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ABSTRACT 
This paper presents a network flow approach to solving the 
register binding and allocation problem for multiword memory 
access DSP processors. In recently announced DSP processors, 
such as Star*core, sixteen bit instructions which simultaneously 
access four words from memory are supported. A polynomial-time 
network flow methodology is used to allocate multiword accesses 
while minimizing code size. Results show that improvements of 
up to 87% in terms of memory bandwidth (and up to 30% 
reduction in energy dissipation) are obtained compared to 
compiler-generated DSP code. This research is important for 
industry since this value-added technique can increase memory 
bandwidths and minimize code size without increasing cost. 

1. INTRODUCTION 
 

Due to increasing complexities of domain applications, high 
level language compilation is a necessity for DSP processor cores. 
However the biggest drawback to DSP processor cores is the lack 
of efficient optimizing compilers. The use of conventional code 
generation techniques and even compilers specifically designed 
for commercial DSP processors are known to produce very 
inefficient code[1].  

 The code generation problem has tight constraints due 
to DSP architectural features as well as price, performance, and 
power requirements. In more recently announced DSP processors, 
constraints placed upon code generation include dual bank 
register files, higher memory bandwidths available for aligned 
sequential data words, and execution set overheads. DSP 
processors have steadily been increasing the number of functional 
units in their architecture to support higher levels of parallelism. 
However only recently has a somewhat equivalent increase in 
memory bandwidth been available. For example a DSP 
processor[5], which has four complex functional units, can fetch 
up to 8 memory aligned words in a single cycle (thus supporting 
access of two operands per functional unit per cycle). 

 Multiword memory accesses provide high memory 
bandwidth matching computational throughputs of recent 

embedded DSP processors. However due to compact code size 
requirements, this multiword capability places additional 
constraints on data register allocation and binding. For example in 
the Star*core processor[5] (jointly developed by Motorola and 
Lucent), 16 bit quad memory access instructions are supported. 
These quad memory access instructions load or store 4 memory 
aligned (16 bit) data words with only one instruction. Dual 
memory access instructions require that the first of two data words 
(aligned in memory) must be loaded into an even numbered data 
register (such as d2) and the second of two data words must be 
loaded into the adjacent odd numbered data register (such as d3, 
adjacent to d2). Alternatively a dual load could be used with data 
register pairs (d0,d1) or pair (d4,d5), etc. In the quad memory 
access instruction the first and third of four data words (aligned in 
memory) must be loaded into even numbered data registers and 
the second and fourth of four data words must be loaded into the 
adjacent odd numbered data registers. Each quad memory access 
has a choice of only four sets of data registers it can load into (or 
from if a store is being performed) out of a total of 16 data 
registers available in the register file[5]. These sets are registers 
(d0,d1,d2,d3) or set (d4,d5,d6,d7) or (d8,d9,d10,d11) or 
(d12,d13,d14,d15). If the compiler cannot bind the data to one of 
these four sets, obeying both memory layout and alignment 
restrictions, then it must use several single or dual memory access 
instructions. Since each memory access instruction whether quad 
or single is 16bits, code size can be reduced through efficiently 
utilizing dual and quad memory access instructions where ever 
possible. 

 In summary the multiword memory access instructions 
have an important impact on code size which in turn effects cost, 
energy and power dissipation. The need for decreasing time to 
market, development costs, and maintenance costs, demands the 
use of efficient high level language compilation for these 
sophisticated DSP processors which support these multi-word 
access constraints. All of these factors imply several challenges in 
writing efficient code generators for such DSP processors. 

2. PROBLEM AND RELATED WORK 
 

 The following problem, problem 1 given below, is an 
important part of the code optimization problem for DSP 
processors that will be studied in this paper. For the problem 
definition below we assume that there is one target DSP processor 
or core defined with an instruction set architecture, such as the 
Star*core processor[5]. The target processor supports dual and 
quad memory accesses (of aligned and sequential 16 bit words) 
with aligned data register constraints. In the general application, it 
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is assumed that some data has a predetermined memory layout 
(for example input data or output data of a DSP algorithm), with a 
fixed or flexible alignment. Other data may have no 
predetermined memory layout or alignment, such as data 
coefficients which can be stored in memory according to the 
designer, compiler or CAD tool. 

