
Abstract
Wave Steering is a new design methodology that realizes high
throughput circuits by embedding layout friendly synthesized
structures in silicon. Wave Steered circuits inherently utilize
latches in order to guarantee the correct signal arrival times at the
inputs of these synthesized structures and maintain the high
throughput of operation. In this paper, we show a method of reor-
dering signals to achieve minimum circuit latency for Wave
Steered circuits and propose an Integer Linear Programming(ILP)
formulation for scheduling and retiming these circuits to minimize
the number of latches for minimum latency. Experimental results
show that in 0.25µm CMOS technology, as much as 33.2% reduc-
tion in latch count, at minimum latency, can be achieved over
unoptimized Wave Steered circuits operating at 500 MHz.

1. Introduction
Wave Steering is a layout friendly design methodology that

realizes high throughput circuits by embedding synthesized struc-
tures in silicon. These synthesized structures are variants of Binary
Decision Diagrams (BDDs)[1]. Since the first published work in
[9], the Wave Steering methodology has been extended to both
ASIC structures[10], reprogrammable FPGA fabrics[11][12] and
Finite State Machines (FSMs)[5][6] with as much as 3-4 times
throughput increase over non-Wave Steered circuits. In the Wave
Steering design methodology, circuits inherently utilize latches to
guarantee the correct arrival times at the inputs. Inside the synthe-
sized structures they are used for signal skewing, and on the inter-
connects they are used to guarantee high throughput. In this paper,
we propose an Integer Linear Programming(ILP) formulation for
retiming Wave Steered Circuits to minimize the number of latches
while keeping the circuit latency minimum. This latch minimiza-
tion formulation does not compromise on the high circuit through-
put which is a unique feature of the Wave Steered methodology.

Wave Steering integrates logic and physical syntheses for a
specified clock frequency. It pipelines a BDD-like structure
(henceforth referred to as a Logic Block(LB)) to the granularity of
one level, which is controlled by a single variable (input signal).
This not only makes high frequency pipelining possible, but also
introduces variable ordering in the LBs as a degree of freedom that
is absent in other design styles. Unlike classical micro-pipelining
schemes, no logic redundancy needs to be introduced in order to
have a high throughput execution in the fine-grained pipelined
stages. Since Wave Steering uses a two-phase non-overlapping
clocking scheme[9][10], variables that are inputs to consecutive

levels have to be applied one clock phase apart. Depending on the
arrival times of the different input variables of a LB, an assignment
of the variables to levels in the LB can be done so as to reduce the
latency of the LB. In order to preserve the high frequency of oper-
ation inside an LB, interconnect pipelining may need to be done
for signals between LBs.

We show a method of scheduling and reordering variables
inside LBs, to achieve the minimum latency for a given decom-
posed and placed netlist of LBs. The scheduling/ordering which
achieves this minimum latency for an LB is called a Minimum
Latency Ordering (MLO) and several such orderings can exist. For
this latency, we formulate the problem of minimizing the number
of latches. For simplification, we do not consider routing resource
constraints/ congestions or circuits with feedbacks in our formula-
tion. We also assume that all LBs are complete binary trees and
this prevents any LB deformation after reordering. LBs which are
complete binary trees have application in Field Programmable
Gate Arrays (FPGAs)[11][12].

We organize the rest of the paper as follows: Section 2 dis-
cusses previous work related to area minimization using retiming
and points out the difference and similarity with our problem. Sec-
tion 3 highlights the underlying ideas of the Wave Steering meth-
odology. Section 4 includes definition of key terminologies
followed by the problem definition. The next section presents the
underlying ideas behind our optimization approach. Section 6 pro-
poses an efficient ILP formulation of this min-latency min-area
problem. This is followed by Experimental results and Conclu-
sions.

2. Previous Work
Since the seminal work of Leiserson and Saxe [4], researchers

have investigated new ways of using retiming to improving circuit
performance. Most work in the field of area and clock period mini-
mization for circuits has used classical retiming techniques put
forth in [4]. Retiming involves the relocation of flip-flops across
logic gates to allow the circuit to be clocked at a faster clock speed
(minperiod retiming). Minarea retiming then aims to minimize the
number of flip-flops[7] needed for the circuit to operate at the
faster clock speed. Several papers have been published, extending
the work in [4] to handle level-clocked circuits, retiming for low
power and even peripheral retiming for pipelined circuits[8].

