

Utilizing Memory Bandwidth in DSP Embedded
Processors

Catherine H. Gebotys
Department of Electrical and Computer

Engineering, University of Waterloo,
Waterloo, Ontario Canada

cgebotys@optimal.vlsi.uwaterloo.ca

ABSTRACT
This paper presents a network flow approach to solving the
register binding and allocation problem for multiword memory
access DSP processors. In recently announced DSP processors,
such as Star*core, sixteen bit instructions which simultaneously
access four words from memory are supported. A polynomial-time
network flow methodology is used to allocate multiword accesses
while minimizing code size. Results show that improvements of
up to 87% in terms of memory bandwidth (and up to 30%
reduction in energy dissipation) are obtained compared to
compiler-generated DSP code. This research is important for
industry since this value-added technique can increase memory
bandwidths and minimize code size without increasing cost.

1. INTRODUCTION

Due to increasing complexities of domain applications, high
level language compilation is a necessity for DSP processor cores.
However the biggest drawback to DSP processor cores is the lack
of efficient optimizing compilers. The use of conventional code
generation techniques and even compilers specifically designed
for commercial DSP processors are known to produce very
inefficient code[1].

 The code generation problem has tight constraints due
to DSP architectural features as well as price, performance, and
power requirements. In more recently announced DSP processors,
constraints placed upon code generation include dual bank
register files, higher memory bandwidths available for aligned
sequential data words, and execution set overheads. DSP
processors have steadily been increasing the number of functional
units in their architecture to support higher levels of parallelism.
However only recently has a somewhat equivalent increase in
memory bandwidth been available. For example a DSP
processor[5], which has four complex functional units, can fetch
up to 8 memory aligned words in a single cycle (thus supporting
access of two operands per functional unit per cycle).

 Multiword memory accesses provide high memory
bandwidth matching computational throughputs of recent

embedded DSP processors. However due to compact code size
requirements, this multiword capability places additional
constraints on data register allocation and binding. For example in
the Star*core processor[5] (jointly developed by Motorola and
Lucent), 16 bit quad memory access instructions are supported.
These quad memory access instructions load or store 4 memory
aligned (16 bit) data words with only one instruction. Dual
memory access instructions require that the first of two data words
(aligned in memory) must be loaded into an even numbered data
register (such as d2) and the second of two data words must be
loaded into the adjacent odd numbered data register (such as d3,
adjacent to d2). Alternatively a dual load could be used with data
register pairs (d0,d1) or pair (d4,d5), etc. In the quad memory
access instruction the first and third of four data words (aligned in
memory) must be loaded into even numbered data registers and
the second and fourth of four data words must be loaded into the
adjacent odd numbered data registers. Each quad memory access
has a choice of only four sets of data registers it can load into (or
from if a store is being performed) out of a total of 16 data
registers available in the register file[5]. These sets are registers
(d0,d1,d2,d3) or set (d4,d5,d6,d7) or (d8,d9,d10,d11) or
(d12,d13,d14,d15). If the compiler cannot bind the data to one of
these four sets, obeying both memory layout and alignment
restrictions, then it must use several single or dual memory access
instructions. Since each memory access instruction whether quad
or single is 16bits, code size can be reduced through efficiently
utilizing dual and quad memory access instructions where ever
possible.

 In summary the multiword memory access instructions
have an important impact on code size which in turn effects cost,
energy and power dissipation. The need for decreasing time to
market, development costs, and maintenance costs, demands the
use of efficient high level language compilation for these
sophisticated DSP processors which support these multi-word
access constraints. All of these factors imply several challenges in
writing efficient code generators for such DSP processors.

2. PROBLEM AND RELATED WORK

 The following problem, problem 1 given below, is an
important part of the code optimization problem for DSP
processors that will be studied in this paper. For the problem
definition below we assume that there is one target DSP processor
or core defined with an instruction set architecture, such as the
Star*core processor[5]. The target processor supports dual and
quad memory accesses (of aligned and sequential 16 bit words)
with aligned data register constraints. In the general application, it

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference ’00, Month 1-2, 2000, City, State.
Copyright 2000 ACM 1-58113-000-0/00/0000…$5.00.

is assumed that some data has a predetermined memory layout
(for example input data or output data of a DSP algorithm), with a
fixed or flexible alignment. Other data may have no
predetermined memory layout or alignment, such as data
coefficients which can be stored in memory according to the
designer, compiler or CAD tool.

