Application of Constraint-Based Heuristics in Collaborative Design

Juan Antonio Carballo
IBM Austin Research Laboratory

11400 Burnet Road, Austin, TX 78758, USA
+1(512) 838-8914
jantonio@us.ibm.com

ABSTRACT

Significant acceleration of today’s complex collaborative design
processes can be achieved if team members are able to apply search
heuristics that consider the simultaneous effect of all design
constraints. We present the Active approach to Design Process
Management (ADPM), whereby designers receive constraint-based
feedback that enables them to apply these search heuristics
effectively. To evaluate ADPM, we developed a design process
evaluation environment called TeamSim. Evaluation results suggest
that ADPM can reduce costly design iterations at the expense of
extra, less costly, verification tool executions.

1. INTRODUCTION

Complex electronic designs are subject to ever tighter time-to-
market requirements and thus involve ever larger teams, where
multiple subsystems are developed in parallel by different groups.
Unfortunately, this concurrent design often results in the late
detection of conflicts involving multiple subsystems. These
conflicts tend to be found upon system integration and thus are very
costly to resolve. If one views the design as a group of variables
subject to a set of constraints, conflicts can then be seen as violations
of constraints. Late conflict detection occurs because, until system
integration, each group of designers typically considers only a
subset of all constraints relating their subsystem to other
subsystems. We can substantially reduce costly rework by aiding
consideration of the simultaneous effect of all constraints. The
amount and variety of constraints makes computer support for this
task essential. For this support to be most powerful, it must give
designers direct instructions or “clues” to improve their design space
search throughout the design process.

This paper presents Active Design Process Management (ADPM), a
state-based design process model whereby team members receive
constraint-based feedback on their operations and use it to apply
design space search heuristics effectively. This guidance reduces
and helps resolve conflicts. We also present TeamSim, a design
process evaluation environment developed on top of the Minerva I11
design process manager [3] to evaluate ADPM.

Design can be viewed as a search process in a design space restricted
by constraints. Constraint-based search heuristics can substantially
improve search algorithms [2,6,9] and thus may significantly
accelerate design convergence. Several types of constraint-based
information can help effectively apply these heuristics, including:

» Infeasible design subspaces. The design process may be

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page. To
copy otherwise, to republish, to post on servers, or to redistribute to
lists, requires prior specific permission and/or a fee.

DAC 2001, Las Vegas, Nevada.
© 2001 ACM

Stephen W. Director
College of Engineering, University of Michigan
1221 Beal Avenue, Ann Arbor, MI 48109, USA
+1 (734) 647-7010

director@umich.edu

accelerated by focusing first on areas of the design space that
have the smallest subspaces not found to be infeasible.

» Strongly constrained subspaces. Another heuristic is to focus
first on design subspaces affected by the most constraints.

» Efficient conflict resolution strategies. Design convergence may
also be accelerated by (a) making use of trade-offs produced by
constraint margins to fix violations and (b) executing design
operations that will fix many violations at a time.

While heuristics are often used by designers and CAD tools to
search for design solutions, design environment work has not
focused on providing the constraint-based guidance described above
[4,7,8,10,11,12]. A key challenge is the complexity of the required
constraint management infrastructure. A methodology called CCM
[3] was introduced whereby this infrastructure is developed on the
basis of constraint-based systems [1,9] and CAD tools. We leverage
this work by computing constraint-related information using CCM’s
constraint generation and propagation techniques, and then
“mining” the results into data that directly supports search heuristics
(e.g., the number of violations related to each design variable). This
heuristic support data accounts for the simultaneous effect of all
constraints and thus may significantly reduce design iterations.

ADPM has been implemented in the Minerva III design process
manager. However, measuring ADPM’s value requires also
quantitatively estimating its impact on design process performance
and CAD resource consumption. Historically, prior design
environment work has not been quantitatively evaluated'. We have
addressed this issue by developing a design process simulation
environment called TeamSim using Minerva III’s infrastructure.
Simulation facilitates controlling the evaluation process and enables
a large number of evaluations. Designers are simulated by making
the user interface automatically generate design operations.
TeamSim can be configured to simulate a design process using either
ADPM or conventional approaches and is customizable to any given
application. TeamSim results were obtained for the design of a
sensing system and the design of a MEMS-based wireless receiver.

Section 2 describes ADPM, Section 3 describes TeamSim and the
evaluation results, and Section 4 draws conclusions.

