
Technology Mapping for SOI Domino Logic
Incorporating Solutions for the Parasitic Bipolar Effect �

Srirang K. Karandikar
Department of Electrical and Computer

Engineering,
University of Minnesota.

srirang@ece.umn.edu

Sachin S. Sapatnekar
Department of Electrical and Computer

Engineering,
University of Minnesota.

sachin@ece.umn.edu

ABSTRACT
We present a technology mapping algorithm for implementing a
random logic gate network in domino logic. The target technology
of implementation is Silicon on Insulator (SOI). SOI devices ex-
hibit an effect known as Parasitic Bipolar Effect (PBE), which can
lead to incorrect logic values in the circuit. Our algorithm solves
the technology mapping problem by permitting several transforma-
tions during the mapping process in order to avoid the PBE, such as
transistor reordering, altering the way transistors are organized into
gates, and adding pmos discharge transistors. We minimize the to-
tal cost of implementation, which includes the discharge transistors
required for correct functioning. Our algorithm generates solutions
that reduce the number of discharge transistors needed by 44.23%,
and reduces the size of the final solution by 11.66% on average.

1. INTRODUCTION
As the scaling of bulk CMOS proceeds along the road map, in-

terest in SOI as an alternative technology has increased. Manufac-
turing processes have recently matured enough to allow large cir-
cuit implementations in SOI at acceptable defect levels. However,
current algorithms used for implementing circuits in bulk CMOS
are inadequate for SOI. The best approaches and traditional de-
sign techniques from bulk CMOS could be disastrous if applied
to SOI. An example is the use of precharge transistors in bulk
CMOS, to offset the charge sharing effect. If these are used in SOI,
we may obtain circuits that will not function correctly. Current
EDA techniques too do not adequately address the needs of SOI
design. There is a requirement for new algorithms and tools tar-
geted towards SOI designs. Simply modifying existing algorithms
and adding post-processing steps leads to solutions that are sub-
optimal. This paper address the technology mapping problem in
the context of SOI. We present an algorithm that maps an arbitrary
2-input logic gate network to domino logic eliminating the “Par-
asitic Bipolar Effect” (PBE) by applying transformations such as
reordering transistor stacks in the gate, altering the structure of the

�

This research was supported in part by the SRC under contract 99
TJ-692

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2001, June 18-22, 2001, Las Vegas, Nevada, USA.
Copyright 2001 ACM 1-58113-297-2/01/0006 ...$5.00.

gates to reduce their susceptibility to PBE, and inserting pmos pre-
discharge transistors at appropriate points in the circuit. In doing
so, the algorithm minimizes the cost of this implementation: for
example, for an area objective, it minimizes the total number of
transistors, including pre-discharge transistors. The techniques that
we use to control the PBE operate by ensuring that the body voltage
of the SOI device never becomes very high, so that PBE is never
triggered. This yields an added side benefit - it is well known that
SOI circuits exhibit timing hysteresis due to variations in the body
voltage. Hence, in narrowing the range of permissible voltages for
the body (to reduce the PBE), we make the timing behavior of the
circuit more predictable.

This paper is organized as follows. We briefly introduce SOI
and domino logic, and present problems typical to SOI implemen-
tations, with emphasis on techniques used for overcoming the PBE.
We then present an algorithm that performs the technology map-
ping taking the PBE into consideration, and show the effectiveness
of this algorithm in the results section. We conclude with directions
for future work.

2. BACKGROUND

2.1 Silicon-on-Insulator
SOI has long been used in a variety of fields, such as radiation-

hardened and high-voltage applications [1][2]. Circuits implemented
in SOI have attractive properties as compared to bulk CMOS, such
as reduced source- and drain-substrate capacitances, no body ef-
fect in series stacks of transistors and suitability for reduced Vdd
operation for given performance [3][4]. Due to reduced capaci-
tances, SOI devices consume less power. Since transistors are iso-
lated from each other by an insulator, they require smaller area. In
spite of being smaller, faster and consuming less power than bulk
CMOS, SOI has not found widespread use in the VLSI community
until recently. This has been due to the rapid progress and scaling
of bulk CMOS technology. However, recent advances in manufac-
turing processes have led to a renewed interest in SOI. Increased
understanding of how SOI devices behave, and possible solutions
to their quirks has lead to a wider acceptance of SOI in the VLSI
community. A number of high end microprocessor designs have re-
cently been implemented in SOI, e.g. HP-PA 8700 [5], IBM Power
PC [6][7][8], and others [9][10].

