Address Code Generation for Digital Signal Processors

Sathishkumar Udayanarayanan
Arizona State University
Tempe, AZ

usathish@ieee.org

ABSTRACT

In this paper we propose a procedure to generate code with
minimum number of addressing instructions. We analyze
different methods of generating addressing code for scalar
variables and quantify the improvements due to optimiza-
tions such as offset assignment, modify register optimiza-
tion and address register assignment. We propose an offset
assignment heuristic that uses k address registers, an op-
timal dynamic programming algorithm for modify register
optimization, and an optimal formulation and a heuristic
algorithm for the address register assignment problem.

1. INTRODUCTION

Traditionally DSP compilers have been unable to meet the
very tight constraints of code size and performance and the
critical DSP application modules have been hand-written.
The use of conventional code generation techniques in DSPs
results in very inefficient code due to limitations like non-
homogeneous register sets, specialized registers, special func-
tional units, and irregular datapaths. As a result, code gen-
eration and optimization specifically for DSPs has recently
received a lot of attention.

Address code generation is a very important part of code
generation since it can account for over 50% of all program
bits and 1 out of every 6 instructions for a typical general-
purpose processor [1]. In fact, for a set of programs in
MediaBench [4] that was compiled for Motorola DSP56000
family, we found that more than 55% of the instructions
involve address registers. Thus optimizing the addressing
code could lead to significant improvement in code size and
performance. In this paper, we consider the address genera-
tion unit of the DSP and develop an address code generation
methodology to utilize it efficiently.

The address generation unit (AGU) in a DSP typically
consists of multiple address registers, modify registers, and
an independent arithmetic unit. The address register can be
incremented or decremented or modified by adding or sub-
tracting the value in the modify register. This subsumption

Permissionto malke digital or hard copiesof all or part of this work for
personalor classroomuseis grantedwithout fee provided that copiesare
not madeor distributedfor profit or commercialadvantageandthatcopies
bearthis noticeandthefull citationonthefirst page.To copy otherwiseto
republisho poston senersor to redistrituteto lists, requiresprior specific
permissiorand/orafee.

DAC 2001, Junel8-22,2001,Las Vegas,Nevada,USA.

Copyright 2001ACM 1-58113-297-2/01/0006.$5.00.

Chaitali Chakrabarti
Arizona State University
Tempe, AZ

chaitali@asu.edu

of address arithmetic allows improvement of both code size
and performance. Liao [7] has modeled the problem of find-
ing the offsets for the variables and suggested heuristics to
solve it for the case of a single address register and multi-
ple address registers. Sudarsanam et. al. [10] consider the
performance benefits of having an auto-increment with in-
crements varying from —! to +I. Leupers and Marwedel [6]
have addressed the problem of finding the values that the
modify register should hold at different times in the pro-
gram. Leupers and David [5] present a genetic algorithm
based technique to handle arbitrary address register file sizes
and auto-increment ranges. They also integrate the alloca-
tion of modify registers into offset assignment. The problem
of generating addressing code given the offset assignment
and the number of address registers has been modeled using
network flow by Gebotys [3].

In this paper, we analyze different methods of generat-
ing addressing code for scalar variables and quantify the
improvements due to the following optimizations: offset as-
signment, modify register optimization and address register
assignment. Qur address generation procedure tries to re-
duce the number of addressing instructions by reducing the
number of jumps® during offset assignment and address reg-
ister assignment. In this paper we present

e A faster optimal formulation to perform address reg-
ister assignment given an offset assignment and the
number of address registers.

e An optimal dynamic programming based algorithm to
utilize the modify registers efficiently.

e Quantitative analysis of the different optimizations with
respect to number of addressing instructions and com-
putation time.

An analysis of the results on pseudo-random sequences
as well as sequences from procedures used in the DSPStone
benchmarks showed that use of these optimizations result
in a 70-80% overall reduction in the number of address-
ing instructions compared to the case when optimization
is not used. Furthermore, the modify register optimization
is effective and computationally inexpensive, and should be
included in any address generation procedure. Another in-
teresting conclusion is that the address register assignment
followed by modify register optimization makes it almost un-
necessary to have an intelligent offset assignment algorithm.

'A jump occurs when auto-increment/auto-decrement can-
not be used.

