
Detection of Partially Simultaneously Alive Signals in Storage
Requirement Estimation for Data Intensive Applications

Per Gunnar Kjeldsberg
Norwegian University of Science and

Technology
Trondheim, Norway

pgk@fysel.ntnu.no

Francky Catthoor
IMEC, Leuven, Belgium

Also at EE.Dept. of Kath. Univ. Leuven

catthoor@imec.be

Einar J. Aas
Norwegian University of Science and

Technology
Trondheim, Norway

einar.aas@fysel.ntnu.no

ABSTRACT
In this paper, we propose a novel storage requirement estimation
methodology for use in the early system design phases when the
data transfer ordering is only partially fixed. At that stage, none of
the existing estimation tools are adequate, as they either assume a
fully specified execution order or ignore it completely. Using rep-
resentative application demonstrators, we show how our technique
can effectively guide the designer to achieve a transformed specifi-
cation with low storage requirement.

1. INTRODUCTION
Many integrated circuit systems, particularly in the multi-media
and telecom domains, are inherently data dominant. For this class
of applications, data transfer and storage largely determine cost
and performance parameters. This is the case for chip size, since
large memories are usually needed, performance, since accessing
the memories may very well be the main bottleneck, and power
consumption, since the memories and buses consume large quanti-
ties of energy. Even for systems with caches, the overall storage
requirement has vital impact on the performance and power con-
sumption, since it greatly influences the number of slow and power
expensive cache misses. For the system development process, the
designer must hence concentrate first on exploring the data transfer
and storage to achieve a cost optimized end product [4]. At the
system level, no detailed information is available about the size of
the memories required for storing data in the alternative realiza-
tions of the application. To guide the designer and assist in choos-
ing the best solution, estimation techniques for the storage re-
quirements are needed, very early in the system design trajectory.
For our target classes of data dominant applications, the high-level
description is typically characterized by large multi-dimensional
loop nests and arrays. A straightforward way of estimating the
storage requirement is for each array to multiply the size of its
dimensions, and then add together the sizes of the different arrays.
This will normally result in a huge overestimate however, since not
all the arrays, and certainly not all parts of one array, are alive at
the same time. In this context an array element, also denoted a
signal, is alive from the moment it is written, or produced, and
until it is read for the last time. This last read is said to consume
the element. To achieve a more accurate estimate, we have to take
into account these partially non-overlapping lifetimes and their
resulting opportunity for mapping arrays and parts of arrays in the
same place in memory, the so called in-place mapping problem. It
is also necessary to determine which signals are partially overlap-

ping, since their combined size determines the total storage re-
quirement of the application. The degree of overlap between sig-
nals, and to what degree it is possible to perform in-place mapping,
depends heavily on the order in which the elements in the arrays
are produced and consumed. This is mainly determined by the
execution ordering of the loop nests surrounding the statements
accessing the arrays.
At the beginning of the design process, little information about the
execution order is known. Some is given from the data dependen-
cies between the statements in the code, and the designer may re-
strict the ordering for example due to I/O-constraints. In general
however, the execution order is not fixed, giving the designer large
implementation freedom. As the process progresses, the designer
makes decisions that gradually fix the ordering, until the full exe-
cution ordering is known. To steer this process, estimates of the
upper and lower bounds on the storage requirement are needed at
each step, given the partially fixed execution ordering. In [9] this
context and a sketch of a high-level estimation methodology was
introduced. This work was continued in [10], presenting a CAD
algorithm for size estimates of individual data dependencies.
In this paper the methodology is extended by a CAD technique for
detection of partially simultaneously alive signals. This enables the
designer to take the full global view of the storage requirement into
account while designing data dominated applications. The rest of
the paper is organized as follows. Section 2 presents previous
work, followed by an overview of our techniques in Section 3.
Section 3 also contains details regarding the new methodology for
detection of partially overlapping signals. Section 4 illustrates the
feasibility and usefulness of the methodology using representative
application demonstrators. At the end we present our conclusions.