2. ACTIVE DESIGN PROCESS MANAGEMENT
2.1. Background

ADPM is based on a design process modeling framework that is
built on previous work [3,8,10] and emphasizes the role of
constraints. In this framework, a design is characterized by a set of
variables called properties. A design property, denoted by q;, is a
variable that can take one or more values from a range
Ei:{vj? ,jzl,...,NiV }. Values may be numbers, strings, tuples, or
complex descriptions. A property a; to which a single value has been
assigned is said to be bound; otherwise, it is unbound with an
implicit value of a; = E;. The properties of a correct design must
satisfy a set of constraints. A design constraint is a relation, ¢;,

1 Project data tracking systems [5] capture tool run data but do not provide
control to evaluate high-level process and constraint management issues.

among a set of properties:
ci(a): S; - {T,F}, (1)

where a;={a;. ,j:1,...,NiA } denotes the arguments of c;, and S
denotes the cross-product of all possible argument values, i.e., the
design subspace restricted by c;. For example, constraint ¢, given
by P;+ P < Py, relates a receiver circuit’s power consumption
requirement, Py, its analog front-end power, Py, and its digital
deserializer power, P,. A constraint c; is said to be satisfied if it
holds for all combinations of the current argument values; violated
if it returns False for all combinations; and consistent otherwise.
The status of c;, denoted by s(c;), indicates whether c; is satisfied
(s(¢;)=1), violated (s(c;)=F), or otherwise (s(c;)=Unknown).

A design problem, denoted by p;, is given by (I}, O;, T;), where ; is
the set of inputprgperties, O; is the set of output properties, and
T,={c,,j=1,..,N; } is a set of constraints relating a subset of p;’s
properties. A solution for p; is an assignment for p;’s outputs that
satisfies all constraints in 7;. Each problem has a status indicating
its level of accomplishment (e.g., “Solved”). A design operator,
denoted by f;, is a function that helps solve a problem p; by (a)
computing values for p;’s outputs (synthesis and optimization
operators), (b) verifying that a solution meets one or more
constraints in 7; (verification operators), or (c) decomposing p; into
a partially-ordered subproblem set (decomposition operators). In
practice, operators are typically implemented by CAD tools. An
operator f; may take one or more parameters, e.g., for a synthesis
tool, a parameter may determine whether area or delay is optimized.
A design operation, denoted by 0, is given by an operator > a
problem p; to which f; is applied, and f;’s parameter values.

A design process is a state-based system that goes through a series
of design states. The design process history at stage n is given by
H,={(<s;, 6>, i=1,..., n-1) O 5.}, where s; and 6, denote the design
process state and the applied operation at stage 7, respectively. Each
s; consists of: the design object hierarchy, i.e., the set of all design
objects currently under design, where each object is a set of
properties that represents a part of the design; the design problem
hierarchy, i.e., the set of all formulated design problems; and the
network of constraints, denoted by Ci={C<,j=1,...,N? ', where Nf

is the total number of design constraints. Tile design space at stage n
is given by the cross product of all property value ranges in s,. A
design transition, denoted by ¢, is a pair of consecutive states (s,
Sp+1)- Sp+ results from applying the next-state function, d, to s,

Spe1 = O(Sy, O), 2)

where 6, is the operation executed at stage n. The function d applies
0,’s operator to a problem in s,,, and updates the state to s,.1. &’s
implementation depends on how the design process is managed.

2.2. The ADPM design process model

ADPM’s transition model is graphically compared with
conventional approaches in Fig. 1. For conventional approaches,
the implementation of d features a design process manager (DPM)
component. In practice, the DPM connects the user with
conventional CAD tools and may range from a raw OS interface to
a complete process management system such as Minerva II [11].
The implementation of in ADPM adds a Design Constraint
Manager (DCM) and a Notification Manager (NM). To address a
problem p;, a designer sends an operation request 6,, to the DPM,
which takes as input 8, and the previous state s,,. After applying 6,,’s
operator on p;, the following tasks are undertaken:

+ Update of design state. The DPM updates the problem
hierarchy in s,, including p;, based on the operation result.

