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ABSTRACT 
In this paper, we propose a novel storage requirement estimation 
methodology for use in the early system design phases when the 
data transfer ordering is only partially fixed. At that stage, none of 
the existing estimation tools are adequate, as they either assume a 
fully specified execution order or ignore it completely. Using rep-
resentative application demonstrators, we show how our technique 
can effectively guide the designer to achieve a transformed specifi-
cation with low storage requirement. 

1. INTRODUCTION 
Many integrated circuit systems, particularly in the multi-media 
and telecom domains, are inherently data dominant. For this class 
of applications, data transfer and storage largely determine cost 
and performance parameters. This is the case for chip size, since 
large memories are usually needed, performance, since accessing 
the memories may very well be the main bottleneck, and power 
consumption, since the memories and buses consume large quanti-
ties of energy. Even for systems with caches, the overall storage 
requirement has vital impact on the performance and power con-
sumption, since it greatly influences the number of slow and power 
expensive cache misses. For the system development process, the 
designer must hence concentrate first on exploring the data transfer 
and storage to achieve a cost optimized end product [4]. At the 
system level, no detailed information is available about the size of 
the memories required for storing data in the alternative realiza-
tions of the application. To guide the designer and assist in choos-
ing the best solution, estimation techniques for the storage re-
quirements are needed, very early in the system design trajectory. 
For our target classes of data dominant applications, the high-level 
description is typically characterized by large multi-dimensional 
loop nests and arrays. A straightforward way of estimating the 
storage requirement is for each array to multiply the size of its 
dimensions, and then add together the sizes of the different arrays. 
This will normally result in a huge overestimate however, since not 
all the arrays, and certainly not all parts of one array, are alive at 
the same time. In this context an array element, also denoted a 
signal, is alive from the moment it is written, or produced, and 
until it is read for the last time. This last read is said to consume 
the element. To achieve a more accurate estimate, we have to take 
into account these partially non-overlapping lifetimes and their 
resulting opportunity for mapping arrays and parts of arrays in the 
same place in memory, the so called in-place mapping problem. It 
is also necessary to determine which signals are partially overlap-

ping, since their combined size determines the total storage re-
quirement of the application. The degree of overlap between sig-
nals, and to what degree it is possible to perform in-place mapping, 
depends heavily on the order in which the elements in the arrays 
are produced and consumed. This is mainly determined by the 
execution ordering of the loop nests surrounding the statements 
accessing the arrays.  
At the beginning of the design process, little information about the 
execution order is known. Some is given from the data dependen-
cies between the statements in the code, and the designer may re-
strict the ordering for example due to I/O-constraints. In general 
however, the execution order is not fixed, giving the designer large 
implementation freedom. As the process progresses, the designer 
makes decisions that gradually fix the ordering, until the full exe-
cution ordering is known. To steer this process, estimates of the 
upper and lower bounds on the storage requirement are needed at 
each step, given the partially fixed execution ordering. In [9] this 
context and a sketch of a high-level estimation methodology was 
introduced. This work was continued in [10], presenting a CAD 
algorithm for size estimates of individual data dependencies. 
In this paper the methodology is extended by a CAD technique for 
detection of partially simultaneously alive signals. This enables the 
designer to take the full global view of the storage requirement into 
account while designing data dominated applications. The rest of 
the paper is organized as follows. Section 2 presents previous 
work, followed by an overview of our techniques in Section 3. 
Section 3 also contains details regarding the new methodology for 
detection of partially overlapping signals. Section 4 illustrates the 
feasibility and usefulness of the methodology using representative 
application demonstrators. At the end we present our conclusions. 