 Problem 1 : Assume we are given initial assembly code 
generated for the target processor, including memory layout (and 
alignment) of the data. The problem is to improve the register 
allocation and binding code such that the code size is minimum. 
Specifically allocate and bind registers, with constraints of both 
fixed and flexible data memory layout, to maximize the number of 
quad and dual memory access instructions such that the total 
resultant code size is minimized. Extensions to this problem 
include handling loops, conditional code, and data structures. 

 Although many researchers have studied code 
generation for DSP processors or ASIPs [1], fewer have studied 
memory-access code generation. A number of researchers have 
examined allocation of address registers[7,12], data layout [4] , 
and index registers[9] . Researchers in [11] introduced a 
transformation of C code using pointer based code instead of 
array based code to make better use of address calculation units 
on DSPs. Register binding and allocation for low energy was 
studied in [10], where minimization of the bit switching between 
pairs of variables which shared the same register was performed. 
A network flow approach was used, however memory accesses 
were not considered. Researchers in [12] applied a minimum cost 
circulation technique to optimize address register allocation. 
Results showed significant improvements in performance, code 
size and energy dissipation. Register binding and instruction 
scheduling is researched in [2] to minimize the number of 
registers and find tight schedules through the addition of 
sequencing relations. Memory bandwidth minimization for video 
and communications applications is studied in [3], in order to 
reduce the cost and complexity of memory architectures. 

 In this manuscript a new problem, memory-access 
register allocation and binding, is defined and solved. Unlike 
previous research, we study the problem of given flexible and 
fixed data layout in memory, generate optimal memory-access 
code to minimize code size. A maximum cost flow technique is 
used to obtain solutions in polynomial time. The next section will 
outline the assumptions and terminology to be used in the rest of 
the paper. 

3. TERMINOLOGY AND ASSUMPTIONS 
 

The following terminology will be used in this paper: 
Variables, i, can be data stored in registers (produced by the result 
of an instruction, accessed by other instructions, modified by 
multiply-accumulate type instructions, values moved to/from 
memory or coefficients used in the code). A variable, i, can have a 
number of attributes such as: a lifetime which is a range of time 
from define_time(i) to last_used_time(i) where define_time(i) is 
the cycle in which the variable is defined and last_used_time(i) is 
the cycle in which the variable is last used ; access_times(i) are 
the set of cycles during which the variable is accessed or used. 
Additional terminology to be used in the optimization discussions 
are: G=(V,A) is a graph G composed of vertices V and arcs A. The 

variable x i→j is the flow in the arc i→j from vertex i to vertex j, 
where i,j ∈  V and i→j ∈  A. The value c i→j is the capacity on arc 
i→j . The value e i→j is the cost per unit of flow on arc i→j . There 
are two special vertices in this graph called vertex s and vertex t. 
The flow out of vertex s is equal to the flow into vertex t and for 
all other vertices the flow in is equal to the flow out. Arcs incident 
to s only leave vertex s and arcs incident to vertex t only are 
directed into vertex t. 

 The maximum cost flow problem[15,16] is to fix the 
amount of flow through the graph and maximize the sum over all 
arcs of the flow multiplied by the cost. As long as the capacities, c 
i→j , and the lower bounds on the flow, (l i→j), are integer, we can 
be guaranteed of obtaining integer flows in the solution of this 
problem[6]. This problem can be solved in polynomial time using 
linear programming or network algorithms. Applications of 
network flow have been used to solve a large number of difficult 
problems[14]. 