The manufacturing process of SOI is very similar to that of bulk
CMOS. The preliminary step in SOI fabrication is to implant a
layer of silicon dioxide beneath the surface of the silicon wafer.
This is the “Insulator” in Silicon-on-Insulator. Transistors are cre-
ated by masking and doping exposed regions on the layer of silicon
above the silicon dioxide. Once transistors are fabricated in this

manner, they are isolated from other devices by another layer of
silicon dioxide. Due to this structure, the bodies of individual tran-
sistors are electrically isolated from the rest of the circuit, unlike
bulk CMOS circuits where the body is identical to the substrate or
well, which is connected to a supply node. Hence, the body poten-
tial in SOI is free to seek its own level, and is determined to a large
extent by the voltage levels at the source and drain of the transis-
tor, due to leakage currents. Changes in the gate voltage also affect
the body potential due to capacitive coupling. Thus, if the gate is
held low and drain and source are at a logic high for an extended
period of time, charge accumulates in the body due to leakage cur-
rent and impact ionization [4]. This causes the body potential to
increase. This variance in body voltage is the main source of prob-
lems associated with SOI. The change in the body voltage results in
different switching speeds at different time instants. Also, switch-
ing speeds across a circuit can vary due to different devices having
different body voltages. Another problem that a high body voltage
can cause is called the Parasitic Bipolar Effect (PBE), described in
more detail in section 3.

2.2 Domino Logic
Domino logic is a favored approach for implementing timing

critical circuits due to their high performance. The basic structure
of a domino gate is as shown in figure 1 (without the p-discharge
transistor). During precharge, the dynamic node is charged to a
high logic value, and the output of the gate is set to logic zero.
During the evaluate phase the n-clock transistor switches on, and
depending on the inputs to the pull down network, the dynamic
node is either discharged or retains its charge. If the dynamic node
switches, the output of the gate goes to a logic high value. OR logic
functionality is obtained in domino by connecting n-transistors in
parallel in the pull down network. Similarly, AND functionality
can be obtained by connecting the n-transistors in series. More
complicated logic operations are obtained by combining these ba-
sic operations. The circuit shown in figure 1 implements the logic
function

�
A � B � C ��� D.

Note that the n-clock transistor shown in the figure is only re-
quired for domino gates connected to primary inputs. The outputs
of domino gates change only during evaluate, during precharge they
are held low. Hence, any n-transistors driven by these outputs will
be off during precharge. For a domino gate, this means that if its
inputs are coming from another domino gate, there is no need for
an n-clock transistor. Such a configuration is sometimes referred to
as footless domino.

3. PARASITIC BIPOLAR EFFECT IN SOI

3.1 Issues with SOI Implementations
The advantages of SOI listed in the previous section come at a

cost. Prominent among these are the hysteretic Vt variation [12],
in which the behavior of a transistor varies according to its pre-
vious switching history. Another serious problem associated with
SOI devices is the Parasitic Bipolar Effect (PBE) [11][14], which
is described in more detail in the following sections.

3.2 Parasitic Bipolar Effect
PBE occurs in certain circuit topologies and switching patterns,

such as stack OR-AND structures. The topology typically involves
an “off” transistor situated high in the stack, with the source and
drain voltages in the “High” state. Over a period, this causes the
body voltage to charge high. When the source is subsequently
pulled down, either by the clocked evaluation transistor in dynamic
circuits or by an input signal, a large overdrive is developed across

the body-source junction, causing bipolar current to flow through
the lateral parasitic bipolar transistor (the emitter and collector of
the parasitic transistor correspond to the drain and source of the
FET, while the base corresponds to the body). The parasitic bipolar
current and the FET current (caused by noise and aggravated by the
low Vt) result in a loss of charge on the dynamic node.