2. PREVIOUS WORK 
By far the major part of all previous work on storage requirement 
has been scalar based. The number of scalars (individual signals) is 
then limited, and if arrays are treated, they are flattened and each 
array element is considered a separate scalar. Through the use of 
scheduling techniques like the left edge algorithm the lifetime of 
each scalar is found so that scalars with non-overlapping lifetimes 
can be mapped to the same storage unit [11]. Techniques such as 
clique partitioning are also exploited to group scalars that can be 
mapped together [14]. A good introduction to scalar based storage 
unit estimation can be found in [7]. Common to all of them is that 
they break down when used for large multi dimensional arrays, due 
to the huge number of scalars present. 
To overcome this limitation, several research teams split the arrays 
into suitable units before or as a part of the estimation. Typically 
each instance of array element accessing in the code is treated 
separately. Due to the code's loop structure, large parts of an array 
can be produced or consumed by the same code instance. This 
reduces the number of elements the estimator must handle com-
pared to the scalar approach. For the rest of this paper, such a 
group of elements is denoted a signal. In [15] a production time 

 
 



axis is used to find the maximum difference between the produc-
tion and consumption time for any two depending instances, giving 
the storage requirement for one array. The total storage require-
ment is the sum of the requirements for each array. Only in-place 
mapping internally to an array is considered, not the possibility of 
mapping arrays in-place of each other. In [8] the data dependency 
relations between the array references in the code are used to find 
the number of array elements produced or consumed by each as-
signment. From this, a memory trace of upper and lower bounding 
rectangles as a function of time is found with the peak bounding 
rectangle yielding the total storage requirement. If the difference 
between the upper and lower bounds for this critical rectangle is 
too large, the corresponding loop is split into two loops, and the 
estimation is rerun. In the worst-case situation a full loop unrolling 
is necessary to achieve a satisfactory estimate, which is unafford-
able. [16] describes a methodology based on live variable analysis 
and integer point counting for intersection/union of mappings of 
parameterized polytopes. They show that it is only necessary to 
find the number of live variables for one statement in each inner-
most loop nest to get the minimum memory size estimate. The live 
variable analysis is performed for each iteration of the loops how-
ever, which makes it computationally hard for large multi dimen-
sional loop nests. A major limitation for all these techniques is 
their requirement of a fully fixed execution ordering. 
In contrast to the methods of the previous paragraph, the storage 
requirement estimation technique presented in [1] does not take 
execution ordering into account. It starts with an extended data 
dependency analysis resulting in a number of non-overlapping 
basic sets of array elements, and the dependencies between them. 
The dependency size is the number of elements from one basic set 
that is read while producing the depending basic set. The total 
storage requirement is found through a greedy traversal of the cor-
responding data flow graph. The maximal combined size of simul-
taneously alive basic sets gives the storage requirement. 
In summary, all previous work on storage requirement entails a 
fully fixed execution ordering to be determined prior to the estima-
tion. The only exception is the last methodology, which allows any 
ordering not prohibited by data dependencies. None of the ap-
proaches permits the designer to specify partial ordering con-
straints, which is really essential during the early exploration of the 
system level code transformations. When the execution ordering is 
not fully fixed, the task of finding the signals that may be partially 
overlapping is more complex. An efficient methodology for this 
step is consequently of outmost importance. 

3. PARTIALLY SIMULTANEOUSLY ALIVE  
     SIGNALS 
3.1 Motivation and Context 
The new estimation methodology currently employs the technique 
for detection of dependencies presented in [1]. It may however also 
use other complete polyhedral dependency descriptions as input. 
The technique for detection of simultaneously alive signals utilized 
in [1] is based on a graph traversal heuristic, which can be some-
what optimistic compared to the final implementation. At the same 
time the estimation of the size of each signal is too pessimistic, 
since available execution ordering information is not taken into 
account. A realistic detection of signals that may be partially alive 
simultaneously is needed, resulting in upper and lower bounds on 
the total storage requirement for the application. This is the main 
focus of this paper. 
Our algorithm is useful for a large class of applications. Certain 