TO ADDR BUS

Figure 1: Address Generation Unit Model; AR
stands for Address Register and MR stands for
Modify Register

The rest of the paper is organized as follows: Section 2
introduces the AGU model that we will use throughout this
paper and defines the notations and the problems that we
consider; section 3 talks about simple offset assignment and
general offset assignment problems; section 4 describes our
dynamic programming algorithm for utilizing modify reg-
isters; section 5 presents the address register assignment
problem and proposes an optimal formulation and a heuris-
tic algorithm to solve it; section 6 considers five different
configurations and compares their performance on a set of
random access sequences and sequences obtained from real
programs; section 7 concludes the paper.

2. PRELIMINARIES

21 AGU Mode

The Address Generation Unit (AGU) that we assume is
shown in Figure 1. It consists of an address register(AR), a
modify register (MR) and an adder/subtractor.The AGU is
typical of many DSPs such as Motorola DSP56000 and NEC
7701. While in Figure 1, we show just one address register-
modify register pair, our model supports &k such pairs. In our
model, we do not consider support for circular addressing or
bit reversed addressing. Our model can be easily extended
to handle other DSPs such as Analog Devices ADSP21zx
and SHARC, Lucent DSP16zz and StarCore, and Tezas In-
struments TMS320C5z.

2.2 Motivation

In address computation, knowledge of how the variables
are accessed in the code can be utilized to intelligently assign
addresses to variables, thereby generating fewer addressing
instructions. The order in which variables are accessed in
the program is referred to as the access sequence. We next
describe an example that illustrates how placement of vari-
ables in memory affects the number of addressing instruc-
tions.

Example 2.1

Consider the access sequence shown in figure 2(a). Vari-
ables a and ¢ are accessed consecutively in 4 places. The
assignment shown in figure 2(b) is obtained on the basis of
first-use of variables. The positions in the access sequence
where auto-increment/auto-decrement cannot be used (we
call such a situation a jump) are shown using arrows in fig-
ure 2(c). There are a total of 10 jumps which necessitate
additional instructions. Now consider a more intelligent as-
signment shown in figure 2(d). Variables that are accessed

cdfchcabebgbca
(@

Lefaft]nlalblelq]

(b)
cdfchcabeb?bcaca

REi

lalc[n[g[b[e]f][d]
(d)
cdfchcabebg}bcaca

(e)

Figure 2: Example 2.1: (a) Access Sequence. (b)
An assignment based on first-use. (c) The places
requiring a jump in address value for the assignment
in (b). (d) An intelligent assignment. (e) The places
requiring a jump in address value for the assignment

in (d). (adapted from [8])

consecutively several times are now put in neighboring lo-
cations. As a result, there are now only 4 jumps as shown
in Figure 2(e). Clearly, by placing the variables in proper
locations, the number of address generation instructions can
be reduced considerably. m|

2.3 Oveview

In this paper, we minimize the number of instructions
required for addressing a sequence of variable accesses using
k > 1 address registers. We assume that each variable is
assigned to only one location and that we can allocate any
relative location to a variable (there are no restrictions on
the relative order.)

The input of our procedure is a sequence of variable ac-
cesses and the number of address registers. The output of
our procedure gives (i) the address register to be used for
each access, and whether to increment or decrement or mod-
ify its value, and (ii) whether to load the address register
(and/or modify register) after each access and with what
value(s).

There are two important problems in address code gener-
ation:

1. What is the address to be given to each variable (re-
ferred to as offset assignment)?

2. Which AR is to be used to address a particular access
(referred to as address register assignment)?

Our aim is to minimize the number of instructions during

offset assignment. This is a very complex problem and so
initially we consider the problem of reducing the number
of jumps. Similarly, during address register assignment, we
minimize the number of addressing instructions by reducing
the number of jumps. The modify registers enable us to
implement the jumps with fewer addressing instructions.
Problem 1: Simple Offset Assignment (SOA)
Given an access sequence, L = {z1,z2,...,z;}, and a set of
distinct variables of L, Y = {y1,92,...,yn}, find a function
fa that maps the variables in Y to the offset addresses such
that the number of jumps is minimized when using only one
address register.