2. PREVIOUS WORK
By far the major part of all previous work on storage requirement
has been scalar based. The number of scalars (individual signals) is
then limited, and if arrays are treated, they are flattened and each
array element is considered a separate scalar. Through the use of
scheduling techniques like the left edge algorithm the lifetime of
each scalar is found so that scalars with non-overlapping lifetimes
can be mapped to the same storage unit [11]. Techniques such as
clique partitioning are also exploited to group scalars that can be
mapped together [14]. A good introduction to scalar based storage
unit estimation can be found in [7]. Common to all of them is that
they break down when used for large multi dimensional arrays, due
to the huge number of scalars present.
To overcome this limitation, several research teams split the arrays
into suitable units before or as a part of the estimation. Typically
each instance of array element accessing in the code is treated
separately. Due to the code's loop structure, large parts of an array
can be produced or consumed by the same code instance. This
reduces the number of elements the estimator must handle com-
pared to the scalar approach. For the rest of this paper, such a
group of elements is denoted a signal. In [15] a production time

axis is used to find the maximum difference between the produc-
tion and consumption time for any two depending instances, giving
the storage requirement for one array. The total storage require-
ment is the sum of the requirements for each array. Only in-place
mapping internally to an array is considered, not the possibility of
mapping arrays in-place of each other. In [8] the data dependency
relations between the array references in the code are used to find
the number of array elements produced or consumed by each as-
signment. From this, a memory trace of upper and lower bounding
rectangles as a function of time is found with the peak bounding
rectangle yielding the total storage requirement. If the difference
between the upper and lower bounds for this critical rectangle is
too large, the corresponding loop is split into two loops, and the
estimation is rerun. In the worst-case situation a full loop unrolling
is necessary to achieve a satisfactory estimate, which is unafford-
able. [16] describes a methodology based on live variable analysis
and integer point counting for intersection/union of mappings of
parameterized polytopes. They show that it is only necessary to
find the number of live variables for one statement in each inner-
most loop nest to get the minimum memory size estimate. The live
variable analysis is performed for each iteration of the loops how-
ever, which makes it computationally hard for large multi dimen-
sional loop nests. A major limitation for all these techniques is
their requirement of a fully fixed execution ordering.
In contrast to the methods of the previous paragraph, the storage
requirement estimation technique presented in [1] does not take
execution ordering into account. It starts with an extended data
dependency analysis resulting in a number of non-overlapping
basic sets of array elements, and the dependencies between them.
The dependency size is the number of elements from one basic set
that is read while producing the depending basic set. The total
storage requirement is found through a greedy traversal of the cor-
responding data flow graph. The maximal combined size of simul-
taneously alive basic sets gives the storage requirement.
In summary, all previous work on storage requirement entails a
fully fixed execution ordering to be determined prior to the estima-
tion. The only exception is the last methodology, which allows any
ordering not prohibited by data dependencies. None of the ap-
proaches permits the designer to specify partial ordering con-
straints, which is really essential during the early exploration of the
system level code transformations. When the execution ordering is
not fully fixed, the task of finding the signals that may be partially
overlapping is more complex. An efficient methodology for this
step is consequently of outmost importance.

3. PARTIALLY SIMULTANEOUSLY ALIVE
 SIGNALS
3.1 Motivation and Context
The new estimation methodology currently employs the technique
for detection of dependencies presented in [1]. It may however also
use other complete polyhedral dependency descriptions as input.
The technique for detection of simultaneously alive signals utilized
in [1] is based on a graph traversal heuristic, which can be some-
what optimistic compared to the final implementation. At the same
time the estimation of the size of each signal is too pessimistic,
since available execution ordering information is not taken into
account. A realistic detection of signals that may be partially alive
simultaneously is needed, resulting in upper and lower bounds on
the total storage requirement for the application. This is the main
focus of this paper.
Our algorithm is useful for a large class of applications. Certain

restrictions exist on the code that can be handled in the present
version however, some of which will be alleviated through future
work. The main requirements are that the code is single assignment
and has affine array indexes. This is achievable by a good array
data flow analysis preprocessing, see [6] and [13]. The single as-
signment format enables the data dependency analysis needed for
generation of the underlying polyhedral dependency graph (PDG)
model, [4]. It also opens for code optimizations that can be guided
by the storage requirement estimates. The methodology further-
more requires that the resulting Dependency Parts, see below, is
orthogonal, or is made orthogonal, as described in [9].
Consider the simple application code example shown in Figure 1.
Two statements, S.1 and S.2, produce elements of two arrays, A
and B. Elements from array A are consumed when elements of
array B are produced. This gives rise to a flow type data depend-
ency between the statements [2]. The loops around the statements
define an iteration space as shown in Figure 2 [2]. Each node
within this space represents one execution of the statements inside
the loop nest. For our example, at each of these iteration nodes one
A-array element and, when the if clause is true, one B-array ele-
ment is produced. In general, not all elements produced by one
statement are read by a depending statement. A Dependency Part
(DP) is therefore defined containing the iteration nodes for which
elements are produced that are read by the depending statement. A
Dependency Vector (DV) is drawn from an iteration node in the
DP producing an array element to the iteration node producing the
depending element. This DV spans a Dependency Vector Polytope
(DVP) and its dimensions are defined as Spanning Dimensions
(SD). Since the SD normally only comprises a subset of the itera-
tor space dimensions, the remaining dimensions are denoted Non-
spanning Dimensions (ND). For the DVP in Figure 2, i and j are
SDs while k is ND.

