
A New Structural Pattern Matching Algorithm for
Technology Mapping �

Min Zhao, Sachin S. Sapatnekar�
Advanced Tools, Motorola Inc., Austin, TX

�Dept. of ECE, University of Minnesota, Minneapolis, MN

ABSTRACT
In this paper, a new structural matching algorithm for tech-
nology mapping is proposed. The algorithm is based on a
key observation that the matches for a node in a subject
Boolean network are related to the matches for its children.
The structural relationships between the library cells are
modeled using a lookup table. The proposed method is fast,
has low memory usage, and is easy to implement. Experi-
mental results show speedups of 20� over Matsunaga's fast
mapping approach, and orders of magnitude over SIS, with
the same or slightly better results, and much lower memory
utilization.

1. INTRODUCTION
Technology mapping is an important step of synthesis.

One of the crucial tasks for technology mapping is the pro-
cess of matching, which tries to determine which cells in
the library may be used to implement a set of nodes in the
subject Boolean network. There are two major approaches
to solving the matching problem: structural matching and
Boolean matching. In this paper, we propose a fast and sim-
ple structural matching algorithm for technology mapping.
Boolean matching algorithms are summarized in [1]. Struc-

tural matching algorithms were originally addressed in [2, 3,
4] and are summarized in [5, 6]. A straightforward method
is to match each pattern at each node of the subject Boolean
network. A more sophisticated approach is to formulate this
matching problem into a string matching problem and to
apply existing string matching algorithms, such as the Aho-
Corasick algorithm [7], to solve the problem. In general,
the subject Boolean networks and library cells are decom-
posed into the same set of the simple functions, called base

functions. One of the main drawbacks of structural map-
ping is that the decomposition of a library cell into base
functions is not unique. There could be numerous decom-
posed patterns for each cell, particularly for gates with a

�This work was supported in part by the Semiconductor
Research Corporation under contract 99-TJ-692

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2001,June 18-22, 2001, Las Vegas, Nevada, USA.
Copyright 2001 ACM 1-58113-297-2/01/0006 ...$5.00.

large number of inputs, and therefore a signi�cant amount
of the total computation during technology mapping is spent
on pattern matching. With the recent trend of using larger
complex gates in a library, the number of patterns increases
dramatically and thus the matching procedure increasingly
becomes computationally expensive. Recently, [8] proposed
a pattern matching method that does not require patterns
to be decomposed. The algorithm uses an implicit pattern
matching procedure and speeds up the matching using iso-
morphism and containment relations between cells.
In this paper, a novel structural matching algorithm is

proposed. The method is simple to implement and eÆcient
in terms of speed and memory. The main contributions of
this work are as follows.

� The algorithm relates the matching of a node to the
matching of its children. Given a node in a subject
network, the valid matches of the current node can be
obtained from the valid matches of its children and the
node type of the current node. This property can be
used to reduce a large number of redundant computa-
tions that exist in the traditional structural matching
methods. Our algorithm improves over the traditional
method by making use of this property. Recently we
have learnt from a reviewer that the similar idea was
discovered independently in [9] for the general problem
of tree pattern matching in computer science. How-
ever, we also handle technology mapping speci�c is-
sues such as the associativity and commutativity of
the logic operators. To the best of our knowledge, the
idea of matching a node by using the matches its chil-
dren has not found prior use in technology mapping
according to the published literature.

� In our method, each canonical structure or substruc-
ture of a library cell that could be represented by
a tree is abstracted into a unique index, called the
pattern index. The structural relationships between
these structures or substructures are modeled into a
lookup table, called the pattern table. In the past,
the relations between patterns have either been ig-
nored, or formed into automata [3, 4, 5] or Contain-
Relation-Graph [8]. On the other hand, our lookup ta-
ble is based on a canonical representation of patterns.
Therefore, the problem associated with the traditional
approaches, where the large number of possible de-
composed patterns results in a signi�cant computation
cost, is overcome by our approach.