 Problem 1 : Assume we are given initial assembly code
generated for the target processor, including memory layout (and
alignment) of the data. The problem is to improve the register
allocation and binding code such that the code size is minimum.
Specifically allocate and bind registers, with constraints of both
fixed and flexible data memory layout, to maximize the number of
quad and dual memory access instructions such that the total
resultant code size is minimized. Extensions to this problem
include handling loops, conditional code, and data structures.

 Although many researchers have studied code
generation for DSP processors or ASIPs [1], fewer have studied
memory-access code generation. A number of researchers have
examined allocation of address registers[7,12], data layout [4] ,
and index registers[9] . Researchers in [11] introduced a
transformation of C code using pointer based code instead of
array based code to make better use of address calculation units
on DSPs. Register binding and allocation for low energy was
studied in [10], where minimization of the bit switching between
pairs of variables which shared the same register was performed.
A network flow approach was used, however memory accesses
were not considered. Researchers in [12] applied a minimum cost
circulation technique to optimize address register allocation.
Results showed significant improvements in performance, code
size and energy dissipation. Register binding and instruction
scheduling is researched in [2] to minimize the number of
registers and find tight schedules through the addition of
sequencing relations. Memory bandwidth minimization for video
and communications applications is studied in [3], in order to
reduce the cost and complexity of memory architectures.

 In this manuscript a new problem, memory-access
register allocation and binding, is defined and solved. Unlike
previous research, we study the problem of given flexible and
fixed data layout in memory, generate optimal memory-access
code to minimize code size. A maximum cost flow technique is
used to obtain solutions in polynomial time. The next section will
outline the assumptions and terminology to be used in the rest of
the paper.

3. TERMINOLOGY AND ASSUMPTIONS

The following terminology will be used in this paper:
Variables, i, can be data stored in registers (produced by the result
of an instruction, accessed by other instructions, modified by
multiply-accumulate type instructions, values moved to/from
memory or coefficients used in the code). A variable, i, can have a
number of attributes such as: a lifetime which is a range of time
from define_time(i) to last_used_time(i) where define_time(i) is
the cycle in which the variable is defined and last_used_time(i) is
the cycle in which the variable is last used ; access_times(i) are
the set of cycles during which the variable is accessed or used.
Additional terminology to be used in the optimization discussions
are: G=(V,A) is a graph G composed of vertices V and arcs A. The

variable x i→j is the flow in the arc i→j from vertex i to vertex j,
where i,j ∈ V and i→j ∈ A. The value c i→j is the capacity on arc
i→j . The value e i→j is the cost per unit of flow on arc i→j . There
are two special vertices in this graph called vertex s and vertex t.
The flow out of vertex s is equal to the flow into vertex t and for
all other vertices the flow in is equal to the flow out. Arcs incident
to s only leave vertex s and arcs incident to vertex t only are
directed into vertex t.

 The maximum cost flow problem[15,16] is to fix the
amount of flow through the graph and maximize the sum over all
arcs of the flow multiplied by the cost. As long as the capacities, c
i→j , and the lower bounds on the flow, (l i→j), are integer, we can
be guaranteed of obtaining integer flows in the solution of this
problem[6]. This problem can be solved in polynomial time using
linear programming or network algorithms. Applications of
network flow have been used to solve a large number of difficult
problems[14].

4. MODELING AND METHODOLOGY

This section will briefly describe the methodology for DSP
memory-access code optimization, problem 1, and how the
maximum cost flow formulation is used to solve problem 1. The
methodology first determines a lower bound on the number of
registers, |R|, required in the application code (based upon
variables lifetimes, using network flow). It proceeds to use this
number as a fixed amount of flow and maximizes a cost
equivalent to the number of dual memory access instructions
which can be supported by solving a maximum cost network flow
problem. It next proceeds with the same fixed amount of flow and
maximizes a cost equivalent to the number of quad memory
access instructions in the application. In the final stage of the
methodology, with the dual and quad memory accesses fixed
(from the solutions of the two previous max-cost flow problems),
the register binding is performed by solving several network flow
problems with fixed flows ranging from 1 to |R|-2(#dual)-
4(#quad) and costs representing the sum of the number of
accesses of each variable in the binding. This final cost is
attempting to minimize the number of register accesses of higher
numbered data registers, since accesses to registers in the upper
bank have a prefix overhead[5] (or extra 16 bit word required
which increases the code size). Thus we use the cost formulation
to allocate more frequently accessed variables into the lower bank
of registers.

