of which encapsulates a task, etc. Sub-
sequently, a schema to construct a taskflow consists of two
principal layers, a single/multi-task encapsulation layer and
a task instance layer. The multi-task encapsulation layer
represents an encapsulated whitebox component in which
at least one task instance is invoked by a ControlFork prim-
itive and at least one task instance invokes a ControlJoin
primitive. For clarity, we rename these primitives as Begin-
Fork and EndJoin whenever we discuss the encapsulation
layers.

The structure of the proposed taskflow schema is shown
in Figure 3, along with illustrative examples of TaskGraph
and DataGraph descriptions in XML. The definition layer
can be considered as an API for the task and should be read-
ily accessible. The task body layer, as the name suggests,
contains more detailed information about the task specifics.
Details, including the complete taskflow schema in XML,
are available in [7].

TaskFlow Scheduling Engine. See Figure 4 for a brief
introduction and overview of the taskflow scheduling engine.

EncapsulatedSingleTask (FSMD)

SingleTaskDefn (STD)

• InputPortList
• InOutPortList
• OutInPortList
• OutputPortList

SingleTaskBody

• BeginFork
• BlackBoxComponent
• EndJoin

EncapsulatedMultiTask (FSMD)

MultiTaskDefn (MTD)

• InputPortList
• InOutPortList
• OutInPortList
• OutputPortList
• TaskInstanceList
• TaskGraph

MultiTaskBody

• BeginFork
• TaskInstance1
• TaskInstance2
• . . .
• EndJoin
• DataGraph

TaskGraph Example

<TaskGraph>

(BEGIN) => (A) => (C)

(BEGIN) => (B) => (C)

(B) => (B)

(C) => (END)

(C) +> (A)

(C) +> (B)

</TaskGraph>

DataGraph Example

<DataGraph>

mInp -> (A).i1

mInp -> (B).i1

(A).o2 -> (C).i1

(B).o2 -> (C).i2

(C).o1 -> mOut1

(C).o2 -> mOut2

</DataGraph>

The taskflow schema consists of two
layers: an encapsulated single or multi
task layer and a task instance layer.
The encapsulated task layer has two
parts: (1) a single or multi task defini-
tion layer, and (2) a single or multi task
body layer. This allows us to separate
the task API from its body declaration,
which can be very detailed.

Taskgraph and DataGraph examples

illustrate the simplicity of the syntax

that captures the user-defined connec-

tivity of tasks and data. The symbols

=> and +> represent ‘closed’ singleInvo-

cation/repeatInvocation, and abortIn-

vocation edges in the TaskGraph (to in-

dicate edges that are ‘open’, we would

write == and ++). The symbol -> repre-

sents a ‘closed’ edge in the DataGraph.

TaskInstance

• ControlJoin
• DataMux
• EncapsulatedTask
• ControlFork

MainTask

• TaskInstanceList
• TaskGraph
• BeginFork
• TaskInstance1
• TaskInstance2
• . . .
• EndJoin

Figure 3: A schema for XML representation of taskflow layers.

4. TASKFLOW PROGRAMMING
Taskflow programming enables the user to create a highly in-
teractive and executable ‘program-of-programs’ that invokes
component programs accessible on the Internet via telnet-,
ssh-, http-, or socket-based clients. The program represents
a project-specific configuration of the OmniFlow client, and
is rendered as a hierarchy of executable taskflows. To cre-
ate a taskflow such as described in Figure 1, the user may
proceed as follows:
• create a file, containing a short ‘main’ program, that

invokes the taskflow.
• create a file, about 8 definition blocks for each task

instance, as per Figure 1. At this point, the taskflow
can be invoked in simulation mode to test its control
structure at all levels of hierarchy.

• create a file containing the ‘body’ corresponding to each
of definitions, including all pointers to hosts and data
directories. Any input synchronization, output
validation, and task iteration conditions must be stated
– unless user relies on built-in defaults. Once the
program is tested on smaller test examples, data may
be prepared for a major batch of executions, and the
program re-invoked.

Writing such descriptions is not unlike writing a description

in a hardware description language at the structural and the
behavioral level. The advantages of writing the description
as an OmniFlow configuration are: (1) the near-instant ren-
dering of the taskflow hierarchical structure (not always ob-
vious from the textual description) – before capturing any of
the taskflow body description and data; (2) dynamic testing
of the control structure of the taskflow description – before
capturing any of the taskflow body description and data;
(3) practically unlimited freedom to reconfigure, via a stan-
dardized GUI, the flow of execution dynamically, once the
taskflow body description and data are rendered.

Comprehensive experiments with a variety of taskflow de-
monstrate the efficiency of the GUI implementation and the
scheduler [7]. Rendering a taskflow such as shown in Fig-
ure 1 is on the order of 2 seconds (under Solaris/Linux/
WindowsNT/MacOS). Large-scale experiments with task-
flow configurations ranging from 15 to 9150 task instances,
with longest path delay of 1600 tasks, reveal a near constant
overhead of processing each task, independent of time to ex-
ecute the task and also independent of the structure of the
taskflow. For example, the overhead per task in a taskflow
of 2400 instances where most task are executed sequentially
(longest path delay is 1600 tasks) and a taskflow of 2400 in-
stances where most task are executed concurrently (longest

The flow on the left corresponds to the initial
reading and parsing stage of the implementation
whereas the flow on the right (shown in shaded box)
corresponds to the taskflow scheduling algorithm
during execution.