This can be illustrated by an example from [14]. For the circuit
shown in figure 1(without the p-discharge transistor), consider a
steady state condition with inputs A = 1, B = 0, C = 0 and D = 0.
Transistor A is on, and the other n-transistors in the pulldown logic
network are off. Hence, as the dynamic node charges to a high
value during precharge, node 1 is charged to a high voltage level.
Recall that transistors B and C are off at this point. Under this set
of conditions, the bodies of transistors A, B and C charge to a high
value. Now if A switches low, the potential at node 1 remains at its
high logic value since transistor D is off. Moreover, the switching
event on A sets the body voltage for device A to be low (due to
strong capacitive coupling between the body and gate of A), but
leaves the body voltages of B and C high. In the evaluate phase, if
D is switched on (with A, B and C off), node 1 is suddenly pulled
down. This causes the parasitic bipolar transistor in devices B and
C to switch on - the base and collector of the parasitic transistor are
high while the emitter has been pulled low - and a large current can
flow through transistors B and C. If this current is large enough,
it can pull voltage at the dynamic node to a level low enough to
switch the output of the gate to a high value. Thus, even though the
output node should have evaluated low, it ends up as a high. In this
manner, the PBE can result in a wrong evaluation if not properly
accounted for in an SOI implementation. The voltage level of the
dynamic node will eventually be brought to its correct value by
the keeper, but this is liable to take time and may cause erroneous
circuit behavior in the interim.

3.3 Solutions to the PBE
There are a several solutions for handling the PBE, such as sizing

up the keeper pmos device, adding body contacts to some devices
in the circuit, breaking parallel stacks by transistor replication, re-
ordering parallel stacks to reduce susceptibility to PBE, and predis-
charging intermediate nodes.

Stacks of transistors in a gate may be reordered to reduce its
susceptibility to PBE. For the gate in figure 1, if the parallel stack
of transistors A, B and C is moved to the bottom of the gate, so
that the sources of all three transistors are connected to ground,
it will not be possible to excite PBE. This approach exploits the
reduced charge sharing effect and reduced delay dependency on
stack ordering in SOI technology. However, this works only if there
is one parallel stack per gate. If this condition is not met, it may be
possible to remap Boolean logic to ensure that each gate contains
no more than one parallel stack, which can then be reordered within
the gate to connect it to ground.

Intermediate nodes in a stack may be predischarged in every
clock cycle. In figure 1, a clock-driven p-discharge transistor has
been added to the circuit. Such a transistor can be used to con-
nect intermediate points in the circuit (such as node 1) to ground.
Thus, during every precharge cycle these intermediate nodes are
discharged, and the bodies of transistors in the pulldown network
are not permitted to charge to a high voltage level. The drawback
of using p-discharge transistors is the additional load on the clock
network.

One approach to performing optimizations such as those men-
tioned above is to start with the original design in bulk silicon, an-
alyze it to identify potential sources of PBE, and apply the above
transformations to eliminate them. The main criticism of such an

Dynamic Node

Clk

A B C

Output

Output
Inverter

 transistor
p−clock

D

 transistor
n−clockp−discharge

 transistor

Node 1

Figure 1: Predischarge Transistor that Negates PBE

approach is that the solutions obtained are local in nature. For ex-
ample, while a particular mapping may be optimal for bulk CMOS,
it becomes non-optimal if it requires a large number of p-discharge
transistors. A better approach would be to perform the mapping
from logic gates to the transistor level, keeping the requirement of
p-discharge transistors in mind. In section 5, we propose an algo-
rithm that performs such a mapping.

In this work, we avoid the transformations of sizing the keeper,
adding body contacts and splitting parallel stacks using duplication,
since they can cause significant cost increases [1], and instead, fo-
cus on the rest. We perform our procedure at the time of synthesis,
prior to circuit sizing, and note that the transformation that sizes
the keeper is more appropriately applied after or during the transis-
tor sizing step. In applying the remaining transformations, we will
penalize the addition of clock-connected transistors and additional
transistors required due to gate reorganization, since they represent
a cost-increasing transformation. Reordering changes delay, but
since diffusion capacitances are relatively low, we ignore them as a
first order approximation.

