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Abstract

Most embedded systems have limited amount of memory. In contrast, the
memory requirements of code (in particular loops) running on embedded
systems is significant. This paper addresses the problem of estimating the
amount of memory needed for transfers of data in embedded systems. The
problem of estimating the region associated with a statement or the set of
elements referenced by a statement during the execution of the entire set
of nested loops is analyzed. A quantitative analysis of the number of el-
ements referenced is presented; exact expressions for uniformly generated
references and a close upper and lower bound for non-uniformly generated
references are derived. In addition to presenting an algorithm that computes
the total memory required, we discuss the effect of transformations on the
lifetimes of array variables, i.e., the time between the first and last accesses
to a given array location. A detailed analysis on the effect of unimodular
transformations on data locality including the calculation of the maximum
window size is discussed. The termmaximum window sizeis introduced
and quantitative expressions are derived to compute the window size. The
smaller the value of the maximum window size, the higher the amount of
data locality in the loop.

1 Introduction

An important characteristic of embedded systems is that the hard-
ware can be customized according to the needs of a single or a small
group of applications. An example of such customization is param-
eterized memory/cache modules whose several topological param-
eters (e.g., total capacity, block size, associativity) can be set de-
pending on the data access pattern of the application at hand. It
many cases, it is most beneficial to use the smallest amount of data
memory that satisfies the target performance level [20]. Employ-
ing a data memory space which is larger than needed has several
negative consequences. First, per access energy consumption of a
memory module increases with its size [2]. Second, large memory
modules tend to incur large delays, thereby increasing the data ac-
cess latency. Third, large memories by definition occupy more chip
space. Consequently, significant savings in energy/area/delay might
be possible be being more careful on selecting a memory size.

Unfortunately, selecting the minimum memory size (without
impacting performance) is not always easy. This is because data
declarations in many codes are decided based on high-level repre-
sentation of the algorithm being coded not based on actual memory
requirements. The important point here is that not every data item
(declared data location) is needed throughout the execution of the
program. That is, at any given point during the execution, typically,
only a portion of the declared storage space (e.g., array size) is ac-
tually needed. Therefore, the total data memory size can be reduced
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by determining themaximumnumber of data items that are live at
any point during the course of execution. Two complementary steps
to achieve this objective is (i) estimating the memory consumption
of a given code, and (ii) reducing the memory consumption through
access pattern transformations.

The problem of estimating the minimum amount of memory
was recently addressed by Zhao and Malik [20].In this paper, we
present a technique that (i) quickly and accurately estimates the
number of distinct array accesses and the minimum amount of mem-
ory in nested loops, and (ii) reduces this number through loop-level
transformations.Nested loops are of particular importance as many
embedded codes from image and video processing domains manip-
ulate large arrays (of signals) using several nested loops. In most
cases, the number of distinct accesses is much smaller than the size
of the array(s) in question and the size of the loop iteration space.
This is due to the repeated accesses to the same memory location
in the course of execution of the loop nest. The proposed technique
identifies this reuse of memory locations, and takes advantage of it
in estimating the memory consumption as well as in reducing it.

The main abstraction that our technique manipulates is that of
data dependence and re-use [19]. Since many compilers that target
array-dominated codes maintain some sort of data dependence in-
formation, implementing our estimation and optimization strategy
involves only a small additional overhead. Our experimental results
obtained using a set of seven codes show that the proposed tech-
niques are very accurate, and are capable of reducing the memory
consumption significantly through high-level optimizations.

The rest of this paper is organized as follows. Section 2 presents
a brief background. Section 3 presents our techniques for estimat-
ing the number of distinct references to arrays accessed in nested
loops. In Section 4, we present a loop transformation technique
that minimizes the maximum amount of memory required. Section
5 presents experimental results on seven benchmarks. Related work
is discussed in Section 6, and Section 7 concludes with a summary.