Method 1 Method 2 Method 3
! | |

‘ GOA ‘ ‘ OFU ‘ ‘ SOA ‘
! | |

‘ MRO ‘ ‘ ARA ‘ ‘ ARA ‘
| | |

‘ MRO ‘ ‘ MRO ‘

J J

(a) (b) (c)

Figure 3: The approaches to be analyzed: (a)
Method 1 (b) Method 2 and (c¢) Method 3

Problem 2: General Offset Assignment (GOA)
Given an access sequence, L, find a function f4 such that
the number of jumps is minimized when using k& > 1 address
registers.

Problem 3: Address Register Assignment (ARA)
Given an access sequence, L, an address assignment, fa, and
the number of address registers, k, find a function far that
gives the address register that is to be used for each access
such that the number of jumps is minimized. Note that for
the case of k = 1, the function is constant, R;.

Problem 4: Modify Register Optimization (MRO)
Given a sequence a jumps 2, S;, find a function faur that
specifies the value in the modify register during each jump
such that the difference between the number of jumps and
the number of instructions after MRO is maximized.
Approaches Considered: For DSPs with only one ad-
dress register, we could solve SOA followed by MRO. We will
show how important these are in section 3.1 and section 4
and the potential reduction in instructions. For DSPs with
k > 1 address registers, we could take three approaches.
First, we could solve GOA, followed by ARA separately for
each R; (which is a constant since k = 1), followed by MRO.
In the second approach, we could use the order of first use
(OFU), followed by ARA for k address registers, and then
MRO. In the third approach we could solve SOA, followed by
ARA, followed by MRO. We show the different approaches
in figure 3. The following sections discuss the different opti-
mizations and compare the performance of the three meth-
ods.

24 Experimental Setup

To quantify the effect of the optimizations, we need ac-
cess sequences that are representative of those arising in
DSP systems. We obtained 51 access sequences from 20 dif-
ferent procedures using SPAM [11]. 14 of the procedures
were kernels from the DSPStone benchmarks and the re-
maining 6 were part of the ADPCM program from the same
benchmark set. Here we show the results of 8 representative
programs. The corresponding sequences are referred to as
program access sequences.

To make the experiments unbiased and independent of the
processor, pseudo random access sequences were also used as

2A jump is a situation that requires an address register, R;,
to be modified by addition or subtraction of a value more
than 1. If accesses z; and z; occur next to each other (in
L, z; and x; may not occur next to each other but for a
particular R;, they could be next to each other), the value
of the jump is computed as |fa(z;) — fa(zi)|-

inputs. 20 random sequences are used for different variable
set sizes (n) and access lengths (I) and the average values
are given. The execution times of the optimizations were
measured using functions in sys/time.h. The programs were
run in a dual Pentium III server with 1GB RAM running
Redhat Linux.

3. OFFSET ASSIGNMENT

3.1 Simple Offset Assignment

We implemented the heuristics of Liao [7] and Leupers [6]
and ran them on random access sequences and real pro-
gram sequences. The additional address instructions are
compared with that generated due to an assignment per-
formed according to the order of first use (OFU). On the
average, there is 20% reduction compared to OFU in the
number of additional instructions when these heuristics are
used. We will see in the next section that after modify reg-
ister optimization, the difference between the performance
of the three offset assignment algorithms reduce further.

3.2 General Offset Assignment

Liao [7] and Leupers [6] have developed heuristics for par-
titioning the variables into I < k subsets, where k is the
number of available address registers. We developed an al-
gorithm that iteratively partitions the variables based on
a very simple cost function [12]. For our experiments, the
number of address registers, k, was set to 4. For random
access sequences, Leupers’ heuristic is better than our GOA
by about 2% while for most (6 out of 8) program access
sequences, our heuristic is better. For larger random se-
quences, our heuristic is faster than Leupers’ without much
compromise in results. In this paper, in Method 1, we im-
plement Leupers’ GOA.

4. EXPLOITING MODIFY REGISTERS

The modify register can be used effectively to reduce the
number of additional instructions. Instead of loading the
address register with a new value, we can add/subtract the
value that is already there in the modify register. We explain
the procedure with an example.