restrictions exist on the code that can be handled in the present 
version however, some of which will be alleviated through future 
work. The main requirements are that the code is single assignment 
and has affine array indexes. This is achievable by a good array 
data flow analysis preprocessing, see [6] and [13]. The single as-
signment format enables the data dependency analysis needed for 
generation of the underlying polyhedral dependency graph (PDG) 
model, [4]. It also opens for code optimizations that can be guided 
by the storage requirement estimates. The methodology further-
more requires that the resulting Dependency Parts, see below, is 
orthogonal, or is made orthogonal, as described in [9]. 
Consider the simple application code example shown in Figure 1. 
Two statements, S.1 and S.2, produce elements of two arrays, A 
and B. Elements from array A are consumed when elements of 
array B are produced. This gives rise to a flow type data depend-
ency between the statements [2]. The loops around the statements 
define an iteration space as shown in Figure 2 [2]. Each node 
within this space represents one execution of the statements inside 
the loop nest. For our example, at each of these iteration nodes one 
A-array element and, when the if clause is true, one B-array ele-
ment is produced. In general, not all elements produced by one 
statement are read by a depending statement. A Dependency Part 
(DP) is therefore defined containing the iteration nodes for which 
elements are produced that are read by the depending statement. A 
Dependency Vector (DV) is drawn from an iteration node in the 
DP producing an array element to the iteration node producing the 
depending element. This DV spans a Dependency Vector Polytope 
(DVP) and its dimensions are defined as Spanning Dimensions 
(SD). Since the SD normally only comprises a subset of the itera-
tor space dimensions, the remaining dimensions are denoted Non-
spanning Dimensions (ND). For the DVP in Figure 2, i and j are 
SDs while k is ND.  

for (i=0; i<=5; i++) 
 for (j=0; j<=5; j++) 
  for (k=0; k<=2; k++){ 
S.1  A[i][j][k] = f( in[i][j][k] ); 
S.2  if (i > 0) & (j > 1) B[i][j][k] = g( A[i-1][j-2][k] ); 
  } 

Figure 1: Simple application code example in C 
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Figure 2: Iteration space with DP, DV, and DVP 

Using the concepts presented above, we presented a detailed ac-
count of size estimation of individual dependencies in [10] The 
main contribution is the use of the DP and DVP for calculation of 
the upper and lower bounds on the dependency size respectively. It 
is also shown that the size of a dependency is minimized if SDs are 
fixed innermost and NDs outermost. To be able to take the global 
view of the storage requirement of an application, the combined 
size of simultaneously alive dependencies must be taken into ac-
count. The general framework of such a complete methodology is 



given in Figure 3, while the details regarding detection of partially 
simultaneously alive dependencies are presented in the next sub-
sections.  
   

 Detect data dependencies in the application code  
 ↓  

 Position DPs in a common iteration space according to their de-
pendencies and the partially fixed execution ordering  

 ↓  

 Estimate upper and lower bounds on dependency sizes per signal 
based on partially fixed execution ordering  

 ↓  

 
Detect simultaneously alive signals and their combined  

maximal size 
=>  Bounds on the application's storage requirement 

 

   

Figure 3: Framework of estimation methodology 

3.2 Generation of Common Iteration Space 
In the original application code, an algorithm is typically described 
as a set of imperfectly nested loops. At different design steps, parts 
of the execution ordering of these loops are fixed. The execution 
ordering may include both the sequence of separate loop nests, and 
the order and direction of the loops within nests. To perform global 
estimation of the storage requirement, taking into account the 
overall limitations and opportunities given by the partial execution 
ordering, a common iteration space for the code is needed. A 
common iteration space can be regarded as representing one loop 
nest surrounding the entire, or a given part of the code. This is 
similar to the global loop reorganization described in [5]. Figure 4 
shows a simple example of the steps required for generation of 
such a common iteration space. Note that even though it here in-
cludes rewriting the application code, this is not necessary to per-
form the estimation. The common iteration space can be generated 
directly using the PDG model of [4]. 

for (i=0; i<=5; i++) 
 A[i] = … 
for (j=0; j<=3; j++) 
 B[j] = f( A[j] ); 

Original code 

for (t=0; t<=1; t++) 
 for (i=0; i<=5; i++) 
  if (t==0) A[i] = … 
for (t=0; t<=1; t++) 
 for (i=0; i<=5; i++) 
  if (t==1) & (i<=3) B[i] = f (A[i]); 

Add outer pseudo-
dimension 
Add/enlarge dimensions 
and add if-clauses to  
enable merging 

for (t=0; t<=1; t++) 
 for (i=0; i<=5; i++){ 
  if (t==0) A[i] = … 
  if (t==1) & (i<=3) B[i ]= f( A[i] ); 
 } 