Currently, our method is restricted to the library cells that

can be represented in the form of a tree structure and the
cells that can only be represented by a DAG, such as EXOR
and EXNOR, are not considered. The method for handling
the general non-tree structures in DAG mapping using our
method will be discussed in Section 6. In our implemen-
tation, the subject Boolean network and the library cells
are decomposed into the base functions of AND/OR/NOT.
First, we generate the pattern table from a given library;
During the technology mapping procedure, we use this pat-
tern table and perform the matching procedure.

2. PATTERN TABLE GENERATION
The task of pattern table generation is to explore the

structural relationships between cells. Each canonical tree
structure or substructure of a cell is abstracted into a unique
pattern index and the relationships are modeled into the pat-
tern table. The pattern table consists of four parts: AND
table, OR table, isGate array and isInvGate array.

2.1 Pattern index assignment
Given an arbitrary cell that can be represented by a tree

structure, a unique multiple-input AND/OR/NOT tree can
be built. If there are inverting functions in the cell, the
inverters will �rst be pushed to the root node and the re-
maining inverters that are not at the root node are then
pushed to the leaf nodes. By specifying the additional rule
that the type of a node (AND or OR) cannot be the same as
the type of its parents, a one-to-one correspondence between
a cell and its structural tree is formed. In our method, we
assign a unique pattern index to each such a canonical struc-
ture or substructure of a tree. Each pattern index either
represents a cell or a substructure of a tree corresponding
to a cell. Our AND/OR representation is canonical only for
a tree structure, which implies that all inputs to the gate
must be logically independent. In case that the inputs are
logically dependent, such as leaf-DAG[5], the structure is
not, in general, canonical.

2.2 AND/OR table
The AND/OR tables constitute the main parts of the pat-

tern table. They re
ect the fact that each arbitrary tree
structure can be built by applying the AND(OR) operation
to two other tree structures. In the AND(OR) table, both
rows and columns are composed of pattern indices. Each
entry (i; j) in an AND(OR) table is the pattern index of the
tree structure that can be built by applying the AND(OR)
operation to the two tree structures represented by the pat-
tern indices of row i and column j. If such a tree does not
exist in any tree structure or substructure of the cells of the
library, the entry is assigned an invalid value. Each table
is an M �M two dimensional table, where M is number of
the pattern indices. In the ensuing discussion, [x,y,z] will be
used to represent an entry of the pattern table, where x is
a binary variable that shows whether the the entry belongs
to the AND table or the OR table, and y and z are pattern
indices, which de�ne the position of the entry. Physically,
entry [x,y,z] corresponds to a tree whose root node's type is
x and whose two children are y and z. The pattern table is
symmetric due to the symmetric property of the AND and
OR operators.
An example of an AND/OR table is shown in Figure 1,

where pattern index n1(n2) represents the left(right) tree
structure. The composite tree structure is assigned to pat-

tern index n3. Since the AND of tree n1 and tree n2 cre-
ates the tree n3, the entry [AND,n1,n2] is set to n3. Entry
[AND,n2,n2] is an invalid value (denoted as \-" in this pa-
per), since the structure whose root node is AND and two
children are n2 does not exist as a cell or as a substructure
of any cell in the library.

n3

n1
n2

+ +

*

*
AND n1

n1

n2

n2

n3

n3 -

Figure 1: An example of entries of a pattern table

2.3 Decomposition
Although the AND(OR) table is a two-dimensional ta-

ble, the canonical tree structures consist of multiple-input
nodes. Therefore, the root node of the tree we are consider-
ing must be decomposed into two-input nodes to be �t into
this AND(OR) table. Several decomposition schemes are
possible for a given multiple-input node. In our pattern ta-
ble generation algorithm, for each canonical tree labeled by
a pattern index, all decomposition schemes of the root node
of the tree are enumerated and the corresponding elements
are entered into the AND/OR table.