Example 4.1

Consider the access sequence shown in figure 4(a). For the
offset assignment given in figure 4(b), the jumps are shown
in figure 4(c). For each jump, we have to change the value
in the address register by the value of the jump, and each
change to the address register necessitates an additional in-
struction. Thus if the modify register is not used, the num-
ber of additional instructions would be 6. Now, if the modify
register is loaded with the value of 2 during the first jump, it
could be used to change the address register for subsequent
jumps of value 2. This additional operation can be sub-
sumed during addressing as a post-modify operation, thus
costing only the load instruction required to load the modify
register. As a result, the number of additional instructions
would be only 3. This example illustrates the potential of
modify registers to reduce the number of addressing instruc-
tions. m|

The sequence of values by which the address register needs
to be modified is referred to as jump sequence, Sj. The dis-
tinct jump values are given in the set V;. (For the example
in figure 4, S; = {2,3,2,2,3,2} and V; = {2, 3}.) The prob-
lem is to find the values to be loaded into the modify register

begfejbdjed

begfejbdjedgf‘f‘g‘d‘e‘b‘j‘)

o
2 32 232

@

(b)

(c)

Figure 4: Example 4.1: (a) Access sequence. (b) Address assignment. (¢) Jumps and jump values.

at specific times such that the number of additional instruc-
tions is minimized. Leupers and Marwedel [6] have provided
a solution to the problem with worst-case complexity O(p?)
where p is the length of the jump sequence. In the rest of
this section, we describe a dynamic programming based so-
lution that has a worst case complexity of O(pqz), where q is
the size of V;. Usually g is smaller than p, and the algorithm
is almost linear in p.

Our solution utilizes the fact that there is an optimal sub-
structure; if we consider the jump sequence without the last
element, an optimal solution to that should be part of an
optimal solution to the bigger problem. With this observa-
tion, we can reduce the problem (say P,) to solving P,_1,
and then handling the additional variable. The subproblems
share subsubproblems, for e.g., P,_1 and P,_» both have
P, _3 as the subsubproblem. This indicates that memoiza-
tion will be useful. Based on these observations, we define
a recursive cost function as follows:

C(k,i) = mi‘gl{Cmd(m, k,i)} fori>1
me J
= 1lfori=1and k= 5;(1)
= 2fori=1andk # S;(1)
where 1 <3 < |S;| and k € V; (1)
Cina(m,k,i) = C(m,i—1)+2if S;(1) #k AND m #k

C(m,i—1)+1if (S;(i) # k AND m = k)
OR (S;(i) =k AND m # k)
C(m,i—1)if S;(i) =k AND m =k
where 1 <3 < |S;| and m, k €V} (2)

We add 2 to the cost when we have to change the mod-
ify register and the current jump value does not match the
changed value in the modify register. We add 1 to the cost
when we have to change the modify register or when the
current jump value is not matching with the modify regis-
ter value. Using this cost function, a table is constructed
(memoization). The minimum cost changes to the modify
register are found from the values in the table by following
the values of m which gave the minimum value in equation 1.
Complexity Analysis
The table is of size pq and filling up each entry takes O(q)
time. The complexity of the solution is O(pg?), where p is
the length of S; and q is the size of V.
Results:
The modify register optimization is performed after the SOA
heuristic for both random sequences and real program se-
quences. The results are given in Table 1. For random
sequences, the use of this optimization results in an aver-
age reduction of approximately 35% compared to the case
when only OFU is done (i.e. no MRO). The reduction is
approximately 30% for the case where the offset assignment
is obtained using either Liao’s or Leupers’ heuristic.

For program sequences, modify register optimization re-
sults in a reduction of 30% when the assignment is obtained

using OFU. The effect of modify register optimization for
Liao’s or Leupers’ heuristic is less, at around 17%. This is
because for program sequences, the offset assignment heuris-
tics generated good results with small jump sequences. As
a result, there is limited opportunity for reduction due to
modify register optimization. Finally, after the modify reg-
ister optimization step, the difference in the performance
between OFU and the heuristics by Liao and Leupers is not
as significant.