4. MODELING AND METHODOLOGY 
 

This section will briefly describe the methodology for DSP 
memory-access code optimization, problem 1, and how the 
maximum cost flow formulation is used to solve problem 1. The 
methodology first determines a lower bound on the number of 
registers, |R|, required in the application code (based upon 
variables lifetimes, using network flow). It proceeds to use this 
number as a fixed amount of flow and maximizes a cost 
equivalent to the number of dual memory access instructions 
which can be supported by solving a maximum cost network flow 
problem. It next proceeds with the same fixed amount of flow and 
maximizes a cost equivalent to the number of quad memory 
access instructions in the application. In the final stage of the 
methodology, with the dual and quad memory accesses fixed 
(from the solutions of the two previous max-cost flow problems), 
the register binding is performed by solving several network flow 
problems with fixed flows ranging from 1 to |R|-2(#dual)-
4(#quad) and costs representing the sum of the number of 
accesses of each variable in the binding. This final cost is 
attempting to minimize the number of register accesses of higher 
numbered data registers, since accesses to registers in the upper 
bank have a prefix overhead[5] (or extra 16 bit word required 
which increases the code size). Thus we use the cost formulation 
to allocate more frequently accessed variables into the lower bank 
of registers. 

 To illustrate how problem 1 can be modeled as a flow 
problem, we first have to develop a network flow graph. Each 
vertex, vi ∈  V , in the graph corresponds to a variable, i, in the 
assembly code. Vertices s and t are added to the graph 
representing times 0 and s+1 , where s is the number of execution 
sets in the application assembly code, respectively. Arcs from the 
s vertex to all vertices in the graph (except vertex t) are added. 
Arcs are formed from each vertex vi to all other vertices vj such 
that last_used_time(i)= define_time(j) (or in other words variables 
i and j can share the same register since their lifetimes do not 
overlap). The capacities of all arcs are set to 1. In the min-cost 
solution, each path of flow through vertices represents one 
register which stores the respective variables. For illustration 
purposes the data registers are represented by d0 through d7. 
Single memory access instructions (load or store) will be 



 

 

represented by move.f. Dual and quad memory access instructions 
will be represented by move.2f and move.4f respectively. 

Figure 1. Network flow with dual costs in (a), with quad costs 
in (b) and finally quad solution in (c) for fixed memory layout. 

Variable lifetimes are extracted from the compiler generated 
assembly code to create the network flow graph. Additional 
vertices are added into this graph in order to increase the number 
of multiword memory accesses. The maximization of multiword 
memory accesses will be briefly described. The horizontal axis in 
figure 1 represents the memory layout. Specifically increasing 
(byte addressable) memory address locations are shown as boxes 
from left to right. The first box on the left represents an even 
memory address in binary whose last three bits end in  “000”, 
which we will represent as –000. The next three adjacent boxes 
represents memory addresses -010, –100 and –110 respectively. 
The vertical axis of figure 1a), 1b) and 1c) each represents part of 
the assembly code increasing in clock cycles downwards. In figure 
1 the column on the left represents part of an assembly code 
program, only showing the loads (ie move.f (r1)+,d2 , where r1 is 
address register and d2 is data register). The circles represent a 
vertex in our network flow graph which is a variable being loaded 
from memory (at the address identified on it's x-axis, with the 
code located on the y-axis) in this example. Arcs into and out of 
this circle are not shown for simplicity. The squares shown in 
figure 1 represent the additional vertices placed in the network 
flow graph. In figure 1 the square vertex represents an earlier load 
of a variable, which is represented by the circle located vertically 
below it and connected to it by the arc. In the network flow 
solution, a flow through these squares represents a multiword 
memory access instruction (since the earlier memory accesses can 
be performed in parallel with the other memory access). Thus a 
cost of one is assigned to this arc (connected from the square to 
the circle). In the network flow problem we maximize the number 
of multiword accesses which is the sum of costs on these arcs 
multiplied by the flow on these arcs.  

     For example a flow through this arc transforms the two move.f 
(single word memory access) instructions, in figure 1 (a), into one 
move.2f (dual memory access) instruction. The move.2f's are 
represented in figure 1b) as oval circles, each containing two 
circles. The total cost is the savings in code size words (ie. the 
total number of move.f words saved, since 2 are replaced by one 
move.2f instruction) or equivalently the number of dual memory 

access instructions allocated. In the next step we take two move.2f 
instructions and add one arc with a cost of one to create one 
move.4f or quad memory access instruction, as shown in figure 
1b). Again the objective of this second network flow problem is to 
maximize the number of quad memory access instructions 
allocated. Note in figure 1b) if the flow in the arc of cost 1 is zero, 
then we still have a valid allocation of memory access instructions 
since we would use two dual instructions (illustrated by the 
dashed circle). However even when the dual and quad memory 
accesses are maximized using the technique described above, the 
final code cannot be generated until register binding is performed 
(which specifically assigns a data register from the bank to each 
variable), which will be described next. 