2 Background

DSP programs mainly consist of perfectly nested loops (loop nests
in which every statement is inside the innermost loop) that access
single and multi-dimensional arrays [19, 20]. Therefore, we will
limit our discussion to these cases. In our framework, each exe-
cution of ann-level nested loop is represented using aniteration
vector~I = (i1; i2; � � � ; in), whereij corresponds tojth loop from
the outermost position. We assume that the array subscript expres-
sions and loop bounds areaffine functionsof enclosing loop in-
dices and loop-independent variables [19]. Each reference to an
d-dimensional arrayU is represented by anaccess(or data refer-
ence) matrixAD and anoffset vector~b such thatAD

~I + ~b is the
element accessed by a specific iteration�I [19]. The access matrix
is ad � n matrix. An array element which is referenced (read or
written) more than once in a loop nest constitutes areuse.The reuse
count depends on the number of references to the array in the loop
(r), the relative values of the loop nest levels and the dimensionality
(d) of the array, and also the loop limits. If iterations~i and~j access
the same location, we say that thereuse vectoris~j �~i: The level
of a reuse vector is the index of the first non-zero in it. Consider the
following loop nest:



for i = 1 toN do
for j = 1 toN do

for k = 1 toN do
� � �U [i; k � 3] � � �

The iteration vector is(i; j; k)T (note that we write a column vector
as transpose of the corresponding row vector), , the data access ma-

trix for arrayU is
�

1 0 0
0 0 1

�
; and the offset vector is

�
0

�3

�
:

For an array where its reference matrix is a non-square matrix
(that is, if the dimensiond of the array and the loop nestingn is
the same) the number of times an element is referenced is at mostr
wherer is the number of references to the array in a loop. Therefore
the reusefor a data element is at mostr � 1. For an array whose
dimension is one less than the loop nest, the reuse of an element
is along the direction of the null space of the access matrix and
the amount of reuse due to an element depends on the loop bounds.
Arrays whose number of dimensions is one less than the depth of the
nested loop enclosing them are very common in DSP applications
[2].

2.1 Data Dependences and Loop Transformations

Dependence (and reuse) analysis is critical to the success of opti-
mizing compilers [18, 19]. We deal with sets of perfectly nested
loops, whose upper and lower bounds are all linear, enclosing a
loop body with affine array references. That is, each subscript of an
array variable index expression must be an affine expression over
the scalar integer variables of the program. We assume familiarity
with definitions of the types of dependences [19].

Dependences arise between two iterations~I and ~J when they
both access the same memory location and one of them writes to
the location [19]. Let~I execute before~J in sequential execution;
the vector~di = ~J � ~I is referred to thedependence vector[19].
This forces sequentiality in execution. The level of a dependence
vector is the index of the first non-zero element in it [19]. Let
~I = (I1; : : : ; In) and ~J = (J1; : : : ; Jn) be two iterations of a
nested loop such that~I � ~J (read~I precedes or executes before~J in
sequential execution) and there is a dependence of constant distance
~di between them. Applying a linear transformationT to the itera-
tion space (nest vector) also changes the dependence matrix since
T ( ~J)�T (~I) = T ( ~J�~I) = T ~di. All dependence vectors arepos-
itive vectors,i.e., the first non-zero component should be positive.
We do not includeloop-independentdependences which are zero
vectors. A transformation is legal if the resulting dependence vec-
tors are stillpositivevectors [19]. Thus, the linear algebraic view
leads to a simpler notion of the legality of a transformation. For
ann-nested sequential loop, then� n identity matrix (In) denotes
sequential execution order. Any unimodular transformation can be
realized through reversal, interchange and skewing [17].