However, to our knowledge, there is little published
work[3][7] that deals with reordering and scheduling of signal
arrival times at the input boundary of LBs such that both the circuit
latency and the number of sequential elements are minimized. This
paper explores this relationship in the context of Wave Steered cir-
cuits. While not retiming in the classical sense, our goal is to find a
minarea solution for a Wave Steered circuit, operating at a user
specified clock period such that the global circuit latency is mini-
mum. We show that an MLO and scheduling of signals based on
their arrival times at LB inputs achieves the minimum circuit
latency, and some MLOs give the minimum latch count.

Amit Singh, Arindam Mukherjee, Malgorzata Marek-Sadowska

Department of Electrical and Computer Engineering
University of California, Santa Barbara

Santa Barbara, CA 93106, USA
{asingh@cornet.ece, arindam@cornet.ece, mms@ece}.ucsb.edu

 Latency and Latch Count Minimization in Wave Steered
 Circuits

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. To copy otherwise, or republish, to post on servers or to redis-
tribute to lists, requires prior specific permission and/or a fee.
DAC 2001, June 18-22, 2001, Las Vegas, Nevada, USA
Copyright 2001 ACM 1-58113-297-2/01/0006...$5.00

3. Wave Steering
Wave Steering operates on synthesized structures that are

variants of Binary Decision Diagrams (BDDs)[1]. Binary Decision
Diagrams (BDDs) are graph representations of Boolean functions
that are widely used in many fields of Computer Aided Design
(CAD). For a complete description of BDDs, we refer the reader to
[1]. A physical implementation of a BDD is exclusively made of
just one type of 2:1 multiplexer node, which can be Pass-Transis-
tor-Logic(PTL) mapped using 2 nfets[2]. However a straightfor-
ward PTL mapped BDD implementation has too much delay to be
acceptable without some kind of pipelining. Wave Steering offers
an attractive solution to drastically decrease this delay since the
finest pipeline granularity can be obtained if a single level, con-
trolled by a single variable, is allowed to be a pipeline stage. In
such a case, the inputs of a LB will be spatially distributed along
the pipeline stages. Since the whole idea of pipelining is to allow
for the co-existence of multiple data waves corresponding to dif-
ferent input vectors, we have to skew input variables in application
time to allow for pipelined operation.

Figure 1.a shows a Wave Steered LB, that implements a func-
tion f of 3 variables a,b,c. Each variable is applied at a particular
level in the LB, and this level ordering is determined by the arrival
times of the variables. If all variables arrive at the same time, then
latches are used to skew the variables at the LB input points(Figure
1.b). Each latch is a negative edge triggered sequential element as
shown in Figure 1.b. In this paper, our aim is to reorder and sched-
ule signals in such a way to allow for maximum latch sharing. In
figure 1.a, the variable ordering is c-b-a, because c is applied at the
lowest level (with respect to the output), followed by b and then a.
As shown in figure 1.c, we use a 2-phase clocking scheme with a
‘φ1 clock’ and its non-overlapping complement, the ‘φ2 clock’.
The φ1 clock is “on” during the φ1 phase and “off” during the φ2
phase and vice-versa. Variables a and c are clocked by the φ1
clock, and variable b by the φ2 clock, such that during the φ1 phase
the a-level and c-level are computing while the b-level is isolating
the computations carried out in the other 2 levels, and during the
φ2 phase the b-level is computing while the a-level and the c-levels
are shut off. We denote the period of the 2-phase non-overlapping
clock pulsing the circuit by φ, and thus each level of the Wave
Steered circuit can be clocked in a single phase of duration φ/2.
This allows for multiple data waves to co-exist in the LB at the
same time since the inputs are spatially spread along the pipeline
stages. Since each stage is a single level of multiplexer cells in the
structure, the pipelining granularity is very small. We need no
latches at the outputs of the multiplexer cells explicitly to hold the
signal values constant, since the dynamic node output capacitances
of the multiplexer cells act as natural capacitors. In general, if there
are n levels (corresponding to n input variables) in the structure,

there will be n pipeline stages, and data waves can co-exist

inside such a Wave Steered design thereby allowing for high
throughput functioning of the circuit. A given circuit can be
decomposed into a network of LBs so that the circuit functionality
is retained without compromising the clock period. In this paper
we do not deal with circuit decomposition issues, but concentrate
on optimization techniques for latency and latch count minimiza-
tion, assuming that we have a decomposition and placement given
to us. The next section formally defines the latency and latch mini-
mization problem and defines some key terms used in the rest of
the paper.