+

+

n2 n3 n4

n1

n5

+

pi * * *

+

+ +

+

+ +

+

+

+

+ +

+

+

+

+

n1 n2 n3 n4 n1 n3 n2 n4 n1 n4 n2 n3 n1 n2 n3

n4

n1 n2 n4

n3

n1 n3 n4

n2

n5 n5 n5 n5 n5 n5

n1 n2 n3 n4

n5

Figure 2: An example of decomposition

This idea can be illustrated by an example in Figure 2,
where all of the decomposed con�gurations of tree n5 are
enumerated. For each decomposed tree, the pattern indices
representing the left and right children are identi�ed, and
then the corresponding entries in the OR table are �lled
with the pattern index of the current tree, n5. In our exam-
ple, there are 7 di�erent decomposition schemes for the root
node of n5, and therefore there are 7 entries �lled with n5 in
OR table. Note that in the case where two or more decom-
posed structures of a given pattern index are isomorphic,
the number of entries would be smaller.

2.4 The other parts of the pattern table
The isGate and isInvGate arrays are used to re
ect the

corresponding relations between a tree structure with a cell.
In general, a library may not be a complete set. As a result,
some of the tree structures identi�ed above may merely be
substructures used to form the other trees but may not be
cells in the library. The isGate array is an M -dimensional
vector that is used to indicate whether the pattern index
representing a tree structure is a cell of a library or not.
As stated earlier, the inverters in the tree structure are

pushed to the root or the leaf nodes of the tree. The M -

dimensional isInvGate vector is used to indicate whether
there is an inverter at the root of a tree or not.

2.5 The algorithm for pattern table generation
The pattern table generation algorithm is shown in Fig-

ure 3. In this algorithm, all the cells in a library are con-
sidered one by one, and the corresponding entries in the
pattern table are �lled. Each tree structure appearing in
the library is assigned a pattern index. The Look up pro-
cedure, described in Figure 4, returns a pattern index for
a given input tree structure, and �lls in the entries of the
AND/OR table. The pattern index of a leaf node is de-
noted as leaf index. A tree with an inverter before a leaf
node is assigned the pattern index inv leaf index. These
are the only two reserved patterns, and all other patterns
are detected by the algorithm. For each two-input decom-
position of the tree, the procedure is invoked recursively to
�ll in the pattern table. If tree T has already been visited
before, the branch at line 6 of Figure 4 is taken and the �eld
Pattern index(T) is returned. If a tree isomorphic to tree
T has been visited somewhere else, only one decomposition
is performed to �nd out the pattern index and the branch
at line 12-13 of Figure 4 is taken. Otherwise, a new pattern
index will be assigned to the tree T and the enumerations of
decomposition schemes between Line 8-14 of Figure 4 will
be performed.

Pattern Table Generation Algorithm
Input: A library
Output: AND table; OR table; isGate array; isInvGate array
1. Initialize each entry of the pattern table with invalid value
2. For each cell of library
3. Form a multiple-input AND/OR/NOT tree T
4. pattern index = Look up(T)
5. isGate[pattern index] = 1
6. If there is inverter at the root node of T
7. isInvGate[pattern index]=1

Figure 3: The pattern table generation algorithm

Procedure Look up(tree T)
Input: An AND/OR/NOT tree
Output: Pattern index of the tree; Entries in the pattern table
Global variable: newIndex(store number of the patterns)
1. If T is a leaf
2. return leaf index
3. If T is an inverter before a leaf
4. return inv leaf index
5. If Pattern index(T) is a valid value
6. return Pattern index(T)
7. NodeType = type of root node of tree T
8. For each two-input decomposition of root node of tree T, T0

9. IndexL= Look up(leftchild of T0)
10. IndexR= Look up(rightchild of T0)
11. If [NodeType,IndexL,IndexR] is a valid value
12. Pattern index(T)=[NodeType,IndexL,IndexR]
13. Return Pattern index(T)
14. Pattern index(T)=[NodeType,IndexL,IndexR]=newIndex
15. Increment newIndex
16. Return Pattern index(T)

Figure 4: The pattern index lookup procedure

2.6 An example of pattern table generation
The pattern table generation procedure is illustrated in

Figure 5. In Figure 5(a), an example library composed of
four cells, is shown and the resulting pattern table is shown
in Figure 5(b). leaf index is denoted by \0". Here, each
pattern except for pattern 4 corresponds to a cell of the li-
brary. Therefore, all elements of isGate are set to \1" except

at index 4. All of the gates here are inverting complex gates
and thus the corresponding elements of array isInvGate are
set to \1". For instance, Pattern 4 can correspond to the
con�gurations of the AND of trees 1 and 2, as well as the
AND of trees 3 and 0. Therefore [AND,1,2], [AND,2,1],
[AND,3,0] and [AND,0,3] are �lled with index 4. In reality,
since the pattern table is symmetric, it is suÆcient to store
only the upper or lower triangle of the matrix.