Merge loops 
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for (t=0; t<=1 t++) 
 for (i=0; i<=5; i++){ 
  if (t==0) A[i] = … 
  if (t==0) & (i<=3) B[i] = f( A[i] ); 
 } 

Optimize placement 
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Figure 4: Generation of a common iteration space 

The introduction of the common iteration space opens for an ag-
gressive in-place mapping which may not be used in the final im-
plementation. The placement of the DPs in the common iteration 
space entails certain restrictions on the possible execution ordering 
of the still unfixed parts of the code. The sizes of the individual 

dependencies will hence be influenced by the placement of their 
DPs and depending DPs in the common iteration space. To have 
realistic upper and lower bounds it is therefore necessary to gener-
ate two common iteration spaces, one with a worst-case and one 
with a best-case placement, both taking into account the available 
execution ordering and other realistic design constraints. [5] pre-
sents techniques for placement that enable the designer to organize 
the data accessing in such a way that aggressive in-place optimiza-
tion can be employed. The worst-case placement can be based on a 
full loop body split, so that each statement is assigned individual 
iterator values in the t-dimension. For the rest of this paper, opti-
mal iteration spaces are assumed, but the methodologies presented 
work equally well on alternative organizations of the iteration 
space. 

3.3 Simultaneous Aliveness for Two Signals 
Two dependencies with DPs placed at given positions in the com-
mon iteration space, may or may not be partially alive simultane-
ously. The deciding factor is the way the SDs and NDs of the DPs 
overlap. In this context, a dimension is an SD if it is an SD for any 
of the two DPs. For the inspection of overlap, the DP is extended 
in all SDs with the length of the DV in that dimension. This is 
necessary since the dependency is alive until all of its elements 
have been read, that is until all iteration nodes within this Extended 
DP (EDP) have been visited. In Figure 5, DP A is extended (dotted 
line) from iterator value 3 to iterator value 5 in the i dimension. 
There is overlap in a dimension if for one or more iterator values 
of that dimension, the two EDPs both have elements. EDP A and 
EDP B are thus overlapping in the i and k dimensions, but not in 
the j dimension. 
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Figure 5: Overlap between EDPs 

If all dimensions, SDs and NDs, are partially overlapping, that is 
the EDPs cover some of the same nodes in iteration space, the 
dependencies will be alive at least partially simultaneously, regard-
less of the chosen execution ordering. Elements are produced 
and/or consumed at the same point in time. EDP A and C have this 
kind of overlap in Figure 5. If none of the EDPs' SDs are overlap-
ping, the dependencies can not be alive simultaneously. If some of 
the NDs are overlapping, the EDPs may however alternate in being 
alive. EDP A and F can never be alive simultaneously since no 
dimensions are overlapping. EDP A and E can not be alive simul-
taneously either, since none of the SDs are overlapping. They are 
overlapping in ND j, however, so if this dimension is placed out-
ermost, the two dependencies will alternate in being alive. 
The most complex form of overlap occurs when two EDPs are 
overlapping in one or more dimensions, including at least one SD, 
but still not in all dimensions. Whether the two dependencies are 
alive simultaneously will then depend on the execution ordering. 
Simultaneous aliveness is avoided if at least one dimension with-



out overlap (SD or ND) is fixed outside all overlapping SDs. EDP 
A and B are overlapping in all dimensions except the j dimension, 
which must hence be placed outside i to avoid simultaneous alive-
ness. An interesting consequence of this is that the lower bound on 
the size of the B dependency is doubled. The cost of avoiding si-
multaneous aliveness must therefore be balanced against the in-
creased dependency size. EDP B and F are only overlapping in the 
j dimension, so ND i can be placed outermost, which is optimal for 
both dependencies. Table 1 summarizes the overlap of spanning 
and nonspanning dimensions for the EDPs of Figure 5. 