W)

State-based system Next
. i state
History Previous Design Process Manager
state r
| Apply |_)| Incorporate |
Desig_|ner i operation in state Key
“;:-'Operatlon D 72 L\ — Conventional
/A request Generate Consolidate flow
constraints constraint data
T | = ADPM flow
Ll
Y /[v
Design Constraint Notification
Manager Manager I Output
(notifi

Fig. 1. Transition model for Active Design Process Management.

However, unlike in conventional approaches, this DPM also
generates any necessary constraints and incorporates them in
C,. The resulting C,;1, including the current values of C,;;’s
properties, is then sent to the DCM for evaluation. The DCM
then runs a constraint propagation algorithm to compute
infeasible property values and the status of all constraints.
Constraint evaluation details are delegated to constraint-based
systems and CAD tools [3]. The result is sent back to the DPM,
which properly updates C,,;; and the status of design problems.
Constraint information is consolidated into data that explicitly
supports heuristics (see Section 2.3), and the design state is
properly labeled with this data. The new state s, is included in
the design history and made available to designers.

¢ Communication of state information. The NM alerts
designers of constraint-related events, including violations and
reductions of a property’s feasible subspace. It selects subsets of
H, ., relevant to each designer and includes them in
notifications. Notifications alert designers of key information
that might otherwise go unnoticed, thereby encouraging them to
use that information when choosing operations.

ADPM may require more computer resources than conventional
approaches. While each CAD tool is executed only upon a
designer’s request in conventional approaches, additional tool runs
are typically performed within ADPM’s constraint propagation
algorithm. This extra computation, though, allows ADPM to
directly support constraint-based heuristic application. Key
constraint-related information is automatically generated in a
timely manner, and is organized to provide direct heuristic
guidance. Notifications encourage designers to use the most
relevant portions of this information when choosing an operation.

2.3. Constraint-based heuristic application support

ADPM directly supports constraint-based heuristics by virtue of
several types of information. We describe some of these types next.

2.3.1 Heuristics based on feasible subspaces

For each property a;, its feasible subspace vg(a;) is given by the
values that were not found to be infeasible by constraint evaluation.
Feasible value information helps designers prune substantial design
subspaces and thus quickly meet specifications. Design operations
should be intended to bind problem outputs to values from their
feasible subspace. Additionally, this information can help choose
the order in which properties are bound. The following heuristic is
supported: focus first on problems that target properties with the
smallest feasible subspaces. By using this heuristic, it is expected
that most violations happen early, since difficult subspaces are
given priority. Similar variable ordering heuristics exist in
constraint satisfaction algorithms [2,9].

2.3.2 Heuristics based on number of constraints

Another helpful heuristic based on existing constraint satisfaction

heuristics [6] is to execute operations that target properties
connected to many constraints. It is intended to help focus first on
very "constrained" properties. In ADPM designers can apply this
heuristic as they receive information about (a) constraints involved
in each design problem and (b) constraints where each property
appears. To help apply this heuristic, we associate a variable,
denoted by [3;, with each property a;. 3; is the number of constraints
where a; appears: B;=0{c; | a;0a; } 0 Extensions of this heuristic
are possible. Specifically, [3; may also include constraints indirectly
related to a; by an intermediate constraint.

2.3.3 Heuristics based on constraint violations

Timely constraint violation information allows backtracking to start
early. It can also be used as the basis of a heuristic for fixing
violations; specifically, to modify values of properties connected to
many violations. This heuristic may help resolve multiple conflicts
with a single operation and thus exit the infeasible part of the design
space fast. ADPM supports this heuristic by providing designers
with the following information: (a) for each problem, all conflicts
affecting any of its properties; and (b) for each property, all conflicts
where the property is involved. To help apply this heuristic, we
associate a variable, denoted by a;, with each property a;. Q; is the
number of violated constraints where a; appears:

a;=0f¢; [(ala;) O(s(e;) =)0 3)
2.4. Constraint-based heuristics in Minerva II11

We have implemented constraint-based heuristic support in the
Minerva III design process manager [3]. We describe this support
with an example: the team-based design of a MEMS-based wireless
receiver front-end subject to gain, power, bandwidth, and frequency
precision constraints. The example focuses on the concurrent
design of (a) the low-noise amplifier (LNA) and mixer and (b) a
MEMS filtering device. The team includes a leader, a device
engineer, and an analog circuit designer. (Although ADPM is
envisioned for use by larger teams, this example is large enough to
highlight the differences between ADPM and traditional
approaches.) Using Minerva III’s user interface, the leader defines a
top-level system design problem, and decomposes it into the analog
portion and the MEMS filter. The device engineer, who is assigned
to work on the filter, starts by focusing on its required center
frequency. Since this frequency is determined by the device’s beam
length, the engineer adjusts this length to 13 pm and then completes
an initial version of the filter.