+

+

*

pi pi

pi

pipi

0 0

1

0 0

4

5

0
*

+ pi

pi pi

0 0

0

1

3

+

pi pi
0 0

1
*

pi pi

0 0

2

0
1
2
3
4

0 1 2 3 4AND

2 3 - 4 -
3 - 4 - -
- 4 - - -
4 - - - -
- - - - -

0
1
2
3
4

0 1 2 3 4 OR

1 - - - 5
- - - - -
- - - - -
- - - - -
5 - - - -

1
1
1
0
1

1
2
3
4
5

isGate

1
1
1

1

1
2
3

5
4 0

isInvGate

(a)

(b)

Figure 5: An example of pattern table generation

3. MATCHING
In Section 2, we have addressed a preprocessing proce-

dure where the structural relations between cells are derived
and stored in the pattern table. In this section, we explore
the relationship between matching of a node of the subject
Boolean network and matching of its children. A matching
method utilizing these two relationships is proposed.

3.1 Motivations
In the traditional matching method, each node is matched

independently, which may cause redundant operations. In
our approach, the matching of a node in the subject Boolean
network relates to the matching of its children. To illustrate
this, we consider the AND/OR/NOT subject network shown
in Figure 6(a), and it is to be mapped to the library that is
partially described in Figure 6(b), consisting of cells a, b, c,
d, etc. In our notation, a, b, c, d also refers to the pattern
indices of the cells. The pattern table shows the structural
relations between these cells. Since entry [AND,a,c] is �lled
with pattern index b, we see that the AND operator applied
to cells a and c constitutes the cell b. Suppose cell a is a
match for node E and cell b is a match for node F . In
the traditional method, nodes E and F are matched inde-
pendently: to match cell b against node F , the matching
procedure must traverse from the root node all the way to
the leaf nodes of cell b and the corresponding part of the
subject network. However, we can see that a part of this
procedure, where node E and its children are visited, has
already been performed while matching node E to the tree
structure a, and is redundant. Similarly, the operation that
matches node H against cell d is repeated during the match-
ing procedure for all of nodes H, E and F .
Our approach shares these operations by considering the

matching relationships between a node and its children. At
the time we match subtrees rooted at node F , we know that

cell a is a valid match of node E and cell c is a valid match
of the other child, G, and type of node F is AND. Therefore,
we can check whether cell b is a valid match of node F by
merely looking up the entry [AND,a,c] in the pattern table,
an operation whose computation cost is constant.

GE

F

cell b

cell c

cell a

cell d

H

 c

b
d

0

a

AND table

a

ANDL

 KJ

M

ON

Library:

 cell a
 cell b
 cell c
 cell d

(b) Library and the lookup table(a) AND/OR/NOT subject network

Figure 6: Matching of a node and its children

3.2 Matching algorithm outline
The match set of a node in a subject network is composed

of all of the pattern indices whose corresponding tree struc-
tures are isomorphic to the segment of the subject Boolean
network rooted at this node. Given the node type of the cur-
rent node of the subject Boolean network, NT , the match set
of the left child L and the match set of the right child R, each
element of the cross-product L�R, (l; r), is checked against
the corresponding entry of the pattern table, [NT; l; r]. If
[NT; l; r] returns a valid pattern, then that pattern corre-
sponds to one match of the current node. In addition, each
node in a subject network may be a leaf of a cell. There-
fore, the pattern leaf index is included in the match set of
each node. The matching procedure for a node in a subject
Boolean network is described in Figure 7.