 To illustrate how problem 1 can be modeled as a flow
problem, we first have to develop a network flow graph. Each
vertex, vi ∈ V , in the graph corresponds to a variable, i, in the
assembly code. Vertices s and t are added to the graph
representing times 0 and s+1 , where s is the number of execution
sets in the application assembly code, respectively. Arcs from the
s vertex to all vertices in the graph (except vertex t) are added.
Arcs are formed from each vertex vi to all other vertices vj such
that last_used_time(i)= define_time(j) (or in other words variables
i and j can share the same register since their lifetimes do not
overlap). The capacities of all arcs are set to 1. In the min-cost
solution, each path of flow through vertices represents one
register which stores the respective variables. For illustration
purposes the data registers are represented by d0 through d7.
Single memory access instructions (load or store) will be

represented by move.f. Dual and quad memory access instructions
will be represented by move.2f and move.4f respectively.

Figure 1. Network flow with dual costs in (a), with quad costs
in (b) and finally quad solution in (c) for fixed memory layout.

Variable lifetimes are extracted from the compiler generated
assembly code to create the network flow graph. Additional
vertices are added into this graph in order to increase the number
of multiword memory accesses. The maximization of multiword
memory accesses will be briefly described. The horizontal axis in
figure 1 represents the memory layout. Specifically increasing
(byte addressable) memory address locations are shown as boxes
from left to right. The first box on the left represents an even
memory address in binary whose last three bits end in “000”,
which we will represent as –000. The next three adjacent boxes
represents memory addresses -010, –100 and –110 respectively.
The vertical axis of figure 1a), 1b) and 1c) each represents part of
the assembly code increasing in clock cycles downwards. In figure
1 the column on the left represents part of an assembly code
program, only showing the loads (ie move.f (r1)+,d2 , where r1 is
address register and d2 is data register). The circles represent a
vertex in our network flow graph which is a variable being loaded
from memory (at the address identified on it's x-axis, with the
code located on the y-axis) in this example. Arcs into and out of
this circle are not shown for simplicity. The squares shown in
figure 1 represent the additional vertices placed in the network
flow graph. In figure 1 the square vertex represents an earlier load
of a variable, which is represented by the circle located vertically
below it and connected to it by the arc. In the network flow
solution, a flow through these squares represents a multiword
memory access instruction (since the earlier memory accesses can
be performed in parallel with the other memory access). Thus a
cost of one is assigned to this arc (connected from the square to
the circle). In the network flow problem we maximize the number
of multiword accesses which is the sum of costs on these arcs
multiplied by the flow on these arcs.

 For example a flow through this arc transforms the two move.f
(single word memory access) instructions, in figure 1 (a), into one
move.2f (dual memory access) instruction. The move.2f's are
represented in figure 1b) as oval circles, each containing two
circles. The total cost is the savings in code size words (ie. the
total number of move.f words saved, since 2 are replaced by one
move.2f instruction) or equivalently the number of dual memory

access instructions allocated. In the next step we take two move.2f
instructions and add one arc with a cost of one to create one
move.4f or quad memory access instruction, as shown in figure
1b). Again the objective of this second network flow problem is to
maximize the number of quad memory access instructions
allocated. Note in figure 1b) if the flow in the arc of cost 1 is zero,
then we still have a valid allocation of memory access instructions
since we would use two dual instructions (illustrated by the
dashed circle). However even when the dual and quad memory
accesses are maximized using the technique described above, the
final code cannot be generated until register binding is performed
(which specifically assigns a data register from the bank to each
variable), which will be described next.

Figure 2. Register assignments in quad memory access

instructions (a), and dual memory instructions (b).

 After the network flow has been used to allocate registers and
dual/quad memory accesses, the register binding problem must be
solved. In figure 2 the possible register bindings for each dual and
quad memory access field are shown. For the register binding
problem, we also use a network flow formulation. Each flow
through our graph is a binding of a register di to those variables
represented as vertices the flow goes through. The methodology
incrementally binds one or more registers at a time. We consider
even and odd flows which specifically are binding of even
(d0,d2,...d6) or odd (d1,d3,...d7) numbered registers respectively.
In figure 3 a) one quad memory access (shown by four boxes in a
row at the top, representing the four memory layout locations,
with odd numbered registers shaded) and three dual memory
accesses are shown. In the network flow graph, vertices for all the
other data variables are a part of the flow graph, however will not
be shown in the figures for simplicity. In figure 3a) a total flow
going in from the top vertex (s shown as a circle) and out of the
bottom vertex (t shown as a circle) is 2, which we call the even
flow since it represents flow through two even data registers
(d0,d2). A maximum cost flow problem is solved where the
number of accesses on each variable is the cost of that vertex,
being maximized. In figure 3b) the flows of the solution are
shown. In this case we have allocated data registers d0,d2 as
shown. Next we must bind data register d1 and d3. This next
problem we solve two network flow problems, the first with single
flow through d1 variables of dual or quad memory accesses as
shown in figure 3c) and the second for d3 shown in figure 3 d).