for (i=0; i<=5; i++)
 for (j=0; j<=5; j++)
 for (k=0; k<=2; k++){
S.1 A[i][j][k] = f(in[i][j][k]);
S.2 if (i > 0) & (j > 1) B[i][j][k] = g(A[i-1][j-2][k]);
 }

Figure 1: Simple application code example in C

k 0 1 j2 3 4 5
0

i

1

2

3

4

5
Iteration nodes where A-array
elements are produced by S.1

Dependency Part

Dependency Vector

Iteration nodes where B-array
elements are produced by S.2

Dependency Vector Polytope

Figure 2: Iteration space with DP, DV, and DVP

Using the concepts presented above, we presented a detailed ac-
count of size estimation of individual dependencies in [10] The
main contribution is the use of the DP and DVP for calculation of
the upper and lower bounds on the dependency size respectively. It
is also shown that the size of a dependency is minimized if SDs are
fixed innermost and NDs outermost. To be able to take the global
view of the storage requirement of an application, the combined
size of simultaneously alive dependencies must be taken into ac-
count. The general framework of such a complete methodology is

given in Figure 3, while the details regarding detection of partially
simultaneously alive dependencies are presented in the next sub-
sections.

 Detect data dependencies in the application code
 ↓

 Position DPs in a common iteration space according to their de-
pendencies and the partially fixed execution ordering

 ↓

 Estimate upper and lower bounds on dependency sizes per signal
based on partially fixed execution ordering

 ↓

Detect simultaneously alive signals and their combined

maximal size
=> Bounds on the application's storage requirement

Figure 3: Framework of estimation methodology

3.2 Generation of Common Iteration Space
In the original application code, an algorithm is typically described
as a set of imperfectly nested loops. At different design steps, parts
of the execution ordering of these loops are fixed. The execution
ordering may include both the sequence of separate loop nests, and
the order and direction of the loops within nests. To perform global
estimation of the storage requirement, taking into account the
overall limitations and opportunities given by the partial execution
ordering, a common iteration space for the code is needed. A
common iteration space can be regarded as representing one loop
nest surrounding the entire, or a given part of the code. This is
similar to the global loop reorganization described in [5]. Figure 4
shows a simple example of the steps required for generation of
such a common iteration space. Note that even though it here in-
cludes rewriting the application code, this is not necessary to per-
form the estimation. The common iteration space can be generated
directly using the PDG model of [4].

for (i=0; i<=5; i++)
 A[i] = …
for (j=0; j<=3; j++)
 B[j] = f(A[j]);

Original code

for (t=0; t<=1; t++)
 for (i=0; i<=5; i++)
 if (t==0) A[i] = …
for (t=0; t<=1; t++)
 for (i=0; i<=5; i++)
 if (t==1) & (i<=3) B[i] = f (A[i]);

Add outer pseudo-
dimension
Add/enlarge dimensions
and add if-clauses to
enable merging

for (t=0; t<=1; t++)
 for (i=0; i<=5; i++){
 if (t==0) A[i] = …
 if (t==1) & (i<=3) B[i]= f(A[i]);
 }

Merge loops

0 1
0 i

t

2 3 4 5

1

A
DPA

B

for (t=0; t<=1 t++)
 for (i=0; i<=5; i++){
 if (t==0) A[i] = …
 if (t==0) & (i<=3) B[i] = f(A[i]);
 }

Optimize placement

0 1
0 i

t

2 3 4 5

1

A
DPA

B

Figure 4: Generation of a common iteration space

The introduction of the common iteration space opens for an ag-
gressive in-place mapping which may not be used in the final im-
plementation. The placement of the DPs in the common iteration
space entails certain restrictions on the possible execution ordering
of the still unfixed parts of the code. The sizes of the individual

dependencies will hence be influenced by the placement of their
DPs and depending DPs in the common iteration space. To have
realistic upper and lower bounds it is therefore necessary to gener-
ate two common iteration spaces, one with a worst-case and one
with a best-case placement, both taking into account the available
execution ordering and other realistic design constraints. [5] pre-
sents techniques for placement that enable the designer to organize
the data accessing in such a way that aggressive in-place optimiza-
tion can be employed. The worst-case placement can be based on a
full loop body split, so that each statement is assigned individual
iterator values in the t-dimension. For the rest of this paper, opti-
mal iteration spaces are assumed, but the methodologies presented
work equally well on alternative organizations of the iteration
space.