2.4.1 Using feedback about infeasible design subspaces

Minerva III provides information that clarifies the impact of the
device engineer’s operation on the analog portion of the design.
Using Minerva III’s object browser (see Fig. 2), the circuit designer
can view property values not found to be infeasible (including
design variables and performance parameters), related to his LNA
and mixer. This feature helps choose operations that bind problem
outputs to values from their feasible subspace. It also supports a
heuristic: to focus first on properties with the smallest feasible
subspaces. As Fig. 2 shows, all values for the frequency inductor
property (“Freq-ind”) are infeasible except for the interval (0.17,
0.5) uH. This value set is small when compared with the feasible set
for the differential pair width property (“Diff-pair-W”)l, which
encourages the circuit designer to focus on the inductor design first.

2.4.2 Using feedback about constrained subspaces

Before committing to a design operation, the designer considers

! Note: value set size is unit-dependent and subject to designer judgement.

Domain: Amplifier+Mixer
Chject name: LNA +Mixer

Version humber: 1.0.1 (current)

Diff-pair-W String Abstraction Levels: Transistor,Geometry
Consistent values: {2.500000 3698225}
Freq-ind tring Abstraction Levels: Transistor,Geometry J
Consistent values: {0.174255 0.500000}
LNA-gain String Abstraction Levels: Geometry
Consistent values: {51.121929 181.420120}
LNA-power String Abstraction Levels: Geometry
Consistent values: {164.438431 200.000000}
LNA-Zin String Abstraction Levels: Geometry
Consistent values: {50.000000 73.954500} 7|
= [

Done | | Create New Version... I

Fig. 2. Subspaces not found to be infeasible (circuit designer view)

other constraint-related information. Using Minerva III’s constraint
and property browser (see Fig. 3), the designer views in what
constraints each property appears. This information supports
another heuristic: to give priority to properties that appear in many
constraints. As the PROPERTIES pane shows, the differential pair
width property (“Diff-pair-W”) appears in 3 constraints: power
consumption, input impedance, and gain. Thus 3, = 3, where 3, is
the number of constraints where this property appears.

Constraints and properties for problem: Design a Amplifier+Mixer at the Geometry level

CONSTRAINTS
Constraint/Argument Status/Value iy
» MaxLNA-P-C11 Consistent
» MinLNA-Zin-C8 Consistent
» TotalGain-C12 Consistent
» LNA-Zin-C9 Consistent
» LNAGain-C10 Consistent
» LNAPower-C7 Consistent £
PROPERTIES
¥ P.Diff-pair-W8 3 <no value assigned> LNA+Mixer X
LNAPower-C7 Consistent
LNA-Zin-C9 Consistent
| LNAGain-C10 Consistent
|» P.LNA-power9 <no value assigned: LNA +Mixer

» PLNA-Zin10
P P.MinLNA-Zin11

<no value assigned: LNA +Mixer

50 LNA+Mixer

P P.LNA-gain12 <no value assigned: LNA +Mixer

¥ P.Freq-ind13 «<no value assigned> LNA +Mixer
LNAGain-C10 Consistent

=]

‘ Close View property history... ‘

Fig. 3. Properties and their related constraints (circuit designer view)

SIS

The designer uses the constraint-related information shown in Fig.
2 and Fig. 3 when working on the LNA. Of the many tasks on which
the designer could focus, two are suggested as important by this
information. The designer first focuses on the design of the load
inductor, because its feasible value set is very small. By invoking a
schematic editor from Minerva III a value of 0.2 HH is chosen,
which does not result in any detected conflict. The differential pair
transistors are then sized. A size of 2.5 pm is chosen because it is
the smallest potentially feasible value (see Fig. 2), and will reduce
power consumption. Unfortunately, the chosen values lead to a
violation of the global gain requirement, which concerns both the
circuit designer and the device engineer. The team leader worsens
the situation by tightening the input impedance requirement to 40 Q,
which leads to an impedance violation as well.