Consider two quad memory accesses, where the set of variables in
one quad memory access do not have lifetimes which overlap with
any variable in the second quad memory access variable set. We
will use the term non-overlapped quad memory accesses for this
case. Furthermore if these two quad memory accesses have fixed
memory layouts then a single flow formulation must be used, as

shown in figure 4a). In figure 4 b) the quad memory accesses
overlap, thus flows of 4 can be used through the even variables.
After all dual and quad memory access variables are bound to
registers the remaining variables are allocated using network flow.

Figure 3. Even flows in a) binding registers d0,d2 in (b) and

odd flow in c),d) binding registers d1,d3 respectively.

Figure 4. Non-overlapping quad accesses requiring single

flows in (a), but in (b) overlapping quad accesses use flow of 4.

 We can now formulate the register binding network flow
problem. We define the set of variables which have been given the
possibility of flow as set F, where variable k∈ F. If a variable
cannot be bound or allocated in the specific network flow
problem, we use the terminology, k∉ F. We define our costs, e i→j ,
as the number of accesses of that variable j (as explained earlier).
For example if we are solving the problem in figure 4b), we define
variables, k∈ F, as all even variables of quad or dual memory
access instructions with fixed memory layouts, plus all variables
of dual or quad memory access instructions with flexible memory
layouts, plus all other variables in the graph extracted from
variables of the assembly code. The set of variables with no flow
or k∉ F are those which are the odd numbered variables in
dual/quad memory access instructions with fixed memory layouts.
We denote a variable, k , which is a member of a quad or dual
access instruction, i, as k∈ Qi, where Qi represents the set of
variables in multiword memory access instruction i. Finally R is
the number of registers we are currently binding (for example in
problem in figure 4a) R=1 whereas in figure 4b) R=4.

Maximize Σ i→j e i→j xi→j

Σ i|i→j xi→j − Σ i|j→i xi→j = 0, ∀ j∈ V

Σ i|i→vk xi→vk
 ≤ 1, Σi|vk→i xvk→i ≤ 1, ∀ vk ≠s,t, vk∈ V, k∈ F

Σ i|i→vk xi→vk
 ≤ 0, Σ i|vk→i xvk→i ≤ 0, ∀ vk ≠s,t, vk∈ V, k∉ F

0 ≤ xi→j ≤ 1, ∀ i→j∈ A, R ≤ xt→s ≤ R

If quad or dual loads or stores have flexible memory layouts then
this can be supported in the network flow formulation. For dual or
quad load instructions the flow into the 2 or 4 variables being
loaded is set to 1 or 2 respectively. For example in figure 5 the
flow into the quad memory access variables is fixed to two.
Mathematically we add the following constraint for dual or quad
loads, W ≤ Σ k|k∈ Qi

 Σ j|j→vk
 xj→vk ≤ W, ∀ i where W=1, for dual

loads or W=2, for quad loads. Dual and quad stores are similar
except the flow constraint is set on the output arcs leaving the
dual/quad variable vertices (since the lifetimes of these variables
end on the same clock cycle).

Figure 5. Flexible quad memory load with flow of 2.

 In general more complex codes which have nested loops with
dual and quad memory accesses are supported in this framework.
In these cases the inner most nested loops are used to solve single
network flow problems for each loop feedback variable.
Multiword memory access instructions inside nested loops can be
supported by early binding of the feedback variables to d0,d1, etc
for each run of the network flow problem.