On invocation, the loader merely reads the main
invocation part of taskflow and renders it in the
GUI. The loading of the rest of the taskflow speci-
fication files in XML is prompted only by (1) user
request to load/view the task instance in the GUI,
or (2) invocation of a task instance scheduled for
execution. The taskflow scheduler consists of a re-
cursive algorithm which calls itself for every occur-
rence of the whitebox instance in the taskflow.

The dynamic loading of task instances and run-

time scheduling of task execution results in an ef-

ficient and scalable implementation, demonstrated

on a progression of taskflows of increasing size [7].

Figure 4: Implementation architecture of taskflow scheduling engine.

path delay is 100 tasks) is as follows:

taskflow(2400/1600): 922.8/2400 = 0.384 seconds/task
taskflow(2400/100): 979.5/2400 = 0.408 seconds/task

For taskflows with 300 instances, the overhead amounts to:

taskflow(300/200): 123.6/200 = 0.412 seconds/task
taskflow(300/100): 118.8/300 = 0.396 seconds/task

Given that most tasks may require a number of seconds to
complete, the taskflow overhead is negligible.

5. CONCLUSIONS
Hardware description languages and structured methodolo-
gies play a major role in supporting the productivity and
advances in the design of complex systems that package mil-
lions of transistors onto a single IC – not individually, but as
large components. In this paper, we introduce the concept
of taskflow-oriented programming with distributed compo-
nents and a highly interactive universal client GUI as a new
paradigm to create configurable computing environments for
distributed and networked design projects.

A user guide and a cross-platform software prototype of
the client described in this paper will be posted by mid-June
2001 under

http://www.cbl.ncsu.edu/OpenProjects/OmniFlow/.

Acknowledgment. We thank Dr. Robert Reese, Missis-
sippi State University, for providing access to JavaCADD
tools and Dr. Gershon Kedem, Duke University, for provid-
ing the access to a remote testbed server.

6. REFERENCES
[1] Toolwire, 2000. See http://www.toolwire.com.

[2] H. Lavana, A. Khetawat, F. Brglez, and K. Kozminski.
Executable Workflows: A Paradigm for Collaborative
Design on the Internet. In Proc. of 34th DAC, pages
553–558, June 1997. See http://www.cbl.ncsu.edu/-

publications/#1997-DAC-Lavana.

[3] D. Linder, R. Reese, J. Robinson, and S. Russ.
JavaCADD: A Java-based Server and GUI for
Providing Distributed ECAD Services, April 1998.

Technical Report MSSU-COE-ERC-98-07. See
http://WWW.ERC.MsState.Edu/mpl/publications/-

papers/javacadd/JCaddTR.pdf.

[4] F. Chan, M. Spiller, and R. Newton. WELD - An
Environment for Web-Based Electronic Design. In
Proc. of 35th DAC, pages 146–152, June 1998.

[5] G. Konduri and A. Chandrakasan. A Framework for
Collaborative and Distributed Web-Based Design. In
Proc. of 36th DAC, June 1999.

[6] H. Lavana, F. Brglez, R. Reese, G. Konduri, and
A. Chandrakasan. OpenDesign: An Open
User-Configurable Project Environment for
Collaborative Design and Execution on the Internet.
In Proc. of Intl. Conference on Computer Design,
September 2000. See http://www.cbl.ncsu.edu/-

publications/#2000-ICCD-Lavana.

[7] H. Lavana. A Universally Configurable Architecture
for Taskflow-Oriented Design of a Distributed
Collaborative Computing Environment. PhD thesis,
Elec. & Comp. Eng., NCSU, Raleigh, N.C., December
2000. See http://www.cbl.ncsu.edu/publications/-

#2000-Thesis-PhD-Lavana.

[8] F. Brglez. OpenProjects Home Page, with links to
DAC’2000 Vela Project Demos and Software., June
2000. See http://www.cbl.ncsu.edu/OpenProjects/.

[9] Iflow: Internet Enabled Workflow, 2000. See
http://www.justdotit.com.au/html/-

iflow frame.htm.

[10] ActionWorks Metro: Web-based workflow software,
2000. See http://www.actiontech.com/Action/.

[11] XML Schema Home Page, September 2000. See
http://www.w3.org/XML/Schema.html.

[12] S. Jablonski and C. Bussler. Workflow Management
Modeling Concepts, Architecture and Implementation.
Thomson Computer Press, 1996.

[13] D. Gajski and A. Wu and N. Dutt and S. Lin.
High-Level Synthesis Introduction to Chip and System
Design. Kluwer, 1992.

[14] C. Szyperski. Component Software: Beyond
Object-Oriented Programming. Addison Wesley, 1998.

	Main
	DAC01
	Front Matter
	Table of Contents
	Session Index
	Author Index