4. TECHNOLOGY MAPPING FOR DOMINO
LOGIC

Synthesis of domino circuits is more complicated than that of
static circuits. The added complexity is due to the monotonic nature
of domino logic which forces it to implement only non-inverting
functions. Therefore, domino logic can only be mapped to a net-
work of non-inverting functions, where needed logic inversions
must be performed at either primary inputs and/or primary outputs.
Any random logic network can be transformed into a network of
non-inverting functions by finding a unate network representation.

We use a simple bubble pushing algorithm to generate the unate
network. We simply attempt to push inverters as far back as possi-
ble (i.e., towards the primary inputs), by applying DeMorgan’s laws
where necessary. If inverters cannot be pushed through a gate, e.g.,
when both positive and negative phases of the signal are required,
logic duplication is necessary. After a unate network representa-
tion has been created, the network can then be technology mapped
to domino gates. Note that starting from an initial decomposed net-
work consisting of 2-input AND-OR gates and inverters, the unate
network thus obtained will only consist of 2-input AND-OR gates,
since all inverters have been removed in the unating process.

We now briefly present a library free technology mapping algo-

rithm for domino logic initially presented in [13]. A set of tuples of�
W � H � C � (width, height and cost) are associated with each logic

gate of the input network. The cost here may be the number of
transistors, the number of logic levels, or delay. The values of
maximum gate width and height determine the number of tuples
associated with each gate. The input network of 2-input AND-OR
gates is traversed from primary inputs to primary outputs, and sub-
solutions for each gate for all possible configurations of

�
W � H �

are calculated based on the sub-solutions of its inputs. Note that,
depending on the inputs, a gate may not have all combinations of�
W � H � and in practice, only a fraction of Wmax � Hmax tuples are

associated with each gate. Once all valid tuples for a gate have
been calculated, the

�
1, 1 � tuple is constructed by selecting the best

(lowest cost) sub-solution for that logic gate, and converting this
partial structure into a domino gate by adding the clock transistors,
the output inverter and a keeper transistor. Thus, the cost of a

�
1,

1 � configuration is the lowest cost among all other configurations
plus 5. The basic operations for combining input tuples to form the
tuples of the current gate are AND and OR. These operations are
as follows. An AND operation requires a series connection of in-
puts. Hence, the

�
Wl � Hl � and

�
Wr � Hr � solutions of the inputs are

combined to form the
�
max

�
Wl � Wr ��� Hl � Hr � solution. Similarly,�

Wl � Hl � and
�
Wr � Hr � solutions of the inputs can be combined as�

Wl � Wr � max
�
Hl � Hr ��� for an OR operation.

This algorithm guarantees optimal-cost solutions. The best sub-
solution of an input node may not necessarily end up as part of
the final solution. Thus, local optimal solutions are avoided if they
are not globally optimal. Finally, at the primary outputs, the best
solution in terms of the cost function is selected. This specifies a
domino circuit that implements the input network with minimum
cost.

{2, 2, 4}
{2, 2, 10}

{1, 1, 9}

{1, 2, 16}

{2, 1, 2}

{1, 1, 7}

Figure 2: Technology Mapping for Domino Logic

This algorithm is easily illustrated with the help of an example.
Consider the circuit in figure 2, and assume that the maximum num-
ber of transistors allowed in series and in parallel are 4. This simple
circuit consists of 2 AND gates and 1 OR gate. The AND gates are
driven by the primary inputs, which have only one possible tuple
associated with them :

�
1, 1, 1 � . These can be combined in an

AND operation to form the tuple
�
2, 1, 2 � . The transistor structure

associated with this tuple is as shown. Since there is only one tu-
ple for this gate, it is used to construct the tuple corresponding to
W � 1 � H � 1,

�
1 � 1 � 7 � . The two solutions for each of the AND

gates can be combined in 4 possible ways, but due to symmetry
we have only three unique combinations -

�
1, 2, 16 � ,

�
2, 2, 10 �

(repeated twice) and
�
2, 2, 4 � . Note that when a gate from a in-

put node is used (corresponding to the
�
1, 1 � solution), an extra

transistor is needed in the next gate. For the OR gate, the
�
2, 2 �

solution is clearly the best, and it is used to form the corresponding�
1, 1 � solution, with a cost of 9.