2.2 Distinct references

The number of distinct references (Ad) can be found using depen-
dences in the loop as shown in Figure 1. Then-dimensional cube
(in the case of 2-nested loop, this is a square) formed by the depen-
dence vectors as shown in Figure 1 represents the reused area (the
shaded area) in the iteration space. Consider the following exam-
ples:

Example 1(a): for i = 1 to 10 do
for j = 1 to 10 do
� � �A[i; j] � � �
� � �A[i� 3; j + 2] � � �

Example 1(b): for i = 1 to 10 do
for j = 1 to 10 do
� � �A[2 � i+ 3 � j] � � �

Dependence  ( 3, −2)

i

j 

Figure 1: Iteration space for a 2-nested loop.

In both Example 1(a) and 1(b), the dependence vector is(3;�2).
Note that in the first example, the dimensionality of the array is the
same as that of the loop nest level, the number of references (r) is 2
and the reuse count is at most 1. (The number of times an element
of the array is referenced is at most 2).

In the second example, the dimensionality is less than the loop
nest level, the number of references (r) is 1, and the maximum reuse
count for an element isd10=3e = 4. The total reuse (i.e., the area
of the shaded region) is the same in both the examples which is
(10� 3)� (10� 2) = 56. Let the dependence vector be(d1; d2).
In general, the signs ofd1 andd2 do not affect the amount of reuse.
In a nested loop of sizeN1 � N2, the amount of reuse is given
by (N1 � jd1j) � (N2 � jd2j): We consider the cases where the
dimension of the array accessed within the loop is the same as the
nest level and where the dimensionality is less than the loop nesting
level. These cases are commonly found in DSP codes [2].

2.3 Uniformly generated references and maximum win-
dow size

We assume that all the references to an array areuniformly gener-
ated [9, 5]. Uniformly generated references are those, for which
the access matrices are the same but the offset vectors are different,
i.e., the subscript functions of the different references differ only in
the constants. An example of a loop with a uniformly generated
references is shown below:

for i = 1 toN1 do
for j = 1 toN2 do

X[ 2i+ 3j +2] = Y [ i+ j ]

Y [ i + j +1] = X[ 2i+ 3j +3]

Here, the two references toX are of the form2i+ 3j + constant

and both references to arrayY are of the form i + j + constant.
We use the notion of a reference window of an array in loop nest
(which is different form the notion of the reference window of a de-
pendence as used by [5, 9]) that allows us to deal with each distinct
array as a whole and not on a per-reference-pair-to-the-array basis.

The amount of memory required is a function of the number of
variables which will be accessed again in future. We now introduce
a notion that is useful in this context. Thereference windowWX(~I)

(where~I = (I1; : : : ; In) is an iteration of then-nested loop) is the
set of all elements of arrayX that are referenced by any of the
statements in all iterations~J1 �= ~I (read~J1 precedes in sequential
execution or is the same as~I) that are also referenced in some (later)
iteration ~J2 such that~J2 � ~I (read ~J2 follows ~I). This allows us
to precisely the define those iterations which need a specific value



in local memory. The size of the windowWX(~I) is the number
of elements in that window. Themaximum window size(MWS)
is given bymax~I

��WX(~I)
�� and is defined over the entire iteration

space. In the case of multiple arraysX1; : : : ; XK , the maximum
reference window size is:max~I

PK

j=1

��WXj

�
~I
���

Note that the reference window is adynamicentity, whose shape
and size change with execution. For nested loops with uniformly
generated references, the maximum window size (MWS) is a func-
tion of the loop limits. The smaller the value of MWS, the higher
the amount of data locality in the loop nest for the array. For sim-
plicity of exposition, we assume that there are multiple uniformly
generated references to a single array in a loop nest. The results
derived here easily generalize to multiple arrays and higher levels
of nesting.

3 Estimating the number of distinct accesses in nested
loops

3.1 Loops with Array Dimension d = Nesting n

With just one reference to each array in such a nest, the number of
distinct accesses equals the total number of iterations. Therefore,
only the case where there are multiple references to the same array.
For example, in relaxation codes, this is common.