4. Key terms and Problem Formulation
Figure 2 shows a small network of LBs connected using pipe-

line latches such that the circuit operates at the required clock
period φ. For simplicity’s sake, in this figure all LBs are of height h
= 4. Outputs from LBs i, k, p, and m are inputs to LB j. Let V={vij}

be the support set of the function f implemented by the LB j where
i is the source and j is the sink LB. S={si} is the set of output sig-
nals of the fanin LBs of j. In this example, Sj={si,sk,sp,sm}. tsi
denotes the arrival time of any signal si at the output of its corre-
sponding LB. We use τij to denote the interconnect propagation
delay of a signal si to the corresponding LB j’s input. If the propa-
gation delay of a routed signal is τij>φ/2 then interconnect latches
are required to route the signal si to the input of the LB j. These
interconnect latches are called hard latches. In the case where
τij<φ/2, latches may be needed to skew the input signals (Figure 1).
These latches are called soft latches. xij denotes the total number of
hard and soft latches in the path from signal si to an input of an LB
j. As shown in Figure 2, tij is the arrival time of a signal si at the
input of the LB j, given by tij = tsi + τij. In the network of placed
LBs, all routing is assumed to be without congestion and allows
for maximum latch sharing between source and sinks. All latches
are distributed on the stem of the net, which is the wiring between
the net source and its one sink requiring the maximum number of
latches. Other sinks requiring lesser number of latches tap-off at

(a)

c

b

a

f(a,b,c)

LB

Figure 1: Wave Steering

(b)

a-level clock

b-level clock

c-level clock

φ2φ1 φ1

φ2φ2
clock

φ1φ1
clock

φ1φ1
clock

(c)

D Q

φ1

D Q

φ2

Negative edge triggered sequential
element chain for input skewing

sequential
-ve edge triggered

element

φ1

φ2

φ1

n
2

hj

si

xij

xmj

sm

logic block j

interconnect
delay

 ti

Figure 2: Terminology

(LB)

j

tsi

τij
interconnect

i k p m

latches

tsm

sj

 1

4

source si

3

 2

vi1

Original net

latch sharing

source si

vi3vi4

Shared-Latch routing

Shared-Latch net

Tap point

vi2

Figure 3: Shared-Latch Routing Model

Latches

different points on the stem. The placement ensures that all sinks
are clustered together, and all hard latches, if any, are shared by all
the sinks and are inserted on the net stem. This is the Shared-Latch
routing topology (Figure 3).
We now give a formal problem statement:

Problem: Given a decomposed and placed Wave Steered netlist
having Shared-Latch net topology, find a variable ordering of
input signals for a fixed clock period φ, such that the circuit
latency is minimized (Lmin) and the number of latches for Lmin is
optimally reduced (ffmin).

5. Variable Ordering and Retiming for Latch
Count Minimization

In this section, we outline an efficient method of finding a
variable ordering inside each LB in a decomposed and placed
Wave Steered netlist, such that the overall latency of the netlist is
minimized. Since a Wave Steered circuit is designed for a given
clock period, this method gives the MLO of variables and LBs in
the netlist for a given frequency of operation. For simplicity’s sake,
we assume that: (i) all LBs are complete trees, (ii) all routing
between any two points is Shared-Latch routing and allows for
maximum latch sharing between different segments of the net(Fig-
ure 3).

In order to find Lmin, we derive the latency bound of an indi-
vidual LB in terms of its tij. For all LBs, we order the input signals
in increasing order of their tij. Figure 4 shows an ordered list of
input signals to an LB. In this figure, we have a situation where the
arriving signals introduce a stall in the LB. This means that there is
at least one signal that arrives more than φ/2 after the previous sig-
nal thereby increasing the LB latency. In order to tackle this situa-
tion, we move the early arriving signals forward (in Figure 4,
signal 1) in time by ηηij half cycles (Figure 4.b) by inserting soft
latches so that all arriving signals are in consecutive levels in the
LB. The procedures for calculating ηηij of signals are shown below.