5. EXPERIMENTAL RESULTS

 Several DSP applications are used to illustrate this
methodology. The notation dct, fir, red, pad refers to a discrete
cosine transform, linear FIR filter, a modulo reduction polynomial
algorithm, and a polynomial addition algorithm (the last two
examples used in cryptography) respectively. Assembly code was
generated using the Star*core C compiler for all examples except
the fir example where benchmark Motorola assembly code was
used. The original C-compiler generated dct assembly codes
contain 39 execution sets in the compiler generated assembly
code. In dct, only single memory access instructions were utilized
in the C compiler generated assembly code. The fir example has
dual nested loops with high degrees of parallelism (execution sets
of 7 words each cycle), using dual and single moves. The red
example involved modulo reduction of 326 bit number in
cryptography. Input data consisted of eleven 32 bit words
allowing only dual long word loads to be supported. In the pad
example, computations are performed on two 163 bit numbers
within a single loop. Again in this example quad loads are not
considered since they are only applicable in the Star*core

processor to 16 bit words. The maximum cost network flow
problem was solved on a Sun workstation using a linear
programming solver[8]. All optimizations ran in under 5 cpu
seconds in total for each application on a 300MHz UltraSparcIIi
Sun workstation.
 Table 1 illustrates the optimized results (Opt-)
compared to the C compiler generated code (Comp-). The
number of registers R, the number of dual memory accesses D1
and total memory access instructions, M1, (in the original
compiler generated code and) after the first implementation of
maximum cost network flow is shown. The number of quad
memory accesses Q2, the number of dual memory accesses D2 and
the final number of memory access instructions, M2, after second
network flow application and complete register binding are also
shown in the table. Results were generated automatically from
assembly code using the maximum cost network flow formulation
and using the memory layout and alignment for data input and
data output specified by the compiler. To explore the relationship
between increasing multiword memory accesses versus the total
number of registers used, the network flow problems were solved
with different amounts of flow (or number of registers). The
multiword memory accesses can often be improved through an
increase in the number of registers used. The improved memory
bandwidth is shown as %BW, which we define as the number of
memory access instructions in the original compiler-generated
code divided by the number of memory access instructions in
optimized code (after network flow optimization) shown as a
percent.
 The register binding for the cosine transform (dct)
example with 12 registers maximum and three quad memory
accesses involved one quad access of coefficients where flexible
memory layout was allowed (like in figure 5) and two quad
memory accesses of input data. The register binding methodology
solved an initial network with flow of 4 (since the two quad
memory accesses overlapped, similar to figure 4b)), two network
flow problems each with flow one for each odd data register (as in
figure 3b)) , one final odd data register network with flow of 2
and one last network flow for all remaining variables which was a
flow of 4. Each flow problem was solved in under one second.
The cosine transform was up to 1.76 (37/21) times more efficient
in terms of memory accesses.
The red example used 32 bit word memory accesses so only dual
memory accesses were supported (since quad accesses were only
supported for 16bit words, using a 64 bit bus in [5]). In this
example, up to 1.87 times improvement in memory accesses was
observed. The benchmark fir assembly coded example had
different memory accesses which reduced the overall code size by
1 word. This example had a loop which involved solving the
network flow problem for interloop variables with single flows in
addition to constraining any dual and quad memory access
allocations. All results shown were verified and included loop
support and register constraints on dual and quad memory
accesses.
The pad example, in table 1, was also executed in hardware (using
the Star*core chip on a development board) in order to measure
the effect on power dissipation[17,18]. The memory bandwidth
optimization technique provided one third reduction in energy
dissipation (reduced from 4.8nJ to 3.0nJ). This energy dissipation
was due to improved performance (15 cycles versus 26 cycles of

compiler generated code) as a result of elimination of execution
sets from allocation of dual loads and dual stores (and elimination
of some address register load instructions) within the main loop
of the pad example.

Table 1. Compiler versus Optimized Memory Accesses.