5. AN ALGORITHM FOR SOI MAPPING
We follow the basic algorithmic framework of [13], presented in

brief in the previous section with modifications to the cost func-
tion calculation in order to properly account for PBE. As before,
each gate in the input network is associated with a set of tuples
corresponding to one

�
W � H � solution of the subtree rooted at the

current node. In addition to the cost associated with each tuple,
we also store pdis, the number of potential discharge transistors re-
quired by the configuration, and a Boolean variable parb, which
tracks whether or not a given tuple has a parallel branch at the bot-
tom of its structure. As mentioned in the previous section, the so-
lutions of the input gates are combined to form the solutions for
the current gate. In case of multiple solutions being available, the
lowest cost solution is selected. Ties for the lowest cost solutions
are resolved by the pdis values.

clk

A

B

C

clk

Potential Discharge Pt

Potential Discharge Pt

B

A

C

F

E

D

Figure 3: Potential Discharge Points

We now explain the concepts of pdis and parb, which are cen-
tral to our algorithm. The parameter pdis is used to account for the
discharge transistors that will have to be added to eliminate PBE.
From the explanation of section 3.2, we see that PBE can be excited
only in the presence of one or more parallel stacks. This provides a
path for the bottom of the stack to get charged to a high value (the
top of the stack is charged via a path from the precharge transistor).
Additionally, at least one transistor is required beneath a parallel
stack to excite the PBE; when this transistor switches on, the com-
mon node for the stack will be pulled low, possibly resulting in
the PBE. Hence, the bottom of a parallel stack is one potential dis-
charge point. The parameter parb keeps track of whether a given
intermediate structure has a parallel branch at the bottom or not. In
the final solution, if this point is connected to ground, no discharge
transistors are required. On the other hand if it is not connected
to ground, all intermediate points as specified by pdis will have to
be discharged. Hence, in an OR operation, we set parb to true to
account for the presence of a parallel stack. For an AND operation,
it is set to the value of the tuple being placed at the bottom of the
stack. In addition, we conditionally increment pdis by one for an
AND operation, since the intermediate point in a series stack may
have to be discharged. In figure 3(a), the series connection of A � B
has introduced an intermediate discharge point. If A � B were con-
verted to a domino gate, or combined with other devices in series,
there would be no need to discharge this point. However, if it is
connected in parallel with another configuration (as shown in the
figure), this point becomes a potential discharge point for the OR
tuple too - which will have to be discharged if the OR configura-

tion is not connected directly to ground. Intermediate points in OR
structures have to be discharged because of the following possible
scenario. When A = 0, B = C = 1, there is a path form the top of the
stack to the drain of transistor A. The source and drain of transistor
A can now potentially go high, causing the body voltage of A to
increase.

Now consider a more complex case. Let us assume that two
structures of the form shown in figure 3(a) have to be ANDed to-
gether - A � B � C and D � E � F . Each of them has 1 potential
discharge point, at the junction of A and B, and D and E. The AND
operation will introduce one more potential discharge point. How-
ever, when these two parallel stacks are connected in series, the
structure on the top will never be connected to ground. Hence, its
potential discharge points will always need to be discharged by the
addition of p � discharge transistors. In addition, the intermediate
point introduced by the AND operation also has to be discharged.
This is shown in figure 3(b). Hence, for an AND operation with
both inputs having parallel stacks, we perform the following com-
putation (Note that the actual calculation depends on whether both,
only one or neither inputs have parallel stacks):

pdis � pdisbottom;
discharge transistors � pdistop � 1;

cost � costbottom � costtop � discharge transistors ;
parb � parbbottom ;