Procedure 1 schedules the LB signals in increasing order of arrival
times and finds the latest modified arrival time for all LBs in the
network of LBs. The latest modified arrival times are then used by
procedure 2 to find the modified arrival times of inputs of all LBs
in the network, such that all input signals of any LB are scheduled
in increasing order of their arrival times in consecutive LB levels.
We denote the modified arrival time of a signal by tij +ηij. In the
case where 2 or more signals have the same arrival time, they are
randomly assigned consecutive levels. This is an MLO and leads
to the Wave Steering without stalling condition. This condition
states that if two variables vij and vkj arrive at different levels in a
LB j that are δik half cycles apart, then

Let ‘cij’ denote the number of levels below the output of the LB
where the variable vij is applied at its modified arrival time (tij
+ηij). Then after the application of this signal, it will take cij half
cycles (cij.φ/2 units of time) for the current vector computation to
be completed. Thus the output evaluation time of the LB, tsj, is
given by

tsj = (1)

This formula holds for the output evaluation time of any LB for
any and all inputs of that particular LB.

All paths to each primary output in a Wave Steered circuit
have equal delay. To derive the global lower bound on the input-
output circuit latency Lmin, we order the variables in the LBs in
increasing order of arrival times and schedule them using (1) in a
topological sweep from the inputs to the outputs. This is the MLO
scheduling. The aim is to reorder variables such that each LB
delay, and hence the overall circuit latency is minimized. However,
this variable ordering is not unique - there may exist other variable
orderings, including other MLOs for which the circuit latency
remains Lmin. The set of variable orderings that achieve the circuit
latency of Lmin, is denoted by {VOmin}. We have the following
lemmas and theorems with these assumptions: a) Wave-Steering
without stalling condition holds, b) all nets have Shared-Latch
routing topology, and c) each level in an LB can be assigned only
one variable.

Lemma 1

Let be the output evaluation time for any LB A under an
MLO VOmin. Let VO be any other ordering that differs from

VOmin only in the ordering of the inputs to A, and be the out-
put evaluation time of A for VO for the same input arrival times.

Then always holds.
Proof
Any variable ordering VO differs from VOmin only in the ordering
of inputs inside LB A, but the individual input arrival times remain
unchanged. Thus the list of inputs sorted by their arrival times (as
was the case for VOmin) might not remain sorted for VO. Thus a
late arriving input may be ordered before an earlier arriving input
in the list. Since the ordering determines the output evaluation time
of LB A according to (1), for the ordering VO, the LB evaluation
time can either remain same as that determined by VOmin or

t1 +1 +2 +3 +4 +5

vij
vnj

vkj

vpj

l1 l2 l3 l4

ηpj
ηkj

ηnjηij

(a) (b)Figure 4: Modified Arrival time

t1 +1 +2 +3 +4 +5

vij vnj

vkj

vpj

l1 l2 l3 l4

ηpj
ηkj

ηnj
ηij=2

LB levels

Variables(signals)
Early signal delayed

Late signals

cij = 4

 procedure 1: derive latest modified arrival time
1 sort (set of input signals {vij} of LB) according to arrival times in increas-
ing order;
2 current_time = -1;
3 for every input signal vi of LB in the sorted list {
4 current_time = current_time + 1;
5 current_time = maximum (current_time, tij); /* tij = arrival time of vij */
6} latest_modified_arrival_time = current_time;

 procedure 2: derive all modified arrival times
 1 current_time = latest_modified_arrival_time+1; /* from procedure 1*/
2 sort (set of input signals {vij} of LB) according to arrival times in decreas-
ing order;
3 for every input signal vij of LB in the sorted list {
4 current_time = current_time - 1;
5 current_time = maximum (current_time, tij);
6 ηij = (current_time - tij);
7}

δik
φ
2
--- tsi xij

φ
2
---+ 

  tsk xkj
φ
2
---+ 

 –=

tij ηij cij+ +()φ
2
−

 
 
 

t1
A

t2
A

t2
A

t1
A

≥ 
 

increase, but cannot be smaller than the one determined by VOmin.

Thus holds.