 
Figure 2. Register assignments in quad memory access 

instructions (a), and dual memory instructions (b). 

     After the network flow has been used to allocate registers and 
dual/quad memory accesses, the register binding problem must be 
solved. In figure 2 the possible register bindings for each dual and 
quad memory access field are shown. For the register binding 
problem, we also use a network flow formulation. Each flow 
through our graph is a binding of a register di to those variables 
represented as vertices the flow goes through. The methodology 
incrementally binds one or more registers at a time. We consider 
even and odd flows which specifically are binding of even 
(d0,d2,...d6) or odd (d1,d3,...d7) numbered registers respectively. 
In figure 3 a) one quad memory access (shown by four boxes in a 
row at the top, representing the four memory layout locations, 
with odd numbered registers shaded) and three dual memory 
accesses are shown. In the network flow graph, vertices for all the 
other data variables are a part of the flow graph, however will not 
be shown in the figures for simplicity. In figure 3a) a total flow 
going in from the top vertex (s shown as a circle) and out of the 
bottom vertex (t shown as a circle) is 2, which we call the even 
flow since it represents flow through two even data registers 
(d0,d2). A maximum cost flow problem is solved where the 
number of accesses on each variable is the cost of that vertex, 
being maximized. In figure 3b) the flows of the solution are 
shown. In this case we have allocated data registers d0,d2 as 
shown. Next we must bind data register d1 and d3. This next 
problem we solve two network flow problems, the first with single 
flow through d1 variables of dual or quad memory accesses as 
shown in figure 3c) and the second for d3 shown in figure 3 d). 

Consider two quad memory accesses, where the set of variables in 
one quad memory access do not have lifetimes which overlap with 
any variable in the second quad memory access variable set. We 
will use the term non-overlapped quad memory accesses for this 
case. Furthermore if these two quad memory accesses have fixed 
memory layouts then a single flow formulation must be used, as 



 

 

shown in figure 4a). In figure 4 b) the quad memory accesses 
overlap, thus flows of 4 can be used through the even variables. 
After all dual and quad memory access variables are bound to 
registers the remaining variables are allocated using network flow. 

 
Figure 3. Even flows in a) binding registers d0,d2 in (b) and 

odd flow in c),d) binding registers d1,d3 respectively. 

 

 
Figure 4. Non-overlapping quad accesses requiring single 

flows in (a), but in (b) overlapping quad accesses use flow of 4. 

     We can now formulate the register binding network flow 
problem. We define the set of variables which have been given the 
possibility of flow as set F, where variable k∈ F. If a variable 
cannot be bound or allocated in the specific network flow 
problem, we use the terminology, k∉ F. We define our costs, e i→j , 
as the number of accesses of that variable j (as explained earlier). 
For example if we are solving the problem in figure 4b), we define 
variables, k∈ F, as all even variables of quad or dual memory 
access instructions with fixed memory layouts, plus all variables 
of dual or quad memory access instructions with flexible memory 
layouts, plus all other variables in the graph extracted from 
variables of the assembly code. The set of variables with no flow 
or k∉ F are those which are the odd numbered variables in 
dual/quad memory access instructions with fixed memory layouts. 
We denote a variable, k , which is a member of a quad or dual 
access instruction, i, as k∈  Qi, where Qi represents the set of 
variables in multiword memory access instruction i. Finally R is 
the number of registers we are currently binding (for example in 
problem in figure 4a) R=1 whereas in figure 4b) R=4. 