 B C D E F 
A SD=i ND=k SD=i,j ND=k SD=i,j ND=k ND=j  
B  SD=j ND=k SD=j ND=k  SD=j 
C   SD=i,j ND=k SD=j,k SD=j,k 
D    SD=j,k SD=j,k 
E     SD=i,k  

Table 1: Dimensions with overlap for EDPs in Figure 5 

3.4 Simultaneous Aliveness for Multiple Signals 
More than two dependencies may be alive simultaneously. The 
detection of this is not straightforward, since one dependency may 
be alive simultaneously with for example two others, but not nec-
essarily at the same point in time. In Figure 5, EDP A is overlap-
ping with both EDP B and E, but EDP B and E do not overlap. It is 
therefore impossible for all three of them to be alive simultane-
ously. As before, the most complex situation occurs when only a 
subset of the dimensions is overlapping. EDP D, E and F are all 
overlapping with each other but depending on the chosen execu-
tion ordering, only one, any combination of two, or all three will 
be alive partially simultaneously.  

for each iterator value of pseudo-dimension t { 
 for each dimension di { 
  generate list ( length = |di| ) 
  for each EDP 
   place start and end points at corresponding list location 
  traverse list and group EDPs overlapping in dimension di 
 } 
 sort groups of EDPs according to their number of EDPs 
 for each group starting with the largest group { 
  intersect the group with all smaller groups  
  remove groups that are fully covered by the current group 
} } 
return groups of possibly partially simultaneously alive EDPs 

Figure 6: Simultaneous aliveness for multiple dependencies 

To overcome the complexity of deciding whether three or more 
dependencies really are alive simultaneously the task is divided 
into two consecutive steps. First dependencies that may be alive 
simultaneously are grouped, followed by an inspection to reveal if 
they can really be alive simultaneously for a given partially fixed 
execution ordering. An algorithm that groups EDPs is given in 
Figure 6. Its use will now be demonstrated using the iteration 
space of Figure 5. In this case, the pseudo dimension t has only one 
iterator value and is therefore ignored. Table 2 displays the list for 
one of the three dimensions, the j dimension, after insertion of each 
EDP's start (X_s) and end (X_e) points in that dimension. The 
traversal of the lists detects overlapping EDPs by adding EDPs to a 
group as long as start points are encountered. When one or more 
end points are encountered, the current group is terminated and a 
new one is started without the EDPs that have ended. For the j 
dimension in Table 2 EDPs A, E, C, and D are added to the first 

group at iterator values 0, 1, and 2. At iterator value 2 the end 
points of EDP A and E are encountered, so the first group is fin-
ished and a second one is started containing C and D. At iteration 
node 3, EDPs B and F are added to this second group. The groups 
for this and the other dimensions are summarized in Table 3. It 
also shows the sorting of all groups from all dimensions and the 
removal of covered groups. Finally it lists the combined upper 
bounds on the size for all DPs in each group as estimated using the 
technique presented in [10]. 