2.4.3 Using feedback for conflict resolution

The designer invokes the constraint and property browser again to
try to resolve these conflicts (see Fig. 4). In this case, the number of
violations related to each property is examined, shown in the
“Connected violations” column of the PROPERTIES window pane.
This information supports another heuristic: to backtrack on a
property connected to many violations. Based on this heuristic, the
designer chooses to work on the differential pair width, as this
property is connected to two violations, i.e., 0, = 2. Since larger
transistors will improve gain and input impedance matching, the

Constraints and properties for problem:

CONSTRAINTS

» LNA-Zin-C9 Violated]
¥ TotalGain-C13 Violated
P.Mintransceiver-gain16é
¥P.LNA-gain12 «no value assigned>
[48.000000 48.000000] required by LNAGain-C10
¥ P.Insertion-loss6 <no value assigned:

» LNAGain-C10
» LNAPower-C7

[-19.121931 -19.121931] required by FilterLoss-C4

Consistent
Consistent

Design a Amplifier+Mixer at the Geometry level

From Notification

Designer

Manager Problem,
Notification Operator,
Next Operation Operator parameters
- - state selection
Design history function function l
From Design Internal state To Design
Process Manager Process Manager

PROPERTIES
Property/Constrainl #c's Value/Status Object Connected violations [
» P.Diff-pair-W8 3 25 LNA-+Mixer
» P.LNA-powerg 2 <no value assigned: LNA+Mixer
» PLNA-Zin10 2 <no value assigned> LNA+Mixer 1
» P.MinLNA-Zin11 1 40 LNA-+Mixer 1
» P.LNA-gain12 2 <no value assigneds> LNA+Mixer 1
» P Freq-indi3 2 .2 LNA+Mixer 1 |
P P.MaxLNA-power14 1 200 LNA+Mixer
» P.Maxfreq-ind15 1 05 LNA+Mixer v
‘ Close View property history... ‘

Fig. 4. Minerva III’s support for circuit designer to resolve conflicts.

designer decides to increase the value of the differential pair width
to 3.5 um. Constraint propagation is run again and no conflicts are
found. Both violations have been fixed with a single iteration.

3. EVALUATION RESULTS

3.1. Design process evaluation with TeamSim

TeamSim is a simulator whose architecture (see Fig. 5) extends the
Minerva III architecture by incorporating the following features:

* Simulation statistics capture. A simulation engine within the
DPM dynamically captures, stores, and consolidates simulation
statistics for on-line visualization and post-simulation analysis.

* Simulation of designers. A simulated designer engine sits
within each client and is integrated with its graphical user
interface. This engine can automatically react to server feedback
by requesting design operations.

* Visualization of simulation statistics. A graphical interface
dynamically displays the captured simulation statistics. It
includes a constraint network viewer and a statistics viewer that
shows constraint statistics and value assignments. This interface
was built by connecting Minerva III with existing visualization
programs (Gnuplot and Lefty). Minerva III’s interactive
windows can also be viewed and used during simulations.

3.1.1 Designer model

Simulating designers requires a designer model that emulates an
engineer’s view of the design, as derived from the information
received, and the choices made based on this information. Our
model satisfies this requirement (see Fig. 6). A designer is viewed

interface

Process manager (DPM) Constraint manager (DCM)

Constraint
engine

Constraint
network
viewer

Simulation
statistics

History
database
Simulation \

statistics

viewer Problem manager Simulation

engine
A
'

0

Constraint
network

Designer clients

| Encapsulation | | Encapsulation |
A A

Simulated H

Notification | i :
designer (NM) § M M
interface engine parameters Y

Key

| D Minerva lll component - New il for si (did not exist in Minerva Ill) |

Fig. 5. Architecture of the TeamSim evaluation environment.

Fig. 6. Simulated designer model used to evaluate ADPM.

as a state-based system whose goal is to solve design problems. The
designer has an internal view of the design, the internal state, based
on the information received from the DPM and NM. The designer
must select a problem to address, a set of outputs to which values
are assigned, and the values themselves. The internal state includes
the necessary information to make this selection, including:

* Design problems. A list of problems assigned to the designer,
including their status information, outputs and current state.