5. ADDRESSREGISTER ASSIGNMENT

The address register assignment problem is: Given an ac-
cess sequence, offset assignment, and the number of address
registers, assign an address register to each access such that
the number of additional instructions is minimized. The
offset assignment could be generated by the SOA or GOA
algorithms described in the previous sections. The prob-
lem is formulated using min-cost circulation by Gebotys [3].
The complexity of the solution depends on the algorithm
used for min-cost circulation. Orlin’s algorithm [9] runs in
O(m(logn)(m + n(logn)) time where m is the number of
edges and n is the number of nodes. Let [be the length
of the access sequence. Then, for the Gebotys’ formulation,
n = O(l) and m = O(I*). The complexity in terms of length
of the access sequence is O(I* log). The complexity of this
optimal formulation is high. This motivated us to look for
alternate formulations. Our optimal formulation is based on
Minimum Cost Perfect Matching (MCPM) and has a lower
complexity of O((I + k)®) where k is the number of address
registers.

The MCPM transformation utilizes the observation that
if the same address register is used, say Ri1, to access x; and
then z;, the number of jumps increases only if |fa(z;) —
fa(z;)| > 1. This information can be represented in a graph
G = (V, E) by adding nodes z; and z;, an edge e;; between
z; and z; for j > ¢, and a cost on the edge, c. which is
1 if the number of jumps increases and 0, otherwise. A
path in this graph corresponds to the sequence of nodes
that each address register accesses. In terms of the graph
G, the problem is then to select edges such that every node
has only one incoming edge selected, only one outgoing edge
selected, the number of disjoint paths is less than or equal to
k and the number of selected edges with cost 1 is minimum.
For more details, please refer to [12].

There exist efficient algorithms for solving Minimum Cost
Perfect Matching on Bipartite graphs, with even the simpler
ones running at O(n®) where n is the number of nodes [2].
The complexity of this approach in terms of the length
of the access sequence, ! and the number of registers k is
O((I + k)3). Since k < I, this is better than the previous
formulation. We implemented the Minimum Cost Perfect
Matching using the Hungarian Method which in a direct im-
plementation runs in O(n*m) but with simple changes could
be made to run in O(n®). Since even the MCPM-based algo-
rithm takes a long time for large access sequences, we have

Table 1: Number of additional instructions using SOA followed by Modify Register Optimization for random
access sequences and program access sequences: |V| is the number of variables and |AS| is the length of the
access sequence. The values are normalized with respect to OFU values before MRO.

Random sequences

Program sequences

[V] | |AS] | OFU | Liao | Leupers Program OFU | Liao | Leupers
5 20 0.57 | 0.45 0.44 matrix_multiply 0.60 | 0.60 0.80
5 50 0.45 | 0.37 0.37 2-D FIR 0.77 | 0.68 0.68
7 30 0.63 | 0.45 0.47 LMS 0.70 | 0.50 0.50

7 70 0.56 | 0.46 0.45

iir_biquad_N_sections | 0.65 | 0.48 0.57

10 50 0.66 | 0.55 0.54 adpt_predict_1 0.75 | 0.50 0.50
10 | 100 | 0.65 | 0.55 0.55 adpt_predict_2 0.74 | 0.57 0.57
20 50 0.77 | 0.62 0.64 reset_states 0.68 | 0.64 0.68

20 | 100 | 0.77 | 0.64 0.64

speed_control 2 0.77 | 0.70 0.61

Table 2: Number of additional instructions for the
case when offset assignment was obtained using
OFU and address register assignment was obtained
using either Optimal formulation or heuristic algo-
rithm. The values are normalized with respect to
the Optimal value before modify register optimiza-
tion. The execution times are given in the last 2
columns with values normalized with respect to the
execution time of the heuristic. The number of ad-
dress registers, k = 4.

V]| |AS] Number of addl. instrs. Exec time
Before Modify | After Modify | After Modify
Opt Heur Opt | Heur | Opt | Heur

5 20 1 1.0 1.0 1.0 10 1

5 50 1 1.0 1.0 1.0 33 1

7 30 1 1.0 1.0 1.0 12 1

7 70 1 1.1 1.0 1.0 85 1

10 | 50 1 1.2 0.9 0.9 36 1

10 100 1 14 0.8 0.9 209 1

20 | 50 1 1.3 0.8 0.9 35 1

20 100 1 1.4 0.6 0.7 262 1

developed a heuristic algorithm which we describe next.
Heuristic algorithm for ARA:

The proposed heuristic greedily looks for an address register
that could be assigned for each access. It reads the access
sequence and stores information about the occurrences of
different variables. It tries to assign to an address register
that does not need a jump. If that is not possible, it as-
signs to the address register that requires the least amount
of jump so that the jump sequence is biased towards a lower
value. If two address registers are available to be assigned
to an access, the occurrences list is consulted to see which
one of the address registers will be needed first. The ad-
dress register that is not needed immediately is used for this
access.