Val. 0 1 2 3 4 
 A_s E_s C_s D_s A_e E_e B_s F_s B_e C_e D_e F_e 

Table 2: List of start and end points for EDPs in j dimension 

i AB, ACD, EF 
j AECD, CDBF 
k ABCD, CDEF 

ABCD 
AECD 
CDBF 
CDEF 
ACD 
AB 
EF 

ABCD 
AECD 
CDBF 
CDEF 
ACD 
AB 
EF 

ABCD 
AECD 
CDBF 
CDEF 

EF 
 

41 
49 
35 
43 

In each dimension Sorted Covered 
by ABCD 

Covered 
by CDEF 

Combined 
size 

Table 3: Groups of overlapping EDPs 

The next step is to perform a check of the possible simultaneous 
size of the different groups, starting with the biggest group. The 
global upper and lower bounds are found when the lower bound 
for one group is bigger than the combined size of the next group. 
Starting with group AECD it can be seen from Table 1 that EDPs 
A and E only overlap in ND j. The group is hence split into two 
new groups, ACD and ECD, both of which are covered by larger 
groups. CDEF is now the largest group. C and D are overlapping 
in all dimensions, and will consequently be alive simultaneously 
independent of the chosen execution ordering. E and F are over-
lapping in SDs i and k and will thus be alive simultaneously unless 
the dimension without overlap, j, is placed outermost. Both C and 
D are overlapping with E and F in SDs j and k, so these pairs will 
be alive simultaneously unless i is placed outermost. For all four to 
be alive simultaneously k must consequently be placed outermost. 
The actually simultaneously alive EDPs for three partially fixed 
execution orderings, and their upper and lower bounds are given in 
Table 4. The upper and lower bounds of groups of EDPs are found 
through addition of the bounds of the individual DPs using the 
methodology from [10]. Since these may require conflicting order-
ings they may not be reachable simultaneously. Even closer in-
spections of the groups are therefore needed to ensure that the 
bounds are reachable. In this case no conflicting orderings exists 
and it can be concluded that for group CDEF, the lowest storage 
requirement can be reached if i is placed outermost. Note that the 
ordering that results in the largest number of simultaneously alive 
dependencies is not the ordering with the largest storage require-
ment. This is because this ordering results in smaller individual 
dependencies. 

Outermost Simultaneously alive UB LB 
i C and D or E and F 20 12 
j C and D and E or C and D and F 31 27 
k C and D and E and F 23 18 

Table 4: Actual simultaneous aliveness for group CDEF 

The discussion above covers simultaneously alive dependencies. 
Multiple dependencies may however stem from the same, or partly 



the same, array elements. This must be taken into account in such a 
way that only the dependency with the longest lifetime for a given 
partial ordering is counted.  

4. APPLICATION DEMONSTRATORS 
4.1 MPEG-4 Motion Estimation Kernel 
MPEG-4 is a standard for the format of multi-media data streams 
in which audio and video objects can be used and presented in a 
highly flexible manner, [17]. An important part of the coding of 
this data stream is the motion estimation (ME) of moving objects. 
See [3] for a more detailed description of this part of the standard. 
This real-life application will now be used to demonstrate the ef-
fectiveness of the new methodology for detection of simultane-
ously alive dependencies during storage requirement estimation. 
The code for a part of the ME algorithm is given in Figure 7. The 
sad-array is the only one that is both produced and consumed 
within the boundaries of the loop nest. For this example, the de-
pendency detection technique presented in [1] is utilized. This 
results in a number of basic sets (signals) and their dependencies, 
placed in a common iteration space. There are eight basic sets, 
sad0 to sad6 and res0. Dependencies exist from sad(n) to sad(n+1) 
and also from sad5 to sad3 and from sad6 to res0. Table 5 lists the 
start and end points for the dependencies’ EDPs in dimensions y_p 
and x_p. sad01s indicates the starting point for the EDP of the 
dependency from sad0 to sad1. For dimensions y_s and x_s, all 
dependencies start at iterator value 0 and end at 31. These dimen-
sions are furthermore NDs for all dependencies, and have conse-
quently no influence on the degree of simultaneous aliveness, ex-
cept for causing dependencies to alternate in being alive. These 
dimensions are therefore ignored in the sequel. Using the algo-
rithm in Figure 6, Table 5 is inspected to reveal groups of possibly 
simultaneously alive dependencies. After removal of fully covered 
groups, seven groups remain, differing in size from 60416 to 4096.  

for (y_s=0; y_s<=31; y_s++)  
 for (x_s=0; x_s<=31; x_s++)   
  for (y_p=0; y_p<=15; y_p++)    
   for (x_p=0; x_p<=15; x_p++) 
    if ((x_p==0)&(y_p==0)) sad[y_s][x_s][y_p][x_p]= 

       f1(curr[y_p][x_p], prev[y_s+y_p][x_s+x_p]); 
    else if ((x_p==0)&(y_p!=0)) sad[y_s][x_s][y_p][x_p]=  

       f2(sad[y_s][x_s][y_p-1][15], curr[y_p][x_p],  
prev[y_s+y_p][x_s+x_p]); 

    else sad[y_s][x_s][y_p][x_p]=    
        f3(sad[y_s][x_s][y_p][x_p-1], curr[y_p][x_p], 

prev[y_s+y_p][x_s+x_p]); 
    if ((y_p==15)&((x_p==15)) result[y_s][x_s]= 

 f4(sad[y_s][x_s][15][15]); 