This leads to another interesting optimization that is used in our
algorithm. Since our aim is to minimize the cost of the imple-
mentation as well as the total number of discharge transistors used,
we can use the information implicit in pdis and parb to determine
which input is on the top in a series connection and which is on
the bottom. If only one input has a parallel branch, we place this
at the bottom, in the assumption that it could potentially be con-
nected to ground. However, if both inputs have parb � � true, i.e.,
both inputs have parallel branches, the tuple order is determined by
pdis. We select the tuple with the larger pdis to be at the bottom
of the stack since this introduces fewer discharge transistors (all of
these calculations are made under the optimistic assumption that
the bottom of this stack could potentially be connected directly to
ground. If this does not happen, the ordering of parallel stacks in
series is irrelevant). Consider the circuit shown in figure 4, wherein
A � B � C is to be ANDed with E. If the structure on the left is used
(with E at the bottom), we have to add two discharge transistors.
However, if the circuit on the right is used (with E on the top, and
the parallel stack on the bottom), we have two potential discharge
points, but no immediate discharge transistors. If this structure is
then connected to ground, the potential discharge points will not
have to be discharged, as explained previously.

A

B

E

C
A

B

E

CPot Dis Pt

Pot Dis Pt

Figure 4: Switching Transistor Stacks, with Potential Dis-
charge Points Highlighte d

For an OR operation, we only need to add the pdis values of the
input tuples, and set the parb parameter to true:

pdis � pdisle f t � pdisright ;
cost � costle f t � costright ;

parb � true;

Note that though the pdis seems to function in an identical man-
ner, for OR and AND structures, their interpretation is quite dif-
ferent. In both cases, pdis refers to the number of points that must
potentially discharged. However, in case of an AND, these points
will have to be discharged only in case of an OR operation, for
OR they will have to be discharged only if the stack is not directly
connected to ground.

�����������
	��������� ���������� �����

for each node n whose inputs have been processed
If n is OR, combine or(inputs) ;
If n is AND, combine and(inputs) ;
If multiple tuples obtained for the same W � H

Select tuple with lowest cost
If costs are equal

Select tuple with lowest pdis

combine or
W � Wle f t � Wright ;
H � max � Hle f t � Hright ;
cost � costle f t � costright ;
pdis � pdisle f t � pdisright ;
parb � true;

combine and
If parble f t ! parbright

top � min � pdisle f t � pdisright ;
bottom � max � pdisle f t � pdisright ;
dis " trans "#� pdistop � 1;
pdis � pdisbottom ;

else if parble f t $ parbright

top � input with � parb �%� f alse ;
bottom � input with � parb �&� true ;
dis " trans "#� 0;
pdis � pdistop � pdisbottom � 1;

else
top � le f t input;
bottom � right input;
dis " trans "#� 0;
pdis � pdistop � pdisbottom � 1;

W � max � Wtop � Wbottom ;
H � Htop � Hbottom;
cost � costtop � costbottom � dis " trans " ;
parb � parbbottom ;

Figure 5: Algorithm for Mapping SOI Circuits

The algorithm is listed in figure 5. We process each node in topo-
logical order, from primary inputs to primary outputs. This ensures
that the inputs of the node being processed have been processed
previously, and the corresponding sub-solutions for the inputs are
available. We then combine the inputs of the node being processed
in functions '�(�)+*�,�-/. (�0 or '1(�)+*+,�-2. 3�-�4 , depending on the func-
tionality of the node.

A final comment on the algorithm is that we need to maintain two
costs for each tuple. The first specifies the optimal cost if the partial
structure is connected to ground, and the second if it is not. At the
time of gate formation, the appropriate value is used in determining
the optimal cost.

6. RESULTS
The algorithm presented in section 5 has been implemented in

C++ and results on ISCAS benchmark circuits are shown in table 1.
In all cases, we chose the maximum width and height of a domino
gate to be 5 and 8 respectively. Such a large value for a domino
gate is valid for SOI due to reduced source and drain capacitances.