» Constraint information used in search heuristics. For each
property a; that a designer is concerned with, the internal state
contains its feasible values vg(g;), the number of connected
constraints f3;, the number of connected violations 0, a list of
constraints monotonically increasing in a;, and a list of
constraints monotonically decreasing in ;

The internal state is updated based on the current state itself and the
messages received from the DPM and the NM. When a new
message arrives, a next-state function updates the state. The process
whereby each designer d; chooses an operation to be executed can
be seen as the application of a function f,, called the operation
selection function, on the internal state. f, can be viewed as the
composition of three functions, fp, Ja and £

* Problem selection function (f,). This function selects all
problems assigned to d; that do not have a Waiting status. If d,
knows of no violations based on the internal state, and all
problems assigned to d; are solved, an empty set is returned.

+ Target property selection function (f;). This function selects
an output property from all addressable problems based on the
following heuristics (ties are resolved randomly):

- Focus on most difficult subspaces. If problems with unbound
outputs exist and no constraint violations are known of, d;
chooses the output with the smallest feasible subspace.

- Focus on properties that enable efficient conflict resolution.
If there are violations, a property is selected for which a value
modification is likely to fix many violations. The number of
violated constraints related to each property is examined and
preference is given to properties involved in many violations.
For violated monotonic constraints, we also determine what
direction of value change is likely to fix most violations. If
moving the value of a property g; in a given direction is likely
to fix many violations, then ¢; is given preference.

- Complete design. 1f all problems are complete and no
violations are known of, an empty property set is returned.

* Value selection function (f;). This function chooses a value for

a selected property a; based on the following heuristics?:

- Choose from feasible subspace. If vg(a;)20, a value is
chosen from vg(a;). For ordered value sets, we choose the top
or bottom value based on what may satisfy most constraints.

LA constraint ¢; is monotonic in ¢g; if moving g¢;’s value in a given
direction helps satisfy the design requirement implied by c;.

2 While using these heuristics, the design history is consulted to avoid
combinations of assignments that have previously led to violations.

- Choose from initial subspace. If vg(a;))=0, the value is
chosen from the initial range E;. For bound properties with
ordered value sets, we increase or decrease the current value
based on what direction is likely to fix the most violations.
The size of this delta (increase or decrease) can be controlled
in software by a parameter. In our simulations, delta values
around 100 times smaller than the size of E; worked well.

3.1.2 Collection and visualization of simulation data

Each simulation has an initial problem scenario given by a top-level
problem formulation, an initial decomposition into subproblems; a
set of designers, an assignment of subproblems to designers, and
initial values for top-level requirements. A script automatically
initializes this scenario, and designers start requesting operations
independently. A simulation terminates when the top-level problem
is solved (and thus all of its subproblems are too), all problem
outputs have a value, and no constraints are violated.

TeamSim is configured for the scenario’s design area using the
DDDL language [3,10]. Types of properties, constraints, problems,
decompositions, ordering among design problems, and constraint
monotonicity can be specified. For example, the DDDL code below
states that filter loss constraints are monotonic decreasing in the
resonator length, but are monotonic increasing in the beam width:

constraint “Filter-loss-constraint” {
arguments {
select {
“Insertion-loss”;
“Resonator-length”; decrease to satisfy;
“Beam-width”; increase to satisfy;

}

ADPM can be compared with conventional approaches by setting a
Boolean parameter. When A=F, the conventional approach is
simulated. Constraint propagation is not run. Simulated designers
can know of constraint violations and infeasible values only by
requesting verification operations (e.g., simulations). Verification
operators are executed only when their inputs are bound, typically
when a subsystem is complete. Constraints relating multiple
subproblems are evaluated only when all subproblems involved are
solved and no internal constraints are violated. When A=T, ADPM
is simulated. Constraint propagation is run, and the simulated
designers can make use of timely constraint-related information.
Constraints relating multiple subproblems are propagated
beginning when these constraints are generated.

Upon the execution of a design operation 6, TeamSim captures and
displays the number of constraint violations found immediately
after 8’s execution, the number of constraint evaluations executed
due to 6, the cumulative number of executed operations (including
0), and the value assignments done as a result of 8. Fig. 7 depicts a
typical profile for a simplified design case showing two key metrics
as a function of operation number: number of constraint violations,
and number of constraint evaluations. Fig. 7 (a) shows the number
of violations found upon each executed operation. The solid line
corresponds to a simulation run with the new ADPM features,
including constraint propagation, turned off. The dotted curve
corresponds to a simulation run with all features turned on. Observe
that using ADPM a smaller number of violations is found,
violations start later, and violations stop happening earlier (and thus
fewer design operations are required to complete the design). These
trends can be explained by ADPM’s constraint-based heuristic
support. This support supplies a timely, precise view of the feasible
design space that helps quickly place the design in subspaces that

w3 Reduction in number

5 of operations

k]

o2

2 (a)