Results

The heuristic was compared against the optimal formulation
and the results are tabulated in Table 2 for random access
sequences with the number of address registers, k, set to 4..
The number of instructions is normalized with the optimal
value before modify. Though the heuristic performs well for

smaller sequences, it does not do as well for larger sequences.
However after modify register optimization, the results ob-
tained by the heuristic comes closer to the optimal values.
Since the execution time for the optimal algorithm is very
high, the heuristic algorithm is a good alternate solution
when used along with MRO.

6. ANALYSIS

First, we will present some of our main observations [12].

e Simple Offset assignment reduces the number of in-
structions, on the average, by 20% compared to OFU.
The heuristics by Liao and Leupers produce similar re-
sults and have comparable computation times. GOA
leads to around 60% reduction in the number of in-
structions with respect to OFU using k& = 4.

e Modify Register Optimization (MRO) is a powerful
kernel that results in a significant reduction in the
number of instructions. For instance, when MRO is
applied after Liao’s SOA, the reduction in number of
instructions due to MRO is approximately 55%. Sim-
ilarly, when MRO is applied after Leupers’ GOA, the
reduction in number of instructions due to MRO is
approximately 7%.

o Address Register Assignment can be thought of as an-
other way to efficiently use the available k& address reg-
isters. We have proposed an optimal formulation based
on MCPM and a heuristic algorithm. For slightly large
sequences, the heuristic is worse by 20-30% compared
to the optimal formulation before modify register opti-
mization. Interestingly, after modify register optimiza-
tion, the heuristic is worse by only 8-13%. However,
the optimal formulation is 10-200 times slower than
the heuristic, depending on the length of the access
sequence.

In section 2 (see figure 3) we proposed the use of three
methods for address code generation. For each method,
the subproblems could be solved with different algorithms.
Based on our analysis, we have chosen to study the following
five configurations more closely:

Configuration 1: Leupers’ GOA followed by MRO,
Configuration 2.1: OFU followed by Optimal ARA followed
by MRO,

Configuration 2.2: OFU followed by Heuristic ARA followed

Table 3: Number of instructions and execution
times (in parentheses) for different configurations
for random access sequences (k = 4).

V] | |AS] Configurations
1 2.1 2.2 3
5 | 20 | 0.30(1) | 0.33(9.80) | 0.33(0.96) | 0.33(1.02)
5 | 50 | 0.14(1) | 0.14(81.14) | 0.14(1.13) | 0.14(1.20)
7 | 30 |0.22(1) | 0.23(13.70) | 0.24(1.10) | 0.24(1.01)
7 | 70 | 0.10(1) | 0.10(100.3) | 0.10(1.18) | 0.10(1.20)
10 | 50 | 0.17(1) | 0.18(26.03) | 0.18(0.72) | 0.18(0.94)
10 | 100 | 0.09(1) | 0.10(170.7) | 0.11(0.82) | 0.11(0.95)
20 | 50 | 0.27(1) | 0.28(2.36) | 0.32(0.07) | 0.34(0.10)
20 | 100 | 0.21(1) | 0.22(19.55) | 0.25(0.07) | 0.25(0.12)

Table 4: Number of instructions and execution
times (in parentheses) for different configurations
for program access sequences (k = 4).

Program Configurations
1 2.1 2.2 3

matrix_mult | 0.60(1) | 0.60(4.00) | 0.60(0.64) | 0.60(0.76)
2D FIR | 0.68(1) | 0.50(3.44) | 0.50(0.69) | 0.50(0.83)
LMS 0.60(1) | 0.60(3.91) | 0.80(1.02) | 0.60(1.11)
fir_biquad | 0.39(1) | 0.39(2.12) | 0.39(0.17) | 0.39(0.23)
adpt_pred_1 | 0.50(1) | 0.50(2.42) | 0.50(0.58) | 0.50(0.68)
adpt_pred_2 | 0.57(1) | 0.48(1.16) | 0.52(0.17) | 0.52(0.23)
reset_states | 0.41(1) | 0.36(1.14) | 0.46(0.12) | 0.41(0.18)
speed_cntl2 | 0.54(1) | 0.54(3.70) | 0.54(0.59) | 0.62(0.78)