Lemma 2

Consider an MLO, VOmin. Let be the output evaluation
times for all the LBs under VOmin. Let VO be a non-MLO and

 be the output ready times for VO. Then .
Proof
Let us assume without any loss of generality, that the arrival times
of all primary inputs for the two orderings are same and remain
unchanged. Starting from the primary inputs (logic level 0), we
levelize the circuit such that the logic level of any LB is 1 more
than that of its input at the highest level. This process continues till
the primary outputs are reached. For level 0 LBs having all pri-
mary inputs, for any variable ordering VO not equal to VOmin, the
output evaluation time either remains the same or increases
according to Lemma 1 and (1). Now consider an LB A at a higher
level which has at least one fanin LB. If the arrival times of all the
input variables to A increase, then it is easy to see that the output
evaluation time of the LB will increase whatever may be the order-
ing inside the LB. Similarly if the arrival times of all the input vari-
ables remain the same for the new ordering VO, any ordering of
variables within the LB A which is not MLO, can only increase the
output evaluation time of this LB (Lemma 1 and formula (1)).
Now consider the case where the arrival times of some inputs of A
increase (procedures 1 and 2). If the arrival time of an element i in
a particular position in the sorted arrival time list for VO, is later
than that of an element in the same position of the list for the order-
ing VOmin, then the output evaluation time of the LB can only

increase. Even if the ith variable’s arrival time does not increase
from its value for VOmin in the new ordering, due to the increase of
the arrival time(s) of any previous variable(s) in the list, the LBs
output evaluation time will increase. Hence at the end of the evalu-
ation for all LBs, the latest arrival time of all the LBs will either
stay the same for the ordering VO as it was for VOmin, or increase;
however it can never decrease.

Lemma 3
The cij values for all variables in the supports of all LBs sum up to
a constant value whatever may be the variable ordering.
Proof
For an LB with n inputs (v1j, v2j, v3j, ..., vnj), the corresponding cij
values are (1,2,3,...n). Thus, whatever may be the variable ordering
in any LB with n inputs, ,which is a constant for

a given decomposition. Since the number of LBs also remain
unchanged for different reorderings, the summations of cij values
over all LB inputs is a constant.

We now state the following theorems based on Lemmas 1, 2 and 3.

Theorem 1
Lmin determined by applying the MLO in the LBs is a global
achievable minimum latency for the given decomposition and
placement of the Wave Steered netlist.
Proof
The proof follows from Lemma 1 and Lemma 2. The latency of a
circuit is determined by the output evaluation times of its LBs at
the highest logic level, the outputs of which are the primary out-
puts of the circuit. Since the previous lemmas state that the output

evaluation times of LBs can never be improved from that achieved
by an MLO by any other variable ordering, Lmin as obtained by
MLO of variables (and hence LBs) is the global achievable mini-
mum latency for the decomposed and placed Wave Steered circuit.

Theorem 2
The latch count in a Wave Steered circuit is minimized by an MLO
for a Shared-Latch routing topology.
Proof
Each path in a Wave Steered circuit from a primary input to a pri-
mary output consists of alternating wires and LBs. We introduce a
graph representation of a Wave Steered circuit wherein all LB
inputs and outputs, including primary inputs and primary outputs
are represented by nodes. There are edges connecting the outputs
of LBs to the corresponding fanout LB inputs and those that con-
nect the inputs of LBs to their outputs. Let us denote the former
edges as wire edges. The latter edges will be called virtual edges.
The delay associated with a virtual edge will be the ‘cij’ value of
the corresponding variable, and that with a wire edge will be the
number of latches on the interconnect. Thus a path will have alter-
nating wire and virtual edges. Whatever may be the variable order-
ing, the graph representations of a Wave Steered circuit will
always be isomorphic, and all paths in a given representation will
have the same delay as obtained by summing up their wire and vir-
tual edge delays.
 According to Lemma 2, for any non-MLO, the output evaluation
times of the LBs in a Wave Steered circuit do not decrease from
those obtained by an MLO schedule. Let ∆ be the increase in the
arrival time of a primary output of the circuit for a non-MLO
schedule, over the MLO one. Since the delays of all paths to any of
the primary outputs are equal, this means that delays of all paths to
this primary output increase by a similar amount of ∆. This
increase of ∆ in the path delays can occur due to two factors: (i) an
increase in the delay of virtual edges and (ii) an increase in the
delay of wire edges. However, the summation of the delays con-
tributed by the virtual edges in the circuit remains constant for any
variable ordering (Lemma 3). This implies that the ∆ increases in
the path delays are contributed solely by increases in the delay of
wire edges in all the paths. This translates into an increase in the
total number of latches in the circuit. Hence, we can say that any
non-MLO cannot reduce the latch count from that obtained by an
MLO.

Note: Not all MLO’s may achieve the minimum number of latches
in the Wave Steered circuit.