3.3 Simultaneous Aliveness for Two Signals
Two dependencies with DPs placed at given positions in the com-
mon iteration space, may or may not be partially alive simultane-
ously. The deciding factor is the way the SDs and NDs of the DPs
overlap. In this context, a dimension is an SD if it is an SD for any
of the two DPs. For the inspection of overlap, the DP is extended
in all SDs with the length of the DV in that dimension. This is
necessary since the dependency is alive until all of its elements
have been read, that is until all iteration nodes within this Extended
DP (EDP) have been visited. In Figure 5, DP A is extended (dotted
line) from iterator value 3 to iterator value 5 in the i dimension.
There is overlap in a dimension if for one or more iterator values
of that dimension, the two EDPs both have elements. EDP A and
EDP B are thus overlapping in the i and k dimensions, but not in
the j dimension.

k 0 1
0

j

2 3 4 5

1

2

3

4

6 7 i8

A

B

C
F

E

D

9
Figure 5: Overlap between EDPs

If all dimensions, SDs and NDs, are partially overlapping, that is
the EDPs cover some of the same nodes in iteration space, the
dependencies will be alive at least partially simultaneously, regard-
less of the chosen execution ordering. Elements are produced
and/or consumed at the same point in time. EDP A and C have this
kind of overlap in Figure 5. If none of the EDPs' SDs are overlap-
ping, the dependencies can not be alive simultaneously. If some of
the NDs are overlapping, the EDPs may however alternate in being
alive. EDP A and F can never be alive simultaneously since no
dimensions are overlapping. EDP A and E can not be alive simul-
taneously either, since none of the SDs are overlapping. They are
overlapping in ND j, however, so if this dimension is placed out-
ermost, the two dependencies will alternate in being alive.
The most complex form of overlap occurs when two EDPs are
overlapping in one or more dimensions, including at least one SD,
but still not in all dimensions. Whether the two dependencies are
alive simultaneously will then depend on the execution ordering.
Simultaneous aliveness is avoided if at least one dimension with-

out overlap (SD or ND) is fixed outside all overlapping SDs. EDP
A and B are overlapping in all dimensions except the j dimension,
which must hence be placed outside i to avoid simultaneous alive-
ness. An interesting consequence of this is that the lower bound on
the size of the B dependency is doubled. The cost of avoiding si-
multaneous aliveness must therefore be balanced against the in-
creased dependency size. EDP B and F are only overlapping in the
j dimension, so ND i can be placed outermost, which is optimal for
both dependencies. Table 1 summarizes the overlap of spanning
and nonspanning dimensions for the EDPs of Figure 5.

 B C D E F
A SD=i ND=k SD=i,j ND=k SD=i,j ND=k ND=j
B SD=j ND=k SD=j ND=k SD=j
C SD=i,j ND=k SD=j,k SD=j,k
D SD=j,k SD=j,k
E SD=i,k

Table 1: Dimensions with overlap for EDPs in Figure 5

3.4 Simultaneous Aliveness for Multiple Signals
More than two dependencies may be alive simultaneously. The
detection of this is not straightforward, since one dependency may
be alive simultaneously with for example two others, but not nec-
essarily at the same point in time. In Figure 5, EDP A is overlap-
ping with both EDP B and E, but EDP B and E do not overlap. It is
therefore impossible for all three of them to be alive simultane-
ously. As before, the most complex situation occurs when only a
subset of the dimensions is overlapping. EDP D, E and F are all
overlapping with each other but depending on the chosen execu-
tion ordering, only one, any combination of two, or all three will
be alive partially simultaneously.

for each iterator value of pseudo-dimension t {
 for each dimension di {
 generate list (length = |di|)
 for each EDP
 place start and end points at corresponding list location
 traverse list and group EDPs overlapping in dimension di
 }
 sort groups of EDPs according to their number of EDPs
 for each group starting with the largest group {
 intersect the group with all smaller groups
 remove groups that are fully covered by the current group
} }
return groups of possibly partially simultaneously alive EDPs