Procedure Matching(current node N)
Input: Match sets of N's children; The pattern table
Output: Match set of N
1. NT = node type of N
2. For each match of the left child, l
3. For each match of the right child, r
4. k = [NT; l; r]
5. If (k is valid value)
6. Insert k into the match set of N
7. If isGate[k]==1
8. cell handling(k)
9. Insert leaf index, inv leaf index into the match set of N

Figure 7: The matching procedure at each node

The match set of each node is used to form the match set
of its parents. The match set of each node consists of two
types of patterns: patterns representing a cell, and patterns
representing a substructure of a cell. If a pattern corre-
sponds to a cell, then the condition on line 7 of Figure 7
is satis�ed, and the procedure that handles a matched cell
will be executed. The cell handling procedure will typically
involve cost calculation, pruning, etc. If a pattern is a sub-
structure of a cell, then it will be retained in the match set
since it may be useful for the matching step for its parent
node.

3.3 An example of the matching procedure
The matching procedure is illustrated in Figure 8. This

example uses the same library as the example in Section 2.6,
and the pattern table is shown in Figure 8(a). The subject

AND/OR/NOT network is shown in Figure 8(b). The ele-
ments within curly braces next to each node constitute the
match set of the node. All primary input are initialized with
the match set fleaf indexg, where leaf index is denoted by
\0." The network is traversed from the primary input up-
wards, and the match set of each node is obtained from the
matching algorithm of Figure 7. For example, At node B,
by looking for every element of set f0; 2; 3g � f0; 2; 3g in
the AND table, a match set of f0; 2; 4g is obtained. This is
because the lookups at [AND; 0; 0] and [AND; 0; 3] return
patterns 2 and 4, respectively, and the other combinations
return invalid values and are therefore ignored. In addition,
node B can be a leaf of a cell and thus pattern 0 also be-
longs to its match set. By checking the isGate array shown
in Figure 5, we can tell that not every pattern in the match
set f0; 2; 4g of node B is a cell: pattern 4 is merely a sub-
structure of pattern 5, and only pattern 2 is a real cell in
the library. The objective of keeping pattern 4 in node B is
to check the possibility of matching pattern 5 to the parent
of node B.

(a) Lookup tables

0
1
2
3
4

AND

0
1
2
3
4

0 1 2 3 4 OR

2 3 - 4 -

0 1 2 3 4

3 - 4 - -

4 - - - -
- - - - -

1 - - - 5
- - - - -
- - - - -
- - - - -
5 - - - -

+

*

pi

**

- 4 - - -

+

pi

+

pipi

+

pipi

+

pipi

A

pi

D

E

B

H

KJ

F

{0,1,5}

{0,2,4}

{0,2,3}

{0} {0} {0} {0} {0} {0} {0} {0}

{0}

{0,2,3}

{0,1} {0,1}{0,1}{0,1}

(b) matching of the subject network

*

**

+

pipi

+

pipi

+

pipi

+

pipi

+

pi

C

G

(c) Matches of Node A

pattern 5

pattern 5

pattern 1
{0,1,5}

Figure 8: An example of the matching procedure

f0; 1; 5g is the match set of Node A, of which pattern 1
and 5 are valid matched cells. The matches for node A are
illustrated in Figure 8(c). Here, two matches correspond to
the same pattern 5. This is because both [AND; 0; 3] and
[AND; 3; 0] return the same pattern 4 during the matching
procedure at node B.

3.4 Data structure and cost calculation
As seen in Figure 8(c), each pattern index at a node of

the subject Boolean network may correspond to more than
one match. Therefore, it is necessary to distinguish between
the di�erent matches whose pattern indices are the same.
Our procedure di�erentiates between them by remembering
the pointers to the matches of the left child and the right
child. A unique match is identi�ed by the triple: pattern
index, pointer to the match of the left child and pointer to
the match of the right child. The data structure of each
match set is illustrated in Figure 9.