In general forr references in a loop where the array dimension
is the same as the loop nesting level there are a total ofr(r�1)

2
de-

pendences. Note that there is at least one node in the dependence
graph which is a sink to the dependence vectors from each of the
remainingr� 1 nodes. In other words there exists a statement with
r � 1 direction vectors directed from each of the remaining state-
ments. Ther�1 dependences due to all the other references to this
reference gives the amount of reuse. Consider a two-level nested
loop in which there arer uniformly generated references. Let the
dependences on one reference due to all other references be�

d11 d21 � � � dr�1;1
d12 d22 � � � dr�1;2

�
:

The amount of reuse for that array is: reuse=
Pr�1

i=1
(N1�jdi1j)(N2�

jdi2j) and the number of distinct elements is given byAd = N1 �
N2 � r� reuse: Consider the following loop (in Example 2) where
there are two uniformly generated references to the array A and the
access matrix is non-singular.
Example 2: for i = 1 toN1

for j = 1 toN2

S1: � � �A[i; j] � � �
S2: � � �A[i� 1; j + 2] � � �

Here there is a dependence(1;�2) from statementS1 to state-
mentS2. This dependence is used to calculate the amount of reuse
for each element. The amount of reuse is(N1 � 1)(N2 � 2); and
the number of distinct accesses to the array A in the above loop is
Ad = N1 �N2 � 2� reuse:
Example 3: for i = 1 to 10

for j = 1 to 10
S1: � � �A[i; j] � � �
S2: � � �A[i� 1; j] � � �
S3: � � �A[i; j � 1] � � �
S4: � � �A[i� 1; j � 1] � � �

The dependences from statementS1 to all other statements are
(1; 0); (0; 1); (1; 1): The amount of reuse is calculated as reuse=
(10 � 1)(10 � 0) + (10 � 0)(10 � 1) + (10 � 1)(10 � 1) =
90 + 90 + 81 = 261; and the the number of distinct accesses is:
Ad = 10� 10� 4� 261 = 139: Thus, we see that for cases where
the loop nesting level is the same as the dimension of the array
accesses in the loop there is only one dependence vector between a

pair of statements and the maximum reuse for a particular element
is at mostr�1. In other words, there are a maximum ofr references
to an array element.

3.2 Loops with Array Dimension d = n� 1

Single Reference Now consider the case where the dimension
of the array is at least one less than the loop nest. Ifd = n � 1
then there is reuse along the direction of the null space vector of the
access matrix.
Example 4
for i = 1 to 20 do

for j = 1 to 10 do
� � �A[2i+ 5j + 1] � � �

Here the reuse vector is(5;�2) which is the same as the de-
pendence vector for the loop. We now look at then dimensional
cube formed by the dependence vector (in this case, a square) on
the iteration space which represents the reused elements of the ar-
ray. Note that all elements within the square formed by the vector is
a sink to a direction vector which is a reused element by definition.
Therefore, for the above example where there is a single statement,
we can obtain the figure for the number of data elements reused in
the array as:

reuse= (N1 � d11)(N2 � jd21j) = (20� 5)(10 � 2) = 120;

and the number of distinct accesses to the array is

Ad = N1 �N2 � reuse= 20� 10� 120 = 80:

Now consider the case of a 2-dimensional array accessed in a three
nested loop.
Example 5:
for i = 1 to 10 do

for j = 1 to 20 do
for k = 1 to 30 do
� � �A[3i + k; j + k] � � �

Here the reuse vector is(1; 3;�3); the reuse is calculated as:

reuse= (10 � 1)(20� 3)(30� 3) = 4131;

and the number of distinct accesses is

Ad = 10� 20 � 30� 4131 = 1869:

Multiple References The case of multiple references is not dis-
cussed in this paper for lack of space.

It is important to note that our techniques is exact for uniformly
generated references.