Figure 6: Simultaneous aliveness for multiple dependencies

To overcome the complexity of deciding whether three or more
dependencies really are alive simultaneously the task is divided
into two consecutive steps. First dependencies that may be alive
simultaneously are grouped, followed by an inspection to reveal if
they can really be alive simultaneously for a given partially fixed
execution ordering. An algorithm that groups EDPs is given in
Figure 6. Its use will now be demonstrated using the iteration
space of Figure 5. In this case, the pseudo dimension t has only one
iterator value and is therefore ignored. Table 2 displays the list for
one of the three dimensions, the j dimension, after insertion of each
EDP's start (X_s) and end (X_e) points in that dimension. The
traversal of the lists detects overlapping EDPs by adding EDPs to a
group as long as start points are encountered. When one or more
end points are encountered, the current group is terminated and a
new one is started without the EDPs that have ended. For the j
dimension in Table 2 EDPs A, E, C, and D are added to the first

group at iterator values 0, 1, and 2. At iterator value 2 the end
points of EDP A and E are encountered, so the first group is fin-
ished and a second one is started containing C and D. At iteration
node 3, EDPs B and F are added to this second group. The groups
for this and the other dimensions are summarized in Table 3. It
also shows the sorting of all groups from all dimensions and the
removal of covered groups. Finally it lists the combined upper
bounds on the size for all DPs in each group as estimated using the
technique presented in [10].

Val. 0 1 2 3 4
 A_s E_s C_s D_s A_e E_e B_s F_s B_e C_e D_e F_e

Table 2: List of start and end points for EDPs in j dimension

i AB, ACD, EF
j AECD, CDBF
k ABCD, CDEF

ABCD
AECD
CDBF
CDEF
ACD
AB
EF

ABCD
AECD
CDBF
CDEF
ACD
AB
EF

ABCD
AECD
CDBF
CDEF

EF

41
49
35
43

In each dimension Sorted Covered
by ABCD

Covered
by CDEF

Combined
size

Table 3: Groups of overlapping EDPs

The next step is to perform a check of the possible simultaneous
size of the different groups, starting with the biggest group. The
global upper and lower bounds are found when the lower bound
for one group is bigger than the combined size of the next group.
Starting with group AECD it can be seen from Table 1 that EDPs
A and E only overlap in ND j. The group is hence split into two
new groups, ACD and ECD, both of which are covered by larger
groups. CDEF is now the largest group. C and D are overlapping
in all dimensions, and will consequently be alive simultaneously
independent of the chosen execution ordering. E and F are over-
lapping in SDs i and k and will thus be alive simultaneously unless
the dimension without overlap, j, is placed outermost. Both C and
D are overlapping with E and F in SDs j and k, so these pairs will
be alive simultaneously unless i is placed outermost. For all four to
be alive simultaneously k must consequently be placed outermost.
The actually simultaneously alive EDPs for three partially fixed
execution orderings, and their upper and lower bounds are given in
Table 4. The upper and lower bounds of groups of EDPs are found
through addition of the bounds of the individual DPs using the
methodology from [10]. Since these may require conflicting order-
ings they may not be reachable simultaneously. Even closer in-
spections of the groups are therefore needed to ensure that the
bounds are reachable. In this case no conflicting orderings exists
and it can be concluded that for group CDEF, the lowest storage
requirement can be reached if i is placed outermost. Note that the
ordering that results in the largest number of simultaneously alive
dependencies is not the ordering with the largest storage require-
ment. This is because this ordering results in smaller individual
dependencies.

Outermost Simultaneously alive UB LB
i C and D or E and F 20 12
j C and D and E or C and D and F 31 27
k C and D and E and F 23 18

Table 4: Actual simultaneous aliveness for group CDEF

The discussion above covers simultaneously alive dependencies.
Multiple dependencies may however stem from the same, or partly

the same, array elements. This must be taken into account in such a
way that only the dependency with the longest lifetime for a given
partial ordering is counted.