lch match
Pointer to

lch match
Pointer to

lch match
Pointer toPointer to

rch match

Pointer to
rch match

Pointer to
rch matchPattern 1

Pattern 2

Pattern 3

Figure 9: Data structure for each node's match set

This matching method could also possibly help to reduce

the computation time of cost calculation of the matches,
in the case where the cost of a match at one node can
be formulated into sum of the cost from children and the
cost from the matched cell. This can be illustrated with
the example from Figure 6, using area as the cost func-
tion. In Figure 6, the area cost of match a at node E
is cost(J) + cost(K) + cost(L) + cost(M) + cost(Cell a),
where the cost(J) + cost(K) + cost(L) + cost(M) is the
cost from the children, and is denoted Cchild, and the last
term is the cost from the current matched cell. Instead,
the area cost of match a at node E can be expressed as
Cleft child + Cright child + cost(Cell a), thus saving the du-
plicate calculation of cost(J)+ cost(K)+ cost(L). Similarly,
the cost calculation of cost(J) + cost(K) can be shared by
match d at node H, match a at node E and match b at
node F . In the case that the cost is pin dependent or load
dependent, where the cost of a match at one node cannot
be separated into cost from children and cost of the current
cell, it is diÆcult to simplify cost calculation as above.

4. COMPLEXITY ANALYSIS

4.1 Pattern table generation
The computation cost of pattern table generation algo-

rithm is to enumerate all of the decomposition schemes at
the root node of a canonical pattern and �ll in the corre-
sponding entries, corresponding to Lines 8{14 of Figure 4.
For each decomposition scheme, one traversal of the de-
composed two-input tree is performed to lookup the cor-
responding pattern index. If k is the maximal number of
decomposed schemes for a multiple-input node, and n is the
maximum number of nodes in the two-input decomposition
tree of a canonical pattern, then the time complexity of the
pattern table generation procedure is O(knM). Typically,
the maximum number of series (parallel) transistors of the
cells in a library is 4 or less, and thus the combinatorial
number of decompositions, k, is within 7 and is therefore
bounded by a constant.
In the pattern table generation procedure, the main over-

head of memory space is the pattern table. From the statis-
tics from several libraries, the average number of valid en-
tries of each column(row) in a pattern table is between 1
and 2. The AND/OR table can be stored in sparse format
and the memory requirement is found to be linear in the
dimension of the table. Hence, the space complexity of the
table lookup generation method is O(M), where M is that
number of canonical patterns in the library.

4.2 Matching
The main computation cost of the matching procedure

at each node corresponds to the two loops shown between
Lines 2-8 of Figure 7. Therefore, the time complexity of the
matching procedure is O(M2N), but in practice, the number
of executions at a node is generally much lower than M2.
From the statistics of 20 benchmark circuits on library 44�6,
we �nd the approximately 7.4 lookups are performed, on an
average, at every node.
During the matching procedure, the main data structure

at each node is shown as Figure 9. Additionally, there is
some memory requirement for storing the pattern table.
Therefore, the space complexity is O(mN +M), where m
is the maximum number of unique matches in each node
and N is the number of nodes in the decomposed subject

Boolean network. Here, m is somewhat di�erent from M
since each pattern index may represent several matches. In
general, the number of matches in each node is much lower
than M . The statistics of 20 benchmark circuits on library
44 � 6 shows an average of 9.6 matches at every node, so
that in practice, it can be bounded by a constant.

5. EXPERIMENTAL RESULTS
Our technology mapping procedure has been implemented

using C++ and STL. All of the input experiment circuits
are �rst optimized using with script:rugged, and then de-
composed into a 2-input AND/OR/NOT network. At each
node, both positive and negative polarities of each node are
matched against the available patterns.

Table 1: The status of the pattern table
Lib #Cells #Decomp. # Canon. # Valid entries

patterns patterns OR tbl AND tbl

43-5 395 835 395 324 756
44-3 624 4512 624 1152 1152
44-6 3502 12630 3502 4638 4638

Table 1 shows the number of canonical patterns and valid
elements in the pattern table for several libraries that are
available with SIS. The three libraries, \43-5," \44-3," and
\44-6" that are used are listed in Column 1, and the num-
ber of cells in each library is shown in Column 2. Col-
umn 3 reports the number of the decomposed two-input
NAND/NOT node patterns in each library [4]. The next
three columns show the results associated with our pattern
table. Column 4 reports the number of canonical patterns
in the library. This number is also the dimension of our
pattern tables. Columns 5 and 6 denote the number of en-
tries with valid values in the OR and AND pattern tables,
respectively. From table 1, we can see that in all of the three
example libraries, each canonical pattern is also a cell since
the number of cells is identical to the number of pattern in-
dices. The number of decomposed patterns is about 2� to
7� the number of canonical patterns.