6. ILP Formulation for Latency-Latch Opti-
mal Variable Ordering

Theorems 1 and 2 form the basis of solving the problem stated
in Section 4. Starting with an initial MLO that achieves Lmin but
not neccesarily the minimum number of latches, we group all LB
input variables according to their arrival times, and find tight

t2
A

t1
A≥()

tb
A{ }

tb
B{ } b tb

B
tb
A≥()∀

ci j
i

∑ n
2
--- n 1+()=

a,b
c

d

0
1
2
3
4
5

arrival times

global starting point (level 0 in LB)

[a,b,c] can be reordered amongst themselves starting at position 2
[d] cannot be reordered.
[a,b,c] = [2,4] where 2 is the Lower position bound
 and 4 is the Upper position bound.
[d] = [5,5]

Figure 5: Upper Lower Bounds

Timeline

Upper and Lower bounds of application times of variables in these
groups, such that the LB output evaluation times remain
unchanged. Figure 5 shows an example. In this example, signals a
and b arrive at time 0, signal c arrives at time 1 while signal d
arrives at time 5. Since the variables have to be scheduled in con-
secutive levels to satisfy the Wave Steering without stalling condi-
tion, signals a,b and c are delayed (d cannot be scheduled earlier
than it arrives) such that they occupy positions 2,3 and 4, though
not in any particular order. Now the problem becomes one of reor-
dering a,b and c. We derive an Upper(Up) and Lower(Low) appli-
cation time bound on each group of variables. Hence [a,b,c] = [2,4]
where time 2 is the earliest that one of these variables can be
applied and time 4 is the latest that one of them can be applied,
without changing the latency. [d] = [5,5] since it has no flexibility
of reordering. In forming the ILP constraints, we note that the total
number of latches in the net si with sinks in {j} is given by:
 yi = Maximum(xij) (2)
where xij is the number of latches between any source i - sink j pair
in a net. We define wij as an integer label associated with each vari-
able vij (where i is the source of a net and j is one of the sink LBs)
which represents the relative change in vij’s position after reorder-
ing. Each variable in a LB has one such wij label and depends on
the change in level from some previous ordering. Figure 6 shows
the different wij values for the example in Figure 5 can take. The

value of this label can be negative (reordered to a lower level),
positive (reordered to a higher level) or zero (no change in level
after reordering). All wij’s are bounded by (Lowij - pij) and (Upij -
pij) where pij is the initial modified arrival time of vij in a LB. Note
that the modified arrival time of a variable vij is given by (tij+ηij).
Since the Up and Low bounds use the global circuit timeline as a
reference point, we need to subtract the pij values from these
bounds to make the wij labels relative to the individual LB’s time-
line. The procedure for finding these tight Up and Low bounds is
shown in Figure 7.

Hence, our ILP is: Minimize

subject to:

The objective function aims to minimize the total number of
latches in the Wave Steered circuit. The first constraint imposes
strict upper and lower bounds on each variable in all LBs - this
essentially keeps Lmin from changing and ensures that the final
ordering is indeed an MLO. The second constraint says that each
variable can only be assigned a single level (i.e. two or more vari-
ables cannot collapse in the same level). The third constraint gives
the relationship between the number of latches on a net segment
after reordering, the wij’s of the sink LB and the original number of

latches on this particular segment. Note that since we use a 2-phase
negative edge triggered clocking scheme, an increase by 2 levels of
the application of a variable vij only increases the number of
latches by 1. Constraint (iii) says that total latches on a net i is
greater than or equal to the total latches on a particular source-sink
net segment after reordering. This is true in our Shared-Latch net
topology. During our ILP formulation, we ignore those variables
that have equal Up and Low bounds since they have no reordering
flexibility. This condition reduces the complexity of our ILP.