4. APPLICATION DEMONSTRATORS
4.1 MPEG-4 Motion Estimation Kernel
MPEG-4 is a standard for the format of multi-media data streams
in which audio and video objects can be used and presented in a
highly flexible manner, [17]. An important part of the coding of
this data stream is the motion estimation (ME) of moving objects.
See [3] for a more detailed description of this part of the standard.
This real-life application will now be used to demonstrate the ef-
fectiveness of the new methodology for detection of simultane-
ously alive dependencies during storage requirement estimation.
The code for a part of the ME algorithm is given in Figure 7. The
sad-array is the only one that is both produced and consumed
within the boundaries of the loop nest. For this example, the de-
pendency detection technique presented in [1] is utilized. This
results in a number of basic sets (signals) and their dependencies,
placed in a common iteration space. There are eight basic sets,
sad0 to sad6 and res0. Dependencies exist from sad(n) to sad(n+1)
and also from sad5 to sad3 and from sad6 to res0. Table 5 lists the
start and end points for the dependencies’ EDPs in dimensions y_p
and x_p. sad01s indicates the starting point for the EDP of the
dependency from sad0 to sad1. For dimensions y_s and x_s, all
dependencies start at iterator value 0 and end at 31. These dimen-
sions are furthermore NDs for all dependencies, and have conse-
quently no influence on the degree of simultaneous aliveness, ex-
cept for causing dependencies to alternate in being alive. These
dimensions are therefore ignored in the sequel. Using the algo-
rithm in Figure 6, Table 5 is inspected to reveal groups of possibly
simultaneously alive dependencies. After removal of fully covered
groups, seven groups remain, differing in size from 60416 to 4096.

for (y_s=0; y_s<=31; y_s++)
 for (x_s=0; x_s<=31; x_s++)
 for (y_p=0; y_p<=15; y_p++)
 for (x_p=0; x_p<=15; x_p++)
 if ((x_p==0)&(y_p==0)) sad[y_s][x_s][y_p][x_p]=

 f1(curr[y_p][x_p], prev[y_s+y_p][x_s+x_p]);
 else if ((x_p==0)&(y_p!=0)) sad[y_s][x_s][y_p][x_p]=

 f2(sad[y_s][x_s][y_p-1][15], curr[y_p][x_p],
prev[y_s+y_p][x_s+x_p]);

 else sad[y_s][x_s][y_p][x_p]=
 f3(sad[y_s][x_s][y_p][x_p-1], curr[y_p][x_p],

prev[y_s+y_p][x_s+x_p]);
 if ((y_p==15)&((x_p==15)) result[y_s][x_s]=

 f4(sad[y_s][x_s][15][15]);

Figure 7: MPEG-4 motion estimation kernel

The final step is now to inspect each group to find the dependen-
cies that are really alive simultaneously for a certain partially fixed
execution ordering. For this example, data dependencies in the
code forces x_p to be fixed inside y_p, since dependencies exist
from (y_p,x_p)-node (i,15) to (i+1,0) for 0 ≤ i ≤ 14. Apart from
this, the ordering of the dimensions, including y_s and x_s, can be
chosen arbitrarily. The largest group consists of dependencies
sad23, sad34, sad44, sad45, and sad53. Table 6 summarizes in
which dimensions the dependencies are overlapping. Note that if
an overlap only covers the extension of one of the EDPs, and a
dependency is present between the two basic sets in question, then
the two dependencies will not be alive simultaneously. Direct in-
place mapping can be performed between the two basic sets. Most

of the remaining overlap either occurs only in NDs, e.g. between
sad44 and sad53, or in an SD that, due to the partially fixed execu-
tion ordering, is known to be placed inside a non-overlapping di-
mension, e.g. between sad23 and sad45. These overlaps will not
cause simultaneous aliveness between the dependencies. The re-
maining two overlaps to be investigated further are thus the ones
between sad23 and sad44, and between sad34 and sad53. The SD
y_p is in both cases caused by the negative dependency discussed
above, and can be removed when x_p is ordered inside y_p. The
conclusion is thus that no dependencies are overlapping in this
group, and similar reasoning reveals that this is the case for the
other groups as well. This is however very important information
for the designer, since the focus can then be solely on the task of
minimizing the size of individual dependencies [10].

Dim 0 1 … 14 15

y_p

sad01s sad11s
sad12s sad23s
sad01e sad11e

sad12e

sad34s
sad44s
sad45s
sad53s
sad23e

 sad45e sad46s
sad6res0s

sad53e sad34e
sad44e sad46e

sad6res0e

x_p

sad01s sad34s
sad23e sad53e

sad11s
sad44s
sad01e
sad34e

 sad12s
sad45s
sad46s
sad11e
sad44e

sad23s sad53s
sad6res0s

sad12e sad45e
sad46e

sad6res0e

Table 5: Start and end points for EDPs

 sad34 sad44 sad45 sad53
sad23 Not sim. SD=y_p SD=x_p SD=x_p
sad34 Not sim. ND=y_p SD=y_p,x_p
sad44 Not sim. ND=y_p
sad45 Not sim.