Non-uniformly Generated References The distinct elements
in loops where there are non-uniformly generated references are
more complex to compute. The dependence vectors for these loops
are distance vectors and thus it is not possible to represent the ex-
act reuse using the dependence vectors. Consider the following
example:
Example 6:
for i = 1 to 20 do

for j = 1 to 20 do
S1 : � � �A[3i+ 7j � 10] � � �
S2 : � � �A[4i� 3j + 60] � � �

Here the dependences are distance vectors and an exact depen-
dence cannot be obtained. We give lower and an upper bound on
the number of distinct accesses on the array A. We have the upper
and lower bounds on both the functionsf1 = 3i + 7j � 10 and
f2 = 4i � 3j + 60. We haveLB1 � f1 � UB1, LB2 � f2 �



UB2, LB1 = 0; LB2 = 4; UB1 = 190; UB2 = 137: Therefore
the smallest lower boundLBmin = 0, and the largest upperbound
UBmax = 190:

The upper bound on the number of references =190� 0 + 1 =
191. The lower bound on the number of references =191 � (3 �
1)(7�1)�(3�1)(7�1) = 179. The actual number of references
is 181. So a close bound on the number of distinct accesses to the
array can be obtained by the above algorithm.

4 Minimizing the maximum window size using transfor-
mations

Consider the following example which is a minor variant of the ex-
ample from [5]:
Example 7:
for i = 1 to 20 do

for j = 1 to 30 do
� � �X[2i� 3j] � � �

Eisenbeis et al. [5] mention that the cost of the window (the
same as MWS) for this loop is89. They use only two transforma-
tions: loop interchange and reversal. On applying interchange, the
MWS reduces to41. On reversal applied to the original loop, the
cost becomes86 while reversing the interchanged loop reduces the
cost to36. Using the technique presented here, the cost or MWS
for this loop can be reduced to1, i.e., all iterations accessing any
element of the arrayX can be made consecutive iterations of an in-
ner loop. The only dependence in this example is the vector(3; 2).
We use the following legal transformation,T :

T =
�

2 �3
1 �1

�
Even though the technique in [14] can be used to derive this trans-
formation, there are situations where the techniques presented here
improveslocality while that in [14] does not improve locality. Con-
sider the loop shown in the next example.
Example 8:
for i = 1 to 25 do

for j = 1 to 10 do
X[2i+ 5j + 1] = X[2i + 5j + 5]

The distance vectors for this loop are:(3;�2); (2; 0); (5;�2);
(3;�2) is the flow dependence,(2; 0) is an anti-dependence and
(5;�2) is the output dependence vector. These are the only direct
dependences. Li and Pingali use transformation matrices whose
first row is either(2; 5) or (�2;�5). Any transformation that uses
(2; 5) as its first row is illegal because of the distance vector(3;�2);
the first component of(3;�2) after the transformation is((2; 5) �
(3;�2)T = �4 is < 0). Similarly any transformation that uses
(�2;�5) as its first row is illegal due to the distance vector(2; 0)
since((�2;�5) � (2; 0)T = �4 is < 0). The maximum window
size is50. Li and Pingali’s technique will not find any partial trans-
formation that can be completed to a legal transformation. Where
as, by applying techniques presented in the following sections, we
can apply the legal transformation,T :

T =
�

2 3
1 1

�
Applying T reduces the maximum window size to21. A combi-
nation of reversal and interchange does not change the maximum
window size from50.

4.1 Effect of Transformations on Locality

Consider a nested loop withr uniformly generated references to an
arrayX of the form: �1i + �2j + ck (k = 1; : : : ; r) as shown

below:
Example 9:
for i = 1 toN1 do

for j = 1 toN2 do
� � �X[�1i+ �2j + c1] � � �
� � �X[�1i+ �2j + c2] � � �
� � �
� � �X[�1i+ �2j + cr] � � �

We need to compute the effect of a legal unimodular transformation,
T :

T =
�
a b
c d

�
on the maximum window size . In addition to legality, we require
that the loop nest betileable [10, 18]; this permits us to use block
transfers, which are very useful to minimize the number of off-chip
accesses. The optimum transformation thus satisfies two condi-
tions:

1. legality condition for tiling

2. minimizes the maximum window size

We do not show the detailed derivation here. The maximum win-
dow size (MWS) is a function of the maximum inner loop span or
maxspan, which is the maximum trip count of the inner loop (dif-
ference between the upper and lower limits of the inner loop) over
all outer loop iterations [5].