Theorem 3
The latch reduction obtained by restricting the variable application
times between the specific Up and Low bounds is not inferior to
one that considers unrestricted variable application times, in an
MLO scheduled circuit with Shared-Latch synthesized nets.
Proof
For any LB, certain variables may have overlapping application
time intervals as found using procedure 3. Let us denote these vari-
ables as [vi]. If any reordering inserts a variable vj in [vi] such that
its application time interval does not overlap with those of other
variables in [vi], then it means that either (i) the arrival time tj of vj
is later than the latest possible application times of all the other
variables that were there in [vi], or (ii) the latest valid application
time of vj is smaller than the earliest arriving variable that was
already there in [vi]. In either case a late arriving input will be
ordered before an earlier arriving one and we need to re-evaluate
the output evaluation time of the LB using procedure 1. However,
the output evaluation time of the LB under the new ordering can
only increase from that which can be achieved if the list in the pro-
cedure 1 was to remain sorted. According to Theorem 2, such an
ordering would end up increasing the latch count in the circuit, and
hence it would not be considered by any optimizing method. Thus
the optimum latch count solution lies among the orderings that are
done within mutually exclusive groups of inputs having overlap-
ping application time intervals.

c

b

a

d

1

2

3
4

Final Ordering

a

b

c

d

1

2

3
4

Initial Ordering

swap
waj = +2

wbj = 0

wcj = -2

0
1
2
3
4
5

Timeline
wdj = 0

 Figure 6: wij calculation

LB j

F yi
i

∑=

LB wij Lowij pij–() wij Upij pij–()≤ ≤∀∀ (i)

LB wij cij wkj ckj+≠+()∀ (ii)

i j yi

wij
2

------- xij+ 
 ≥∀∀ (iii)

 procedure 3: derive variable application times
1 call procedures 1 and 2;
2 global-time-pointer = latest_modified_arrival_time;
3 group inputs with same arrival times;
4 L = list of input groups sorted in decreasing order of arrival times;
5 k = 1; /* starting with the first element of L */
6 while Lk in L {

7 iList = { };
8 do {

9 ;
10 if (k < |L|) {k = k + 1;}
11 else {break;}

12 } while ((global-time-pointer - tk-1 - + 1) > 0)

13 for every k in iList {
14 for every vij in Lk {
15 lower-bound of vij = max(tij, (global-time-pointer -

 + 1));

16 upper-bound of vij = global-time-pointer;
17 }
18 }
19 maxk = max(iList);
20 global-time-pointer = tmaxk - 1;

 21 }

∅

iList iList k∪=

Lm

m ilist∈
∑

Lm

m ilist∈
∑

Figure 7: Procedure Derive Bounds

7. Experimental Results
We tested our ILP formulation on two kinds of benchmarks--

MCNC benchmarks(with no feedback loops) and 2 array multipli-
ers. All circuits were decomposed into LBs of heights of up to 8
levels and placed using a commercial placer. We then calculated

Lmin for each circuit using formula (1) based on the signal arrival
times. For this ordering, we generated and fed the ILP constraints
to a commercial ILP solver. In Table 1, we compare our ILP latch
count results to those obtained through: 1) a random ordering, 2)
an MLO for the given placement and decomposition and 3) an
ordering (NoSLS) in which no soft latches are shared on any net.
Columns 1 and 2 show the circuits and the number of LBs of vary-
ing heights upto level 8. Column 3 shows the number of latches in
a random variable ordering. Column 4 shows the latch count from
an MLO. The next column(NoSLS) shows the total latch count
obtained from the ILP solver when we do not share any soft latches
on a net (i.e. there is special skewing circuitry inside each sink
LB). This latch count can be reduced by 18.6% if we use the
Shared-Latch topology. The final latch count obtained from the
ILP solver for the Shared-Latch topology is in the sixth col-
umn(ffmin). This latch count is obtained for an MLO different from
the MLO in Column 4. All these numbers are for a clock period of
500 MHz in 0.25µm CMOS technology. The seventh column
shows the minimum circuit latency Lmin for the obtained MLO.
The final column shows the relative increase in latency in the
Wave Steered design style over a commercial Standard Cell(SC)
library-mapped and timing-optimized circuits. This increase in
latency is more a factor of decomposition and placement rather
than a weakness in the Wave Steering design methodology. The
average throughput for these unpipelined SC circuits is 53.3 MHz
which is 10 times slower than the Wave Steered circuits. We
observe that an MLO is able to reduce the latch count by 17.2%
over a random ordering. This is reduced by another 19.3% by
using our ILP formulation(column 6). The results also indicate that
we achieve throughputs of 500 MHz at the cost of 2.6 times
increase in latency over unpipelined non Wave Steered SC circuits.
By further increasing the clock period of our Wave Steered circuits
(upto 833 MHz in 0.25µm CMOS technology), we can trade off a
higher latency for even higher throughput. This ability to choose
the clock period is an attractive feature of the Wave Steered meth-
odology.