Table 6: Overlapping dimensions for the largest group

4.2 SVD Updating Algorithm for Beamforming
The results from the storage requirement estimation can also be
used as feedback during interactive or tool driven global loop reor-
ganization, [5]. This will now be demonstrated using the Singular
Value Decomposition (SVD) algorithm, for instance required in
beamforming [12]. The SVD algorithm continuously updates ma-
trix decompositions as new rows are appended to a matrix. Figure
8 shows the two major arrays, R and V, and the important loop nest
and statements for their production and consumption. The figure
also contains two minor arrays used for the production of R and V,
the theta and phi arrays. After orthogonalization, see [9], statement
S.3, S.4, and S.5 each produce elements at all iteration nodes
within their i and j loops.
The following dependencies exist in the USVD code of Figure 8:
S12, S13, S24, S25, S34, S41, S42, S43, and S55. S12 indicates
that there is a dependency from statement S.1 to statement S.2.
Due to data dependencies not shown in Figure 8, the k-dimension
must be placed outermost during the production of the R-array.
This is however not necessary for the production of the V-array, as
long as the necessary phi-values are available. A comparison of the
resulting storage requirement for two alternative loop organiza-
tions, with or without a loop body splitting that places the V-array
in a separate loop nest, is therefore needed. The second situation,
where the loop structure inside the k-loop is kept, is focused first.
A common iteration space is generated as outlined in Figure 4. A
pseudo t dimension with three iterator values is in this case added
inside the k dimension since k is fixed outermost. Statements S.1

and S.2 are executed for t=0, S.3 for t=1, and S.4 and S.5 for t=2.
An investigation of the overlap between the dependencies’ EDPs
in the i and j dimensions reveals that all EDPs but one, S34, are
overlapping for t=0. For t=1 three EDPs are not overlapping (S12,
S42, and S41). Finally for t=2, two EDPs are not overlapping (S12
and S13). None of these groups are fully covered by others, so all
three must be investigated further. Starting with the group for t =
0, intersection of the DPs produced by S.4 reveals that all array
elements are covered by the DP of the S43 dependency. Since it
also has the longest lifetime independent of the chosen execution
ordering, the others can be ignored. Furthermore, the DPs of S24
and S25 overlap completely, so only one needs to be taken into
account. The same holds for the DPs of S12 and S13. S13 has the
longest lifetime, so it is considered further. Similar reasoning can
be used for the two other groups, leaving simultaneously alive
dependencies as shown in Table 7a. Again using the estimation
methodology for individual dependencies presented in [10], Table
7b shows the combined sizes for each group.

 for (k=0; k<=n-2; k++){
S.1 theta[k] = f1(R[…][…][2*k]);
S.2 phi[k] = f2(R[…][…][2*k], theta[k]) ;
 for (i=0; i<=n-1; i++)
 for (j=0; j<=n-1; j++)
 ...
S.3 else R[i][j][2*k+1] = f3(R[i][j][2*k], theta[k]);

 for(i=0;i<=n-1;i++)
 for(j= 0;j<=n-1;j++) {
 ...
S.4 else R[i][j][2*k+2] = f6(R[i][j][2*k+1], phi[k]);
 ...
S.5 else V[i][j][k+1] = f9(V[i][j][k], phi[k]);
 } }

Figure 8: USVD algorithm, diagonalization loop nest

 t=0 t=1 t=2
a) S13 S24 S43 S55 S13 S24 S43 S55 S24 S43 S55
b) 202 202 201

Table 7: a) Simultaneously alive dependencies without loop
body split and b) combined size with k outermost (n=10)

To produce a common iteration space after a loop body split, two
pseudo dimensions are introduced, t1 outermost and t2 inside the k
dimension. Statements S.1 and S.2 are executed when t1=0 and
t2=0, S.3 is executed when t1=0 and t2=1, S.4 is executed when
t1=0 and t2=2, and S.5 is executed for t1=1 and t2=0. Note again
that the introduction of the pseudo dimensions is only needed dur-
ing the estimation. They are not necessarily used for the final im-
plementation. Table 8 gives the results of the investigation into the
simultaneously alive dependencies and their combined storage
requirements. As can be seen, the maximal size of simultaneously
alive dependencies is approximately halved compared to the result
without a loop body split. This information is vital for the designer
when comparing different implementation alternatives.

 t1=0&t2=0 t1=0&t2=1 t1=0&t2=2 t1=1&t2=0
a) S13 S24 S43 S13 S24 S43 S24 S43 S24 S55
b) 110 110 109
c) 10/19

Table 8: a) Simultaneously alive dependencies after loop body
split, b) their combined size with k outermost, and c) bounds

on combined size with no ordering fixed (n=10)

5. CONCLUSIONS
This paper presented a novel technique for detection of partially
overlapping signals in high-level application code. This is a crucial
step during storage requirement estimation to allow the designer to
get the global view during design exploration, and to minimize
storage requirements. In contrast to previous techniques, we pro-
vide upper and lower bounds with a partially fixed execution or-
dering. Design examples have shown how the methodology can be
used to guide the designer, and compare implementation alterna-
tives, resulting in a solution with low storage requirement.
The work in this paper was supported in part by the Norwegian
Research Council through research project 131359 CoDeVer.