Maximize Σ i→j   e i→j  xi→j  

Σ i|i→j  xi→j  −  Σ i|j→i  xi→j  = 0, ∀  j∈ V 

Σ i|i→vk  xi→vk
 ≤ 1,  Σi|vk→i  xvk→i ≤ 1, ∀ vk ≠s,t, vk∈ V, k∈ F 

Σ i|i→vk  xi→vk
 ≤ 0,  Σ i|vk→i  xvk→i ≤ 0, ∀ vk ≠s,t, vk∈ V, k∉ F 

0 ≤  xi→j  ≤ 1, ∀  i→j∈ A,   R ≤ xt→s ≤ R 

If quad or dual loads or stores have flexible memory layouts then 
this can be supported in the network flow formulation. For dual or 
quad load instructions the flow into the 2 or 4 variables being 
loaded is set to 1 or 2 respectively. For example in figure 5 the 
flow into the quad memory access variables is fixed to two. 
Mathematically we add the following constraint for dual or quad 
loads, W ≤ Σ k|k∈ Qi

 Σ j|j→vk
 xj→vk  ≤ W, ∀ i where W=1, for dual 

loads or W=2, for quad loads. Dual and quad stores are similar 
except the flow constraint is set on the output arcs leaving the 
dual/quad variable vertices (since the lifetimes of these variables 
end on the same clock cycle). 

 
Figure 5. Flexible quad memory load with flow of 2. 

     In general more complex codes which have nested loops with 
dual and quad memory accesses are supported in this framework. 
In these cases the inner most nested loops are used to solve single 
network flow problems for each loop feedback variable. 
Multiword memory access instructions inside nested loops can be 
supported by early binding of the feedback variables to d0,d1, etc 
for each run of the network flow problem. 

5. EXPERIMENTAL RESULTS 
 
 Several DSP applications are used to illustrate this 
methodology. The notation dct, fir, red, pad refers to a discrete 
cosine transform, linear FIR filter, a modulo reduction polynomial 
algorithm, and a polynomial addition algorithm (the last two 
examples used in cryptography) respectively. Assembly code was 
generated using the Star*core C compiler for all examples except 
the fir example where benchmark Motorola assembly code was 
used. The original C-compiler generated dct assembly codes 
contain 39 execution sets in the compiler generated assembly 
code. In dct, only single memory access instructions were utilized 
in the C compiler generated assembly code. The fir example has 
dual nested loops with high degrees of parallelism (execution sets 
of 7 words each cycle), using dual and single moves. The red 
example involved modulo reduction of 326 bit number in 
cryptography. Input data consisted of eleven 32 bit words 
allowing only dual long word loads to be supported. In the pad 
example, computations are performed on two 163 bit numbers 
within a single loop. Again in this example quad loads are not 
considered since they are only applicable in the Star*core 



 

 

processor to 16 bit words. The maximum cost network flow 
problem was solved on a Sun workstation using a linear 
programming solver[8]. All optimizations ran in under 5 cpu 
seconds in total for each application on a 300MHz UltraSparcIIi 
Sun workstation. 
 Table 1 illustrates the optimized results (Opt- ) 
compared to the C compiler generated code (Comp- ). The 
number of registers R, the number of dual memory accesses D1  
and total memory access instructions, M1, (in the original 
compiler generated code and) after the first implementation of 
maximum cost network flow is shown. The number of quad 
memory accesses Q2, the number of dual memory accesses D2 and 
the final number of memory access instructions, M2, after second 
network flow application and complete register binding are also 
shown in the table. Results were generated automatically from 
assembly code using the maximum cost network flow formulation 
and using the memory layout and alignment for data input and 
data output specified by the compiler. To explore the relationship 
between increasing multiword memory accesses versus the total 
number of registers used, the network flow problems were solved 
with different amounts of flow (or number of registers). The 
multiword memory accesses can often be improved through an 
increase in the number of registers used. The improved memory 
bandwidth is shown as %BW, which we define as the number of 
memory access instructions in the original compiler-generated 
code divided by the number of memory access instructions in 
optimized code (after network flow optimization) shown as a 
percent. 
 The register binding for the cosine transform (dct) 
example with 12 registers maximum and three quad memory 
accesses involved one quad access of coefficients where flexible 
memory layout was allowed (like in figure 5) and two quad 
memory accesses of input data. The register binding methodology 
solved an initial network with flow of 4 (since the two quad 
memory accesses overlapped, similar to figure 4b) ), two network 
flow problems each with flow one for each odd data register (as in 
figure 3b)) , one final odd data register network with flow of 2 
and one last network flow for all remaining variables which was a 
flow of 4. Each flow problem was solved in under one second. 
The cosine transform was up to 1.76 (37/21) times more efficient 
in terms of memory accesses. 
The red example used 32 bit word memory accesses so only dual 
memory accesses were supported (since quad accesses were only 
supported for 16bit words, using a 64 bit bus in [5]). In this 
example, up to 1.87 times improvement in memory accesses was 
observed. The benchmark fir assembly coded example had 
different memory accesses which reduced the overall code size by 
1 word. This example had a loop which involved solving the 
network flow problem for interloop variables with single flows in 
addition to constraining any dual and quad memory access 
allocations. All results shown were verified and included loop 
support and register constraints on dual and quad memory 
accesses. 
The pad example, in table 1, was also executed in hardware (using 
the Star*core chip on a development board) in order to measure 
the effect on power dissipation[17,18]. The memory bandwidth 
optimization technique provided one third reduction in energy 
dissipation (reduced from 4.8nJ to 3.0nJ). This energy dissipation 
was due to improved performance (15 cycles versus 26 cycles of 