E

g1

0

c

o i y

0 Mt e
0 2 4 6 8 10 1214 16 18 20 22
Operation number —=— Conventional
1000 - approach
~a ADPM
& A.» h
] [T A approac
K]
= 100 1
=]
®
3
uu-u-auay

g e eeraased (b)
5 10
®
c
1<)
(&)

T S Y ' A S A

0 2 4 6 8 1012 14 16 18 20 22
Operation number

Fig. 7. Typical simulation statistics in TeamSim.

are likely to be feasible. However, as Fig. 7 (b) shows, ADPM
requires more constraint evaluations (i.e., more tool runs) per
executed operation in exchange for the reduced number of human
designer operations. In terms of the fotal number of constraint
evaluations, though, ADPM presents a smaller penalty. The total
number of evaluations, denoted by N, is given by Nt = Ng X N,
where Ng denotes the average number of evaluations per design
operation, and N denotes the total number of executed operations.
The total penalty is smaller than the per-operation penalty, because
the number of evaluations is given by the area under the two curves
in Fig. 7 (b) and the number of operations is smaller using ADPM.

Fig. 8 shows TeamSim’s design process statistics window. Key
statistics are dynamically displayed, including the number of
constraints, the number of violations, the number of constraint
evaluations, and the cumulative number of design spins. A design
spin is an executed operation due to at least one violation involving
properties from multiple subsystems. Spins can be viewed as
expensive design iterations performed upon system integration.

Stats COMNSTRAINT STATS VS ITERATION NUMBER
20
8 o i
Evaluations —=—
8 Spins
4
2
0
8
6
4
2 w
o
[} 5 10 15 20 25 30 35
Iteration number

Fig. 8. Snapshot of design process statistics window in TeamSim.

3.2. Simulation results

We simulated two different design cases. The first case is the design
of a MEMS-based pressure sensing system, composed of a
capacitive pressure sensor and a mixed-signal interface circuit that
are designed concurrently. This case includes top-level constraints
on sensing resolution, estimated yield, and achievable pressure
range. During simulations, the entire network contains up to 26
properties and 21 constraints, most of them linear and monotonic.
The second case is the design of a MEMS-based wireless receiver
front-end, composed of mixed-signal circuitry and a MEMS-based

channel-selection filter that are designed concurrently. This case
includes constraints on channel bandwidth, system gain, input
impedance, frequency selection precision, and power consumption.
During simulations, up to 35 properties and 30 constraints exist,
most of which are non-linear. Thus this case can be viewed as
“harder” than the sensing system case. Although relatively small,
both simulated cases present multiple complex design trade-ofts
among the decisions of different team members and thus emulate
real multidisciplinary design processes.

Design process performance was estimated by examining the
number of design operations required to complete each case. Over
60 simulations were executed varying the value of the random seed.
As Fig. 9 (a) shows, at least twice as many operations on average
were required to complete the designs using the conventional
approach compared to ADPM. Since each operation requires a
direct request from a designer, this result suggests that ADPM may
reduce expensive designer effort, thereby improving designer
productivity. The reduction in the number of operations is more
significant for the receiver problem. This result can be supported by
ADPM’s constraint-based guidance. The harder a design problem,
the more difficult it is to make “guesses” about values that should be
assigned to problem outputs, and thus the more helpful ADPM’s
guidance should be. Further analysis showed that the average
number of spins performed using ADPM was 7% of the number of
spins performed using the conventional approach. This data
suggests that ADPM may significantly reduce late design iterations.
Finally, we estimated design process predictability by comparing
the variability or standard deviation of the number of design
operations. ADPM’s results were at least 3 times less variable (see
Fig. 9 (a)). Assuming that variability implies predictability, this data
suggests that ADPM’s guidance may result in a more predictable
design process.