6. REFERENCES
[1] F. Balasa, F. Catthoor, and H. De Man, "Background memory area

estimation for multidimensional signal processing systems", IEEE
Trans. on VLSI Systems, Vol. 3, No. 2, June 1995, pp. 157-72

[2] U. Banerjee, "Dependency Analysis for Supercomputing", Kluwer
Academic Publishers, Boston/Dordrecth/London, 1988

[3] E. Brockmeyer, L. Nachtergaele, F. Catthoor, J. Bormans, and H. De
Man, "Low Power Memory Storage and Transfer Organization for the
MPEG-4 Full Pel Motion Estimation on a Multimedia Processor",
IEEE Trans. on Multimedia, Vol.1, No.2, June 1999, pp.202-16

[4] F. Catthoor, S. Wuytack, E. De Greef, F. Balasa, L. Nachtergaele, and
A. Vandecappelle, "Custom Memory Management Methodology Ex-
ploration of Memory Organization for Embedded Multimedia Sys-
tems Design", Kluwer Academic Publishers, 1998

[5] K. Danckaert, F. Catthoor, and H. De Man, "A preprocessing step for
global loop transformations for data transfer and storage optimiza-
tion", Proc. Int. Conf. on Compilers, Architecture and Synthesis for
Embedded Systems (CASES), Nov 2000, pp.34-40

[6] P. Feautrier, "Dataflow analysis of array and scalar references", Inter-
national Journal of Parallel Programming, Vol. 20, No. 1, Feb. 1991,
pp. 23-52

[7] D.D. Gajski, F. Vahid, S. Narayan, and J. Gong, "Specification and
Design of Embedded Systems", Prentice Hall, 1994

[8] P. Grun, F. Balasa, and N. Dutt, "Memory Size Estimation for Multi-
media Applications", Proc. Sixth Int. Workshop on HW/SW
Codesign (CODES/CACHE), March 1998, pp. 145-9

[9] P.G. Kjeldsberg, F. Catthoor, E.J. Aas, ”Storage requirement estima-
tion for data intensive applications with partially fixed execution or-
dering”, Proc. Int. Workshop on HW/SW Co-Design, CODES 2000,
May 2000, pp. 56-60

[10] P.G. Kjeldsberg, F. Catthoor, E.J. Aas, “Automated Data Dependency
size Estimation with a Partially Fixed Execution Ordering”, Int. Conf.
on Computer Aided Design, ICCAD 2000, Nov. 2000, pp. 44-50

[11] F.J. Kurdahi and A.C. Parker, "REAL: A Program for REgister ALlo-
cation", Proc. 24th DAC, June-July 1987, pp. 210-5

[12] M. Moonen, P. Van Dooren, J. Vandewalle, "An SVD updating algo-
rithm for subspace tracking", SIAM Journal on Matrix Analysis and
Applications, Vol. 13, No. 4, 1992, pp. 1015-1038

[13] W. Pugh and D. Wonnacott, "An exact method for analysis of value-
based array data dependences", Proc. 6th Int. Workshop on Lan-
guages and Compilers for Parallel Computing, Aug. 1993, pp. 546-66

[14] C-J. Tseng, and D.P. Siewiorek, "Automated Synthesis of Data Paths
in Digital Systems", IEEE Trans. on Computer Aided Design of Inte-
grated Circuits and Systems, Vol. 5, No. 3, July 86, pp. 379-95

[15] I.M. Verbauwhede, C.J. Scheers, J.M. Rabaey, "Memory Estimation
for High Level Synthesis", Proc. 31st DAC, June 1994, pp. 143-8

[16] Y. Zhao and S. Malik, "Exact Memory Size Estimation for Array
Computation without Loop Unrolling", Proc 36th DAC, June 1999,
pp.811-6

[17] ---, The ISO/IEC Moving Picture Experts Group Home Page,
http://www.cselt.it/mpeg/

	Main
	DAC01
	Front Matter
	Table of Contents
	Session Index
	Author Index