Figure 7: MPEG-4 motion estimation kernel 

The final step is now to inspect each group to find the dependen-
cies that are really alive simultaneously for a certain partially fixed 
execution ordering. For this example, data dependencies in the 
code forces x_p to be fixed inside y_p, since dependencies exist 
from (y_p,x_p)-node (i,15) to (i+1,0) for 0 ≤ i ≤ 14. Apart from 
this, the ordering of the dimensions, including y_s and x_s, can be 
chosen arbitrarily. The largest group consists of dependencies 
sad23, sad34, sad44, sad45, and sad53. Table 6 summarizes in 
which dimensions the dependencies are overlapping. Note that if 
an overlap only covers the extension of one of the EDPs, and a 
dependency is present between the two basic sets in question, then 
the two dependencies will not be alive simultaneously. Direct in-
place mapping can be performed between the two basic sets. Most 

of the remaining overlap either occurs only in NDs, e.g. between 
sad44 and sad53, or in an SD that, due to the partially fixed execu-
tion ordering, is known to be placed inside a non-overlapping di-
mension, e.g. between sad23 and sad45. These overlaps will not 
cause simultaneous aliveness between the dependencies. The re-
maining two overlaps to be investigated further are thus the ones 
between sad23 and sad44, and between sad34 and sad53. The SD 
y_p is in both cases caused by the negative dependency discussed 
above, and can be removed when x_p is ordered inside y_p. The 
conclusion is thus that no dependencies are overlapping in this 
group, and similar reasoning reveals that this is the case for the 
other groups as well. This is however very important information 
for the designer, since the focus can then be solely on the task of 
minimizing the size of individual dependencies [10]. 

Dim 0 1 … 14 15 

y_p 

sad01s  sad11s 
sad12s  sad23s 
sad01e  sad11e 

sad12e 

sad34s 
sad44s 
sad45s 
sad53s 
sad23e 

 sad45e sad46s 
sad6res0s 

sad53e   sad34e 
sad44e  sad46e 

sad6res0e 

x_p 

sad01s  sad34s 
sad23e  sad53e 

sad11s 
sad44s 
sad01e 
sad34e 

 sad12s 
sad45s 
sad46s 
sad11e 
sad44e 

sad23s  sad53s 
sad6res0s 

sad12e  sad45e 
sad46e 

sad6res0e 

Table 5: Start and end points for EDPs 

 sad34 sad44 sad45 sad53 
sad23 Not sim. SD=y_p SD=x_p SD=x_p 
sad34  Not sim. ND=y_p SD=y_p,x_p 
sad44   Not sim. ND=y_p 
sad45    Not sim. 

Table 6: Overlapping dimensions for the largest group 

4.2 SVD Updating Algorithm for Beamforming 
The results from the storage requirement estimation can also be 
used as feedback during interactive or tool driven global loop reor-
ganization, [5]. This will now be demonstrated using the Singular 
Value Decomposition (SVD) algorithm, for instance required in 
beamforming [12]. The SVD algorithm continuously updates ma-
trix decompositions as new rows are appended to a matrix. Figure 
8 shows the two major arrays, R and V, and the important loop nest 
and statements for their production and consumption. The figure 
also contains two minor arrays used for the production of R and V, 
the theta and phi arrays. After orthogonalization, see [9], statement 
S.3, S.4, and S.5 each produce elements at all iteration nodes 
within their i and j loops. 
The following dependencies exist in the USVD code of Figure 8: 
S12, S13, S24, S25, S34, S41, S42, S43, and S55. S12 indicates 
that there is a dependency from statement S.1 to statement S.2. 
Due to data dependencies not shown in Figure 8, the k-dimension 
must be placed outermost during the production of the R-array. 
This is however not necessary for the production of the V-array, as 
long as the necessary phi-values are available. A comparison of the 
resulting storage requirement for two alternative loop organiza-
tions, with or without a loop body splitting that places the V-array 
in a separate loop nest, is therefore needed. The second situation, 
where the loop structure inside the k-loop is kept, is focused first. 
A common iteration space is generated as outlined in Figure 4. A 
pseudo t dimension with three iterator values is in this case added 
inside the k dimension since k is fixed outermost. Statements S.1 