by MRO,
Configuration 3: Leupers’ SOA followed by Heuristic ARA
followed by MRO

Tables 3 and 4 give the number of address instructions
for the four configurations. The values are normalized with
respect to the OFU values before Modify Register Optimiza-
tion. Execution times are given in parenthesis and are nor-
malized with respect to Configuration 1. We can see that for
random access sequences, Configuration 1 is better in most
of the cases. The values obtained from Configuration 2.1 are
close to the other configurations considered. This is a use-
ful observation, since in situations where delayed offset as-
signment is not possible, performing ARA followed by MRO
gives a good reduction in the number of instructions. For the
program access sequences, Configuration 2.1 is better than
the others in most cases. If we perform Address Register
Assignment, there is no need for a good offset assignment
algorithm. Configuration 2.1 is computationally intensive
primarily due to the complexity in solving the MCPM prob-
lem. Our implementation is not optimized, but even with
a sophisticated implementation it may not be as fast as the
others. Configurations 2.2 can be said to be good uniformly
across sequences in terms of both the number of instructions
and execution time.

7. CONCLUSION

Addressing instructions can be part of upto 50% of the
final code and so optimization of address generation could

lead to significant improvements in code size, performance
and energy consumption. In this paper, we analyzed differ-
ent methods of generating addressing code for scalar vari-
ables and quantified the improvements due to different opti-
mizations. Analysis of the results show that modify register
optimization is very inexpensive and effective and should be-
come a part of any address code generation procedure. Fur-
thermore, while intelligent offset assignment is important,
address register assignment followed by modify register op-
timization makes it less significant.

The access sequence plays a very important role in deter-
mining the effectiveness of these optimizations. Since the
access sequence is primarily determined by the schedule, it
would be interesting to see if a scheduler could attempt to
obtain a “good” access sequence.

8. REFERENCES

[1] G. Araujo. Code Generation Algorithms for DSPs.
PhD thesis, Department of Electrical Engineering,
Princeton University, 1997.

[2] W. J. Cook, W. H. Cunningham, W. R. Pulleyblank,
and A. Schrijver. Combinatorial Optimization. John
Wiley & Sons, Inc., 1998.

[3] C. Gebotys. DSP address optimization using a
minimum cost circulation technique. In Proceedings of
the International Conference on Computer Aided
Design, pages 100-103, 1997.

[4] C. Lee, M. Potkonjak, and W. H. Mangione-Smith.
Mediabench: A tool for evaluating and synthesizing
multimedia and communications systems. In
Proceedings of the 30th International Symposium on
Microarchitecture, 1997.

[5] R. Leupers and F. David. A uniform optimization
technique for offset assignment problems. In
Proceedings of the International Symposium on
Systems Synthesis, pages 3-8, 1998.

[6] R. Leupers and P. Marwedel. Algorithms for address
assignment in DSP code generation. In Proceedings of
the International Conference on Computer Aided
Design, pages 109-112, 1996.

[7] S. Liao. Code Generation and Optimization for
Embedded DSPs. PhD thesis, Department of Electrical
Engineering and Computer Science, MIT, 1996.

[8] S. Liao, S. Devadas, K. Keutzer, S. Tjiang, and
A. Wang. Storage assignment to decrease code size. In
Proceedings of the SIGPLAN Conference on
Programming Language Design and Implementation,
pages 186-195, 1995.

[9] J. B. Orlin. A faster strongly polynomial minimum
cost flow algorithm. In Proceedings of the 20th ACM
Symposium on Theory of Computing, pages 377-387,
1988.

[10] A. Sudarsanam, S. Liao, and S. Devadas. Analysis and
evaluation of address arithmetic capabilities in custom
DSP architectures. In Proceedings of the ACM/IEEE
Design Automation Conference, pages 287-292, 1997.

[11] The SPAM Project. SPAM project home page.
http://ww. ee. pri ncet on. edu/ spam

[12] S. Udayanarayanan. Energy efficient code generation
for DSPs. Master’s thesis, Department of Electrical
Engineering, Arizona State University, 2000.

	Main
	DAC01
	Front Matter
	Table of Contents
	Session Index
	Author Index