compiler generated code) as a result of elimination of execution 
sets from allocation of dual loads and dual stores (and elimination 
of  some address register load instructions) within the main loop 
of the pad example. 

Table 1. Compiler versus Optimized Memory Accesses. 

Ex R D1 M1 D2 Q2 M2 %BW 
Comp-dct 16 0 37 0 0 37 - 

Opt-dct 
12 
13 
14 

9 
10 
11 

28 
27 
26 

5 
3 
1 

3 
4 
5 

23 
22 
21 

60% 
68% 
76% 

Comp-fir 12 6 10 6 0 10 - 

Opt-fir 10 6 10 4 1 9 11% 

Comp-red 12 0 15 0 0 15 - 

Opt-red 9 
10 

6 
7 

9 
8 

6 
7 

- 
- 

9 
8 

66% 
87% 

Comp-pad 6 0 11 0 0 11 - 

Opt-pad 4 3 6 3 - 6 83% 
 
 

6. DISCUSSION AND CONCLUSIONS 
 
 In summary code size overheads (including memory 
accesses) were improved up to 1.8 times using the maximum cost 
network flow formulation of the memory-access code problem. 
Unfortunately there is no previously published research to 
compare with, however results reported were compared with the 
Star*core's C compiler[13]. The network flow improved codes 
showed significant improvements. The technique presented in this 
paper performs register allocation and binding to minimize code 
size. The approach can be extended for loop support. Although 
several network flow problems are solved, each can be solved in 
polynomial time with faster network solvers. Furthermore only 
memory bandwidth utilization and it's impact on code size 
reduction was explored in this problem. It is possible that the 
improved memory bandwidth may also lead to improves in 
application throughput (through rescheduling). Although the 
paper has illustrated the network flow technique for 8 registers, it 
was implemented for 16 registers in the experimental section. For 
larger than 16 registers, a larger number of network flow problems 
would have to be solved. However in the worst case for N 
registers, N network flow problems would be solved, which 
includes one initial flow to find a lower bound on registers, two 
network flows to allocated dual and quad memory accesses and in 
the worst case N network flow problems for N data registers. For 
loop support this number would increase, however the network 
flow graphs would be of different sizes. For example one would 
solve the network flow on smaller graphs representing variables in 
innermost nested loops and merging the flows into a vertex in the 
graph at a higher level (outside of the nested loops) to complete 
the register binding. In all cases the register binding network 
flows did not increase the number of total registers being 
allocated. 
 The formulation of a new problem and a maximum cost 
flow approach to solving it has been presented in this paper. 
Unlike previous research, we have studied register allocation and 



 

 

binding for multi-word memory access. Important memory 
bandwidth improvement and code size savings have been 
presented. Notably significant savings in energy dissipation was 
also achieved with this new approach. We have introduced a new 
methodology for utilizing memory bandwidth. It is applicable to 
other DSP processors (both fixed point and floating point ones) in 
addition to Star*core. For the first time, codesize-minimized 
memory-access code can be generated using this new application 
of the maximum cost network flow technique.  
This research was supported in part by grants from Motorola 
(thanks to T.Tam, Y.Ronen, P.Marino, C.Hughes), NSERC and 
CITO. 
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