and S.2 are executed for t=0, S.3 for t=1, and S.4 and S.5 for t=2. 
An investigation of the overlap between the dependencies’ EDPs 
in the i and j dimensions reveals that all EDPs but one, S34, are 
overlapping for t=0. For t=1 three EDPs are not overlapping (S12, 
S42, and S41). Finally for t=2, two EDPs are not overlapping (S12 
and S13). None of these groups are fully covered by others, so all 
three must be investigated further. Starting with the group for t = 
0, intersection of the DPs produced by S.4 reveals that all array 
elements are covered by the DP of the S43 dependency. Since it 
also has the longest lifetime independent of the chosen execution 
ordering, the others can be ignored. Furthermore, the DPs of S24 
and S25 overlap completely, so only one needs to be taken into 
account. The same holds for the DPs of S12 and S13. S13 has the 
longest lifetime, so it is considered further. Similar reasoning can 
be used for the two other groups, leaving simultaneously alive 
dependencies as shown in Table 7a. Again using the estimation 
methodology for individual dependencies presented in [10], Table 
7b shows the combined sizes for each group. 

  for (k=0; k<=n-2; k++){ 
S.1  theta[k] = f1( R[…][…][2*k] ); 
S.2  phi[k] = f2( R[…][…][2*k], theta[k] ) ; 
   for (i=0; i<=n-1; i++) 
    for (j=0; j<=n-1; j++) 
     ... 
S.3    else  R[i][j][2*k+1] = f3( R[i][j][2*k], theta[k] ); 
 

   for(i=0;i<=n-1;i++) 
    for(j= 0;j<=n-1;j++) { 
     ... 
S.4    else R[i][j][2*k+2] = f6( R[i][j][2*k+1], phi[k] ); 
     ... 
S.5    else V[i][j][k+1] = f9( V[i][j][k], phi[k] ); 
  }  } 

Figure 8: USVD algorithm, diagonalization loop nest 

 t=0 t=1 t=2 
a) S13  S24  S43  S55 S13  S24  S43  S55 S24  S43  S55 
b) 202 202 201 

Table 7: a) Simultaneously alive dependencies without loop 
body split and b) combined size with k outermost (n=10) 

To produce a common iteration space after a loop body split, two 
pseudo dimensions are introduced, t1 outermost and t2 inside the k 
dimension. Statements S.1 and S.2 are executed when t1=0 and 
t2=0, S.3 is executed when t1=0 and t2=1, S.4 is executed when 
t1=0 and t2=2, and S.5 is executed for t1=1 and t2=0. Note again 
that the introduction of the pseudo dimensions is only needed dur-
ing the estimation. They are not necessarily used for the final im-
plementation. Table 8 gives the results of the investigation into the 
simultaneously alive dependencies and their combined storage 
requirements. As can be seen, the maximal size of simultaneously 
alive dependencies is approximately halved compared to the result 
without a loop body split. This information is vital for the designer 
when comparing different implementation alternatives. 

 t1=0&t2=0 t1=0&t2=1 t1=0&t2=2 t1=1&t2=0 
a) S13  S24  S43 S13  S24  S43 S24  S43 S24  S55 
b) 110 110 109  
c)    10/19 

Table 8: a) Simultaneously alive dependencies after loop body 
split, b) their combined size with k outermost, and c) bounds 

on combined size with no ordering fixed (n=10) 

5. CONCLUSIONS 
This paper presented a novel technique for detection of partially 
overlapping signals in high-level application code. This is a crucial 
step during storage requirement estimation to allow the designer to 
get the global view during design exploration, and to minimize 
storage requirements. In contrast to previous techniques, we pro-
vide upper and lower bounds with a partially fixed execution or-
dering. Design examples have shown how the methodology can be 
used to guide the designer, and compare implementation alterna-
tives, resulting in a solution with low storage requirement.  
The work in this paper was supported in part by the Norwegian 
Research Council through research project 131359 CoDeVer. 
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