MWS = maxspan��� (�2a� �1b) (1)

where� is the determinant of the transformation matrix. The sim-
plified expression derived for the maximum window size is:

MWS =

� ���N1�1
b

��+ 1
�
j�2a� �1bj if a� b � aN1 � bN2���N2�1

a

��+ 1
�
j�2a� �1bj if a� b � aN1 � bN2

(2)
Thus to minimize the maximum window size, the value of MWS
from equation (2) should be minimized among all unimodular trans-
formationsT that are valid for tiling. In many cases, MWS is min-
imized whenj�2a� �1bj is minimized.

4.2 Legal Transformation

Let ~di = (di;1; di;2) (i = 1; : : : ;m) be a set of dependence dis-
tance vectors. With uniformly generated references, all the depen-
dences in a nested loop are distance vectors. Given any two uni-
formly generated references�1i+�2j+ c1 and�1i+�2j+ c2, to
test for a dependence from iteration(i1; i2) to iteration(j1; j2), we
check for integer solutions within the loop range to the equation:

�1i1 + �2i2 + c1 = �1j1 + �2j2 + c2

i.e.,
�1(j1 � i1) + �2(j2 � i2) = c1 � c2:

We can writex1 = j1�i1 andx2 = j2�i2 where(x1; x2) is a dis-
tance vector. Since�1; �2; c1; c2 are constants, every solution gives
a distance vector. The smallest lexicographically positive solution
is the dependence vector of interest. In order for the transformation
T to render the loop nest tileable, the following conditions must
hold:

adi;1 + bdi;2 � 0 i = 1; � � � ; m

cdi;1 + ddi;2 � 0 i = 1; � � � ;m

We illustrate the use of technique through Example 2. Consider the
loop nest:
for i = 1 to 25 do

for j = 1 to 10 do



X[2i+ 5j + 1] = X[2i + 5j + 5]
The distance vectors for this loop are:(3;�2); (2; 0); (5;�2).

The problem here is to find a unimodular transformationT : T =�
a b
c d

�
such that the loop is tileable (which allows bringing

chunks of data which can fully operated upon before discarding),
i.e., represented by the following constraints:

� 3a � 2b � 0, 2a � 0, 5a � 2b � 0, 3c � 2d � 0, 2c � 0,
5c� 2d � 0.

and the maximum window size (MWS)

MWS =

� ��� 24
b

��+ 1
�
j5a� 2bj if a� b � 25a� 10b��� 9

a

��+ 1
�
j5a� 2bj if a� b � 25a� 10b

is minimized. Given the set of inequalities that should be satisfied,

3a� 2b � 0 =) b �
3a

2
=) 9b �

27a

2
:

Since,9b � 27a
2

, the second condition applies,i.e.,9b � 24a: So,

MWS =
�
9

a
+ 1
�
(5a� 2b) = 45 + (5a� 2b) �

18b

a

needs to be minimized subject to inequalities (2:5–2:10). We use
either a branch and bound technique (or general nonlinear program-
ming techniques) to minimize this function; the number of variables
is linear in the number of nested loops which is usually very small
in practice(� 4) resulting in small solution times. Alternately, if
we minimize5a� 2b subject to constraints (2:5–2:10), we get very
good solutions in practice. In the example loop nest,a = 2; b = 3 is
an optimal solution, giving an minimum MWS estimate of22 which
is very close to the actual minimum MWS which is21. In general,
the system of inequalities arising legal tiling requirement are com-
bined with eithera� b � aN1� bN2 or with a� b � aN1 � bN2

to form two groups of inequalities; if both the groups have valid
solutions, we find the best of these. If only one group has valid so-
lutions, the problem is a lot easier. For the solutiona = 2; b = 3,
the set of values forc andd which give rise to unimodularT while
satisfying tiling legality condition isc = 1; d = 1.