Table 2: Benchmark circuits
Circuits #Nodes Circuits #Nodes Circuits #Nodes

C1355 390 C880 336 apex7 179
C1908 383 C5315 1350 b9 93
C2670 584 C6288 2376 des 2889
C3540 956 C7552 1778 f51m 74
C432 155 9symml 168 rot 506
C499 390 apex6 594 z4ml 27
Total 13228

We compare our pattern matching results with [8], which,
to the best of our knowledge, presents the fastest reported
structural matching results. We use the same kind of work-
station, Ultra Sparc(300MHz), and our experiments are ex-
ecuted on the same set of LGSynth91 benchmark circuits.
The names of the benchmark circuits and the number of 2-
input AND/OR nodes in their subject network are reported
in Table 2.

Table 3: Comparison with [8] for matching
Lib # Matches CPU PG(TG) CPU matching

[8] ours [8] ours [8] ours

43-5 75629 94278 1.47 0.05 9.72 2.68
44-3 84390 101956 1.51 0.10 9.98 2.76
44-6 102898 126858 46.59 0.56 23.20 2.97

Table 3 shows the comparison of our results with [8] in
terms of both speed and quality. The second and third
columns show the number of matches detected with algo-
rithm [8] and with our method, respectively. The fourth

column shows the CPU time spent for pattern generation
(PG) by the algorithm in [8], and the CPU time required
by our pattern table generation (TG) algorithm is shown
in the �fth column. Finally, the last two columns show a
comparison between the CPU time for matching with the
algorithm in [8] and with our method. These CPU times
for matching correspond to the summation over the times
required for matching over all benchmark circuits from Ta-
ble 2, and do not include the CPU times for cost calculation
and the backward traversal process for selecting the best cell
assignment.
From table 3, we can see that our method is much faster.

The larger the library, the greater the gains in speed shown
by our results. Our matching procedure is about 8� faster
than [8] for the library \44-6." Our pattern table generation
procedure is about 80� faster than the pattern generation
procedure of [8]. By summing the CPU time of pattern gen-
eration with matching procedure, our mapper is nearly 20�
faster for library \44-6". Our pattern table generation pro-
cedure need not run on-the-
y during technology mapping
and it can be executed only once when a new library is gen-
erated and the corresponding pattern table is stored. In the
CPU time listed in Column 5 and 7 of Table 3, the CPU
time for writing out and reading in the pattern table has
already been included, respectively. Moreover, our memory
requirement for matching is small. In our method, only a
couple of tables are required to be loaded into the memory.
These are stored in sparse format and occupy a space that
is linear in the number of pattern indices.
The number of matches detected in our mapper is about

20% � 30% more than [8]. We suspect that this is because
the AND/OR/NOT base function is used in our method,
and the number of nodes in our AND/OR/NOT network is
about 20%� 30% more than the nodes of the NAND/NOT
decomposed network [8].

Table 4: Comparison with SIS for TM

Lib Area cost CPU time for TM Mem.(M)
SIS ours SIS(R) SIS(M) ours SIS ours

43-5 29971 29522 18.04 219.09 3.02 27 0.36
44-3 30200 29372 108.88 1038.20 3.13 42 0.37
44-6 29773 28888 759.80 2968.60 3.53 114 0.41