8. Conclusions and Future Work
We have presented an efficient solution for latency and latch

count minimization for Wave Steered circuits and have provided
the theoretical bases. We demonstrate the necessary conditions for
latency minimization and show that for the same clock period, we
can reduce the total latch count by as much as 33.2% over a ran-
domly ordered Wave Steered circuit. A lower latch count, without
compromising the circuit throughput, makes it easier to synthesize
the clock trees and save the total dynamic power consumption at
the same frequency of circuit operation. Any placement tool which
ensures that all sink LBs of all nets are placed locally amongst
themselves, can benefit from the optimality of our results obtained
using the Shared-Latch net topology. Currently, we are looking
into topology generation and feed-forward decomposition issues.

9. Acknowledgment
This work was supported in part by the NSF grant CCR 9811528
and in part by California MICRO program through Xilinx.

10. References
[1] R.E. Bryant, “Graph-based Algorithms for Boolean functions
manipulation”, IEEE Trans. Computers, Vol. C-35, pp. 677-691,
Aug. 1986.
[2] P. Buch, A. Narayan, A.R. Newton, A. Sangiovanni-Vincen-
telli, “Logic Synthesis for Large Pass Transistor Circuits”, ICCAD
‘97, November 1997.
[3] J. Grodstein, E. Lehman, H. Harkness, H. Touati, B. Grund-
mann, “Optimal latch mapping and retiming within a tree”, proc.
IEEE/ACM International Conference on Computer-Aided Design,
1994. pp.242-245
[4] C.E. Leiserson, J.B. Saxe, “Retiming Synchronous Circuitry”,
Algorithmica, (1991) 6:5-35.
[5] L. Macchiarulo, S.M. Shu, M. Marek-Sadowska, “Wave
Steered FSMs”, proc. DATE 2000, pp.270-276.
[6] L. Macchiarulo, M. Marek-Sadowska, “Wave-Steering One-hot
Encoded FSMs”, proc. 37th Design Automation Conference, June
2000, pp. 357-360.
[7] N. Maheshwari, S.S. Sapatnekar, “Efficient Retiming of Large
Circuits”, IEEE Transactions on VLSI, Vol. 6, No.1, pp.74-83,
March 1998.
[8] S.Malik et al, “Performance optimization of pipelined logic cir-
cuits using peripheral retiming and resynthesis”, IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and
Systems, vol.12, (no.5), May 1993. p.568-78
[9] A. Mukherjee, R. Sudhakar, M.Marek-Sadowska, S.I. Long,
“Wave Steering in YADDs: A Novel Non-iterative Synthesis and
Layout Technique”, Proc. Design Automation Conference ‘99, pp
466-471.
[10] A. Mukherjee, M. Marek-Sadowska, S.I. Long,“Wave Pipe-
lining YADDs- A Feasibility Study”, Proc. IEEE Custom Inte-
grated Circuits Conference, ‘99, pp 559-562.
[11] A. Singh, L. Macchiarulo, A. Mukherjee, M. Marek-Sad-
owska, “A Novel High-Throughput FPGA Architecture”, Eighth
ACM International Symposium on FPGAs,pp. 22-27, February
2000.
[12] A. Singh, A. Mukherjee, M. Marek-Sadowska, “Interconnect
Pipelining in a Throughput Intensive FPGA Architecture”, proc.
Ninth ACM International Symposium on FPGAs,pp.153-160, Feb-
ruary 2001.

Table 1: Experimental Results
Circuit LBs Random MLO NoSLS ffmin Lmin(ns)) SC

C6288 449 1844 1605 1939 1058 50 1.45
C3540 398 1444 1196 1024 668 28 2.39
C880 158 398 313 281 273 20 2.49
C1908 123 525 421 451 326 24 2.47
C7552 604 4471 3827 3885 3375 36 3.87
C2670 286 3388 3218 3172 3073 28 4.0
C432 119 283 181 157 131 20 2.32
alu2 355 731 455 339 293 26 3.42
alu4 584 1387 858 681 583 46 4.5
dalu 254 871 714 757 539 20 2.28
8bm 71 31 18 11 11 40 1.2
16bm 271 145 43 32 26 80 1.2
Avg. 306 1293.2 1070.7 1060.8 863.0 34.83 2.6

	Main
	DAC01
	Front Matter
	Table of Contents
	Session Index
	Author Index