4.3 Maximum Window Size for 3-Nested Loops

The window size in 3-nested loops cannot be just derived using the
coefficients of the access functions. They are estimated using the
dependences, or, in other words the null space vector of the access
matrices. The window is a function of the null space vector and the
loop limits. The window size is estimated using the largest lexico-
graphic dependence vector since it spans the maximum region in
the iteration space. Consider the following loop:

for i = 1 toN1 do
for j = 1 toN2 do

for k = 1 toN3 do
� � �A[:::; :::] � � �

Let (d1; d2; d3) be the null space vector of the data reference matrix
of A. The Maximum Window Size (MWS) is given byn

d1(N2 � jd2j)(N3 � jd3j) + 1 if d2 � 0
d1(N2 � jd2j)(N3 � jd3j) + jd2j(N3 � jd3j) + 1 if d2 > 0

Note from the above result the maximum window size can be re-
duced ifd2 = 0 and further reduced ifd1 is made zero. In other
words, we get the best locality if we can find transformation such
that the dependences are carried by the inner levels.

code default MWSunopt MWSopt

2 point 4,096 65 (98.4%) 3 (99.9%)
3 point 1,024 68 (93.3%) 35 (96.5%)
sor 1,024 65 (93.6%) 35 (96.5%)

matmult 768 273 (64.4%) 273 (64.4%)
3step log 2,064 511 (75.2%) 122 (94.0%)

full search 2,064 252 (87.8%) 60 (97.1%)
rasta flt 5,152 2,040 (60.4%) 127 (97.5%)

Average Reduction: 81.9% 92.3%

Figure 2: Default and estimated memory requirements.

Example 10:
for i = 1 to 10 do

for j = 1 to 20 do
for k = 1 to 30 do
� � �A[3i + k; j + k] � � �

The access matrix is
�

3 0 1
0 1 1

�
. The reuse vector is(1; 3;�3);

the maximum window size is:MWS = 1(30 � 3)(20 � 3) +
3(30�3) = 540: As we can see from the above example, the max-
imum window size can be reduced if the dependences are carried by
inner levels. So, legal transformations which make the inner loop
carry dependences can be applied to reduce the window size and
thus increase locality. In other words, if the data reference matrix
is used as part of the transformation matrix, only the inner most
level can be made to carry the dependence. Thus, the maximum
window size reduces to one if a transformation matrixT with the
first two rows the same as the data reference matrix is used, i.e.,

T =

 
3 0 1
0 1 1
1 0 0

!
:

Our algorithm attempts to find a transformation that increases
the level of as many reuse vectors as possible. In the case of Exam-
ple 10, the reuse vector initially is(1; 3;�3); whose level is1 since
the first non-zero occurs in position1: After the use of transforma-
tionT; the reuse vector becomes(0; 0; 1) whose level is3: We omit
the details of the algorithm for lack of space.

5 Experimental Results

In order to evaluate the proposed estimation and optimization tech-
nique, we tested it using seven codes from image and video process-
ing domains:2 point and3 point are two-point and three-point
stencil codes, respectively;sor is a successive-over-relaxation code;
matmult is a matrix-multiply kernel; two different motion estima-
tion codes,3step log andfull search; and finally,rasta flt
is a filtering routine from MediaBench [13]