In table 4, we compare our technology mapping (TM) re-
sults with SIS in terms of speed, memory and quality. As
stated in Section 3.4, another potential advantage of our
method is to speed up the cost calculation procedure. The
computation cost of our mapper consists mainly of the com-
putation cost associated with matching, cost calculation and
cell assignment. The simple tree-by-tree mapping method
was used by our mapper, and both mappers use the objec-
tive of area minimization. The same workstation, bench-
mark circuits and libraries as Table 3 were applied.
In table 4, Columns 2 and 3 show the total area cost of

the mapped circuits with SIS and with our method, respec-
tively. The next three columns show the CPU time required
for technology mapping. Column 4 shows the CPU time
required for reading the library (R) in SIS, Column 5 re-
ports the CPU time of mapping (M) with SIS, and Column
6 shows the CPU time for our mapper. Columns 7 and
8 report the peak memory requirements for the technology
mapping procedure in SIS and in our mapper. For the SIS
procedure, 90% of the memory usage was loaded during the
library reading procedure.

The results shows that our mapper is about 70� to 1000�
faster than SIS and that the memory usage of SIS is about
70� to 280� more than that of our mapper. In addition, the
quality of the results is slightly better in our approach. We
are not exactly sure the reasons for better quality, but one
possible reason is that the methods for handling inverters
are di�erent. The comparison of our algorithm with SIS
is just an approximate comparison to show the eÆciency
of our matching method. Because SIS is a general purpose
program that does a lot more than just technology mapping,
the overhead for both memory usage and computation time
may possibly be much higher than our technology mapping
program.

6. CONCLUSION
In this paper, a novel structural matching algorithm using

table-lookup is proposed. The method explores the relations
between the matches of a node and the matches of its child
nodes, as well as the structural relations between cells. The
method has the advantages of fast speed and low memory
usage, and is easy to implement. Comparisons with SIS and
the fast matching algorithm in [8] demonstrate the excellent
speed up, low memory requirement and quality improve-
ments of our approach over existing methods.
Currently, our structural matching method is limited to

the library cells that can be represented by a tree. For a
library composed of both cells of tree structure and cells
with a DAG structure (EXOR,EXNOR cells), we suggest a
hybrid matching method that matches tree-structured cells
with our pattern table lookup method, and matches DAG-
structured cells with a simple graph isomorphism method.
In future work, we will consider extending our pattern table
lookup method to DAG cells with graph-based matching.
We expect that the approach should support an arbitrary

set of base functions. Currently, the method is implemented
using AND/OR/NOT base function for our convenience.
There are some arguments and experimental results favor-
ing the choice of using one base function only (e.g., NAND2
or NOR2 plus inverters) [5, 10], and we will consider this
extension in future work.

7. REFERENCES
[1] L. Benini and G. D. Micheli, \A survey of boolean matching

techniques for library binding," ACM TODAES, vol. 2,
pp. 193{226, July 1997.

[2] D. Gregory, K. Bartlett, A. D. Geus, and G. Hachtel,
\SOCRATES: A system for automatically synthesizing and
optimizing combinational logic," in Proc. DAC, pp. 79{85, 1986.

[3] K. Keutzer, \DAGON: technology mapping and local
optimization," in Proc. DAC, pp. 341{347, 1987.

[4] E. Detjens, G. Gannot, R. Rudell, A. Sangiovanni-Vincentelli,
and A. Wang, \Technology mapping in MIS," in Proc. ICCAD,
pp. 116{119, 1987.

[5] G. D. Micheli, Synthesis and optimization of digital circuits.
McGraw-Hill, Inc., New York, NY, 1994.

[6] S. Devadas, A. Ghosh, and K. Keutzer, Logic Synthesis. New
York: McGraw-Hill, 1994.

[7] A. Aho and M. Corasick, \EÆcient string matching: An aid to
bibliographic search," Communications of the ACM, vol. 18,
pp. 333{340, June 1975.

[8] Y. Matsunaga, \On accelerating pattern matching for
technology mapping," in Proc. ICCAD, pp. 118{123, 1998.

[9] C. Ho�mann and M. ODonnell, \Pattern Matching in Trees," in
Journal of the ACM, pp. 68{95, 1982.

[10] R. Rudell, Logic synthesis for VLSI Design. Memorandum
UCB/ERL M89/49, Ph.D. Dissertation, UC Berkeley, 1989.

	Main
	DAC01
	Front Matter
	Table of Contents
	Session Index
	Author Index