Ex R D1 M1 D2 Q2 M2 %BW
Comp-dct 16 0 37 0 0 37 -

Opt-dct
12
13
14

9
10
11

28
27
26

5
3
1

3
4
5

23
22
21

60%
68%
76%

Comp-fir 12 6 10 6 0 10 -

Opt-fir 10 6 10 4 1 9 11%

Comp-red 12 0 15 0 0 15 -

Opt-red 9
10

6
7

9
8

6
7

-
-

9
8

66%
87%

Comp-pad 6 0 11 0 0 11 -

Opt-pad 4 3 6 3 - 6 83%

6. DISCUSSION AND CONCLUSIONS

 In summary code size overheads (including memory
accesses) were improved up to 1.8 times using the maximum cost
network flow formulation of the memory-access code problem.
Unfortunately there is no previously published research to
compare with, however results reported were compared with the
Star*core's C compiler[13]. The network flow improved codes
showed significant improvements. The technique presented in this
paper performs register allocation and binding to minimize code
size. The approach can be extended for loop support. Although
several network flow problems are solved, each can be solved in
polynomial time with faster network solvers. Furthermore only
memory bandwidth utilization and it's impact on code size
reduction was explored in this problem. It is possible that the
improved memory bandwidth may also lead to improves in
application throughput (through rescheduling). Although the
paper has illustrated the network flow technique for 8 registers, it
was implemented for 16 registers in the experimental section. For
larger than 16 registers, a larger number of network flow problems
would have to be solved. However in the worst case for N
registers, N network flow problems would be solved, which
includes one initial flow to find a lower bound on registers, two
network flows to allocated dual and quad memory accesses and in
the worst case N network flow problems for N data registers. For
loop support this number would increase, however the network
flow graphs would be of different sizes. For example one would
solve the network flow on smaller graphs representing variables in
innermost nested loops and merging the flows into a vertex in the
graph at a higher level (outside of the nested loops) to complete
the register binding. In all cases the register binding network
flows did not increase the number of total registers being
allocated.
 The formulation of a new problem and a maximum cost
flow approach to solving it has been presented in this paper.
Unlike previous research, we have studied register allocation and

binding for multi-word memory access. Important memory
bandwidth improvement and code size savings have been
presented. Notably significant savings in energy dissipation was
also achieved with this new approach. We have introduced a new
methodology for utilizing memory bandwidth. It is applicable to
other DSP processors (both fixed point and floating point ones) in
addition to Star*core. For the first time, codesize-minimized
memory-access code can be generated using this new application
of the maximum cost network flow technique.
This research was supported in part by grants from Motorola
(thanks to T.Tam, Y.Ronen, P.Marino, C.Hughes), NSERC and
CITO.

7. REFERENCES
[1] P.Marwedel, G.Goossens Eds. Code Generation for

Embedded Processors, Kluwer Academic Pub, 1995.
[2] B.Mesman,etal. ''Constraint Analysis for DSP Code

Generation'', IEEE Transactions on CAD, Jan 1999.

[3] S.Wuytack, F.Catthoor, L.Nachtergaele, H.DeMan. ''Min. the
Required Memory bandwidth in VLSI sys'', IEEE
Transactions on VLSI, Dec1999.

[4] S.Liao, S.Devadas, K.Keutzer, S.Tjiang, A.Wang. ''Storage
Assignment to Decrease Code Size'' PLDI, 1995.

[5] “Star*Core 140 Family DSP Core Instruction Set”,
Motorola/Lucent, Sept 1999.

[6] E.Lawler, Combinatorial Optimization: Networks and
Matroids, Holt, RinehartWinston, 1976

[7] R.Leupers, P.Marwedel, ''Time-Constrained Code
Compilation for DSP's'', IEEE Transactions on VLSI, 1997.

[8] A.Brooke, D.Kendrick, A.Meeraus, GAMS, A User's Guide,
Scientific Press, 1988.

[9] G.Araujo, A.Sudarsanam, S.Malik. ''Using RT Paths in Code
Generation for Heterogenous Memory-Register
Architectures'' Proceedings of Design Automation
Conference, 1996.

[10] J.Chang, M.Pedram ''Register Allocation and Binding for
Low Power'' Proceedings of Design Automation
Conference,, 1995.

[11] C.Liem, P.Paulin, A.Jerraya. ''Address Calculation for
Retargetable Compilation and Exploration of ISA'' ,
Proceedings of Design Automation Conference, 1996.

[12] C.Gebotys '' A Minimum Cost Circulation Approach to DSP
Address-Code Generation”, IEEE Transactions on CAD, Vol
18, No. 6, June 1999, pp726-741.

[13] “Star*Core 100 Family C/C++ Compilers User’s Manual”,
Motorola and Lucent, Sept 1999.

[14] C.Gebotys, “Network Flow Approach to Data Regeneration
for Low Energy Embedded Systems Synthesis”, Integrated
Computer-Aided Engineering, 5(2), 1998, p117-127.

[15] E.Lawler, Combinatorial Optimization: Networks and
Matroids, New York: Holt,Rinehart and Winston, 1976.

[16] Nemhauser, Wolsey , Integer and Combinatorial
Optimization, Wiley Interscience, New York, 1988.

[17] C.Gebotys, R.Gebotys, “Statistically based prediction of
power dissipation for complex embedded DSP processors”,
Microprocessors and Microsystems, 23, pp135-144, 1999.

[18] C.Gebotys, R.Gebotys, S.Wiratunga “Power minimization
Derived from Architectural-Usage of VLIW Processors”,
DAC, pp308-311, 2000.

	Main
	DAC01
	Front Matter
	Table of Contents
	Session Index
	Author Index