Figure 2 presents our results in columns 2 through 4. The col-
umndefault gives the normal memory size which is the total num-
ber of array elements declared.MWSunopt andMWSopt, on the other
hand, give the maximum window sizes (MWS) before and after op-
timizing the code, respectively. In columns 3 and 4, following each
number, within parentheses, we also give thepercentage reduction
with respect to the corresponding value in the second column. We
see from these results that estimating the memory consumption (re-
quirements) of the original (unoptimized) codes indicates a 81.9%
saving, and that for the optimized codes brings about an average
saving of 92.3%. Note that these savings directly correspond to
reduction in the required data memory sizes. We also need to men-
tion that except forrasta flt, our estimations were exact. In the
rasta flt code, our estimation is around 13% higher than the ac-
tual memory requirement for both the original and the optimized
code.



6 Related work

The estimation of the number of references to an array in order to
predict cache effectiveness in hierarchical memory machines have
been discussed by Ferrante et al. [7] and Gallivan et al. [8]. The
image of the iteration space onto the array space to optimize global
transfers have been discussed in [8]. A framework for estimating
bounds for the number of elements accessed only was given. Fer-
rante et al. gave exact values for uniformly generated references
but did not consider multiple references. Also, for non-uniformly
generated references, arbitrary correction factors were given for ar-
riving at lower and upper bounds for the number of distinct refer-
ences. We present a technique in this paper which gives accurate
results for most practical cases and very close bounds where ever
necessary. Clauss [3] and Pugh [15] have presented more expen-
sive but exact techniques to count the number of distinct accesses.
Researchers from IMEC [1, 4] and Zhao and Malik [20] present
techniques that estimate the minimum amount of memory required.
They do not address the effect of transformations on the amount of
minimum memory required.

Our work on loop transformations for improving data locality
bears most similarity to work by Gannon et al. [9, 8] and Eisen-
beis et al. [5]. They define the notion of a reference window for
each dependence arising from uniformly generated references. Un-
like our work, they do not use compound transformations – only
interchange and reversal are considered. In addition, the use of a
reference window and the resultant need to approximate the combi-
nation of these windows results in a loss of precision. Fang and Lu
[6] present a method to reduce cache thrashing that requires expen-
sive runtime calculation of which iterations are to be executed by
the same processor in order to maximize locality. Ferrante et al. [7]
present a formula that estimates the number of distinct references
to array elements; their technique does not use dependence infor-
mation. Kennedy and McKinley [11] discuss a strategy to decide
the best ordering of loops for locality; their technique is widely ap-
plicable but they do not use compound transformations which can
dramatically increase locality. Wolf and Lam [12, 18] develop an
algorithm that estimates temporal and spatial reuse of data using
localized vector space.Their algorithm combines reuses from mul-
tiple references. Their method does not use loop bounds and the
estimates used are less precise than the ones presented here. Their
method performs an exhaustive search of loop permutations that
maximizes locality. Li and Pingali [14] discuss the completion of
partial transformations derived from the data access matrix of a loop
nest; the rows of the data access matrix are selected subscript func-
tions for various array accesses (excluding constant offsets). While
their technique exploits reuse arising from input and output depen-
dences, it does not work well with flow or anti-dependences.

7 Summary

Minimizing the amount of memory required is very important for
embedded systems. The problem of estimating the minimum amount
of memory was recently addressed by Zhao and Malik [20]. In
this paper, we presented techniques that (i) quickly and accurately
estimates the number of distinct array accesses and the minimum
amount of memory in nested loops, and (ii) reduces this number
through loop-level transformations. The main abstraction that our
technique manipulates is that of data dependence and re-use [19].
Since many compilers that target array-dominated codes maintain
some sort of data dependence information, implementing our esti-
mation and optimization strategy involves only a small additional
overhead. Our experimental results obtained using a set of seven
codes show that the proposed techniques are very accurate, and are
capable of reducing the memory consumption significantly through
high-level optimizations. Work is in progress to extend our tech-
niques to include the effects of memory layouts of arrays, and to
extend the scope of transformations used.
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