We first obtained a regular domino solution for bulk CMOS, and
added p-discharge transistors in a post-processing step. The first
three columns next to each circuit name in table 1 show the cost as-
sociated with this solution: the total number of domino transistors
(#tran), the number of pmos predischarge transistors added (#p-dis)
and their sum, the total number of transistors. The results of apply-
ing algorithm SOI Domino Map of figure 5 to the circuits are pre-
sented in the next three columns. Comparing these two sets of re-
sults, it is clear that though the number of domino logic transistors
required in SOI may be more, this increase is more than compen-
sated by the fewer number of p-discharge transistors needed, thus
saving on the total number of transistors used. As can be seen in
the columns labeled #p-dis Reduction, there is a large decrease in
the number of p-discharge transistors, 44.23% on average. The last
two columns list the reduction in the total number of transistors
required for the implementation. We obtain an average reduction
of 11.66%, even though the number of domino transistors (without
p-discharge) has increased.

We also ran the algorithm without regard to potential discharge
points as before, but added a post-processing step that rearranges
series stacks (generated by AND operations) so as to move parallel
sections with a large number of potential discharge points closer
to ground, and then add the necessary p-discharge transistors. The
reasons for doing this have been discussed in the previous section.
We found an average reduction of 22.5% in the number p-discharge
transistors, as compared to the domino solution. Thus, a simple
reordering of series stacks only delivers half the potential reduction
as compared to our algorithm.

We then applied algorithm SOI Domino Map to the same cir-
cuits assigning a cost for the clock-driven transistors that is k times
the cost of a regular transistor (this includes the clock transistors
along with the p-discharge transistors). The motivation for doing
this is to reduce the load on the clock network. Though we may end
up with a solution that requires a larger number of total transistors,
this could be an acceptable tradeoff since we reduce the number of
transistors connected to the clock network. The effect of including
the cost of the p-clock and n-clock transistors of the gate is to make
gate formation operation more expensive (the cost of the

�
1 � 1 � so-

lution for each tuple makes it less likely to be selected), and the
algorithm prefers to include as many transistors in each domino
gate as possible. Incrementing the cost of the p-discharge transis-
tors, on the other hand, pushes the algorithm towards forming gates
early, so as to avoid the overhead of the p-discharge transistors. As
the results show, our algorithm chooses a path balanced between
these extremes, and as the cost of clock driven transistors is in-
creased, the solutions reduce the number of gates and p-discharge
transistors, along with an increase in the total number of transistors
required for the implementation. The columns labelled #tranclock
is the number of transistors connected to the clock network. This
figure is obtained by adding the number of p-discharge transistors
to the n- and p-clock transistors in the domino gates. The last col-
umn shows the percentage reduction in the number of clock-driven
transistors, on average we reduce this figure by only 5.11%. An
interesting observation is that the number of clock connected tran-
sistors does not change significantly as k is varied.

Table 1: Comparison of Domino Mapping and SOI Domino Mapping
Circuit Domino Map SOI Domino Map #p-dis Reduction #total Reduction

#tran #p � dis total #tran #p � dis total ∆p � dis % ∆total %

mux 91 19 110 72 12 84 7 36.84 26 23.63
cordic 205 11 216 196 10 206 1 9.09 10 4.62
f51m 798 103 901 706 35 741 68 66.02 160 17.75
b9 432 61 493 378 28 406 33 54.09 87 17.63
frg1 278 39 317 233 20 253 19 48.71 64 20.19
c8 321 26 347 295 21 316 5 19.23 31 8.93
9symml 481 68 549 415 39 454 29 42.64 95 17.30
c432 1475 232 1707 1290 145 1435 87 37.50 272 15.93
apex7 776 57 833 708 22 730 35 61.40 103 12.36
x1 803 76 879 721 53 774 23 30.26 105 11.94
t481 1562 67 1629 1507 31 1538 36 53.73 91 5.58
rot 2360 273 2633 2093 155 2248 118 43.22 385 14.62
apex6 2753 237 2990 2518 98 2616 139 58.64 374 12.5
c2670 3252 331 3583 3276 196 3472 135 40.78 111 3.09
k2 3452 81 3533 3355 24 3379 57 70.37 154 4.35
dalu 2146 168 2314 1980 74 2054 94 55.95 260 11.23
c3540 7841 715 8556 7218 474 7692 241 32.13 864 10.09
c5315 5917 503 6420 5804 242 6046 261 51.88 374 5.82
c7552 16548 1333 17881 15766 703 16469 630 47.26 1412 7.89
des 10110 710 10820 9446 533 9979 177 24.93 841 7.72
Average 44.23 11.66