ADPM’s computational penalty was estimated by examining the
number of executed constraint evaluations, which provides an
estimation of the number of times that verification tools, simulation
tools, and constraint-based systems are run. Although this metric
does not directly account for differences among tools, it supports an
adequate comparison between the conventional approach and
ADPM. As Fig. 9 (b) shows, the average number of evaluations
required by ADPM in our simulations was much higher than those
required by the conventional approach. This result indicates that
ADPM may require a substantial extra computational effort due to
its constraint propagation algorithm. While this algorithm’s worst-
case complexity is at least polynomial in the number of constraints
and variables [3], the conventional approach is at most linear in the
number of constraints. The computational penalty is smaller for the
wireless receiver problem. This result seems reasonable as the

=10 -~ 35
5 8 § 30
22 6 2§ 2
£ gs 20
g 4 Ee 15
g > 10
z 2 s

g 5 5
<0 <

Sensing wireless
system receiver

Sensing wireless
system receiver

[l ADPM improvement
Average design operations

[0 ADPM improvement
Variability of operations

(a) (b)

Fig. 9. Results for (a) design operations and (b) constraint evaluations.

[l ADPM penalty
Constraint evaluations

[J ADPM penalty
Evaluations per operation

50

40

—e—Conventional approach

30

—a— ADPM approach

20

10

Design operations

a—a—an

0

285 29 295 30 30.5
Gain specification (dB)

Fig. 10. Variation of design operations with specification tightness.

harder a problem, the greater the likely improvement in the number
of operations provided by ADPM, and thus the smaller the total
computational penalty. Finally, as Fig. 9 (b) shows, the average
number of evaluations per executed operation reflects a larger
penalty than the penalty given by the total number of evaluations.
This difference is consistent with Fig. 7 (b) and in practice may
require purchasing extra computational infrastructure.

To examine ADPM’s robustness with respect to problem hardness,
we swept the tightness of top-level requirements. Fig. 10 shows the
variation in the number of executed operations with the tightness of
the gain requirement in the receiver problem. This variation appears
to be larger when using the conventional approach, which suggests
that the new ADPM approach is more robust.

4. CONCLUSIONS

Current design teams suffer ever tighter staffing and time-to-market
requirements. Our quantitative results suggest that ADPM’s
constraint-based heuristic support may improve productivity and
predictability. These improvements come at the expense of a
computational cost penalty. Fortunately, for more complex design
problems ADPM may provide a more substantial design process
acceleration for a proportionally smaller computational penalty.
Future work should evaluate other types of problems and heuristics.

5. ACKNOWLEDGEMENTS

The authors are grateful to the reviewers and to Anne Gattiker for
their helpful comments. This work has been funded in part by a
scholarship from Spain’s Science and Education Department.

6. REFERENCES

[1] C.Bessiere and J. Regin, “Arc consistency for general constraint
networks: preliminary results”, Proc. IJCAI'97: 398-404.

[2] J. Bitner and E. Reingold. Backtrack programming techniques.
Communications of the ACM, (18):651-655.

[31 JLA. Carballo and S. Director, “Constraint Management for
Collaborative Electronic Design”, Proc. 36th DAC, June 1999.

[4] F.L.Chan, M.D. Spiller, and A.R. Newton, “Weld - an environment for
web-based electronic design”, Proc. 35th DAC, June 1998.

[5] S.Fenstermarker et al., “METRICS, A System Architecture for Design
Process Optimization”, Proc. 37th DAC: 705-710, June 2000.

[6] E.Freuder and M. Quinn, “Taking advantage of stable sets of variables
in constraint satisfaction problems.” In Proc. IJCAI, 1076-1078, 1985.

[7]1 S.T. Frezza, S.P. Levitan, and P.C. Chrysanthis, “Requirements-based
Design Evaluation”, Proc. 32nd DAC, June 1995.

[8] M.Jacome and S. Director, “A formal basis for design process planning
and management”, [EEE Trans. CAD, 15(10):1197-1211, Oct. 1996.

[9]1 V. Kumar, “Algorithms for Constraint Satisfaction”, A Magazine,
13(1):32-44, 1992.

[10] P. R. Sutton and S. W. Director, “A Description Language for Design
Process Management”, Proc. 33rd DAC, 1996.

[11] P. R. Sutton and S. W. Director, “Framework Encapsulations: A New
Approach to CAD Tool Interoperability”, Proc. 35th DAC, June 1998.

[12] K.O. ten Bosch et al., “Design Flow Management in the Nelsis CAD
Framework”, Proc. 28th DAC: 711-716, June 1991.

	Main
	DAC01
	Front Matter
	Table of Contents
	Session Index
	Author Index