Table 2: Comparison of the Number of Transistors Under Different Weights of pdis
Circuit k = 1 k = 5 %Improvement

#tran #p � dis total #G #tranclock #tran #p � dis total #G #tranclock

z4ml 195 11 206 9 29 259 4 263 11 26 10.34
b9 378 28 406 30 88 422 8 430 35 78 11.36
c8 295 21 316 27 75 307 19 326 26 71 5.33
c432 1290 145 1485 53 251 1720 104 1824 58 220 12.35
x1 721 53 774 56 165 798 31 829 66 163 1.21
c880 1117 62 1179 90 242 1136 61 1197 87 235 2.89
i6 835 0 835 74 148 835 0 835 73 146 1.35
t481 1507 31 1538 128 287 1653 22 1675 125 272 5.23
rot 2093 155 2248 177 509 2398 120 2518 186 492 3.34
apex6 2518 98 2616 179 456 3112 75 3187 186 447 1.97
c2670 3276 196 3472 191 578 3910 160 4070 186 532 7.96
c5315 5804 242 6046 442 1126 6353 220 6573 439 1098 2.48
des 9446 533 9979 711 1955 10543 418 10961 763 1944 0.56

7. CONCLUSION
We have presented an algorithm that maps gates in a logic net-

work to a domino implementation suitable for use in SOI circuits.
As the results in section 6 show, the lowest cost solution for domino
mapping in bulk silicon technology is not necessarily good when
the circuit is to be implemented in SOI. We also show how we can
apply the algorithm by skewing the cost of clock transistors in or-
der to reduce the load on the clock network. A similar approach
can be used to derive a solution with as few gates as possible, by
increasing the relative cost of gate formation.

8. REFERENCES
[1] K. Bernstein and N. J. Rohrer, SOI Circuit Design Concepts,

Kluwer, 2000.
[2] J. B. Kuo and K.-W. Su, CMOS VLSI Engineering

Silicon-on-Insulator (SOI), Kluwer, 1998.
[3] C. T. Chuang and R. Puri, “SOI Digital CMOS VLSI - A

Design Perspective”, in Proc. DAC, 1999.
[4] D. A. Antoniadis, “SOI CMOS as a Mainstream Low-Power

Technology: A Critical Assessment”, in Proc. ISLPED,
1997.

[5] “PA-RISC 8x00 Family of Microprocessors With Focus on
PA-8700”, Hewlett-Packard White Paper, in

http://www.cpus.hp.com/techreports/PA-8700wp.pdf
[6] D. Allen et al, “A 0.2um 1.8V SOI 550MHz 64b PowerPC

Microprocessor with Copper Interconnects”, in Proc. ISSCC,
1999.

[7] D. Allen et al, “Converting a 64b PowerPC Processor from
CMOS Bulk to SOI Technology”, in Proc. DAC, 1999.

[8] T. C. Buchholtz et al, “A 660MHz 64b SOI Processor with
Cu Interconnects”, in Proc. ISSCC, 2000.

[9] Y. W. Kim et al, “A 0.25um 600MHz 1.5V SOI 64b ALPHA
Microprocessor”, in Proc. ISSCC, 1999.

[10] M. Canada et al, “A 580MHz RISC Microprocessor in SOI”,
in Proc. ISSCC, 1999.

[11] C. T. Chuang, “Design Considerations of SOI Digital CMOS
VLSI”, in Proc. IEEE Int. SOI Conf., 1998.

[12] R. Puri and C. T. Chuang, “Histeresis Effect in
Pass-Transistor Based Partially-Depleted SOI CMOS
Circuits”, in Proc. IEEE Int. SOI Conf., 1998.

[13] M. Zhao and S. S. Sapatnekar, “Technology Mapping for
Domino Logic”, in Proc. ICCAD, 1998.

[14] P.-F. Lu et al, “Floating-Body Effects in Partially Depleted
SOI CMOS Circuits”, in IEEE J. Solid-State Circuits, vol.
32, Aug. 1997.

	Main
	DAC01
	Front Matter
	Table of Contents
	Session Index
	Author Index

