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ABSTRACT
Crosstalk effects degrade the integrity of signals traveling on long
interconnects and must be addressed during manufacturing
testing. External testing for crosstalk is expensive due to the need
for high-speed testers. Built-in self-test, while eliminating the
need for a high-speed tester, may lead to excessive test overhead
as well as overly aggressive testing. To address this problem, we
propose a new software-based self-test methodology for system-
on-chips (SoC) based on embedded processors. It enables an on-
chip embedded processor core to test for crosstalk in system-level
interconnects by executing a self-test program in the normal
operational mode of the SoC. We have demonstrated the
feasibility of this method by applying it to test the interconnects of
a processor-memory system. The defect coverage was evaluated
using a system-level crosstalk defect simulation method.

1. INTRODUCTION
The shrinking of feature sizes enables the integration of a

large system comprising of multiple cores on a single chip. In
core-based designs, a larger amount of core-to-core
communications must be realized with long interconnects. As gate
delay continues to decrease, the performance of interconnect is
becoming increasingly important in achieving a high overall
performance [1]. However, due to the increase of cross-coupling
capacitance and mutual inductance, signals on neighboring wires
may interfere with each other, causing excessive delay or loss of
signal integrity. This effect, known as crosstalk, is more
pronounced in deep-submicron technology [2][3]. While many
techniques have been proposed to reduce crosstalk [4][5], due to
the limited design margin and unpredictable process variations,
the testing of crosstalk must be addressed in manufacturing
testing.

Due to its timing nature, testing for crosstalk effect need to
be conducted at the operational speed of the circuit-under-test. At-
speed testing for GHz systems, however, is prohibitively
expensive with external testers, as it requires testers with GHz
performance. Moreover, with external testing, hardware access
mechanisms are required for applying tests to interconnects
deeply embedded in the system, which may lead to unacceptable
area or performance overhead.

Compared with external testing, self-testing is a more
feasible solution for at-speed crosstalk testing, as it does not

impose any performance requirement on the external tester. A
built-in self-test (BIST) technique has been proposed in [6], in
which an SoC tests its own interconnects for crosstalk defects
using on-chip hardware pattern generators and error detectors.
Although the amount of area overhead may be amortized for large
systems, for small systems, the amount of relative area overhead
may be unacceptable. Moreover, hardware-based self-test
approach like the one proposed in [6] may cause over-testing, as
not all test patterns generated in the test mode are valid in the
normal operational mode of the system.

In this paper, we address the problem of testing system-level
interconnects in embedded processor-based SoCs, which are the
most dominant type of SoCs. In such SoCs, most of the system-
level interconnects, such as the on-chip busses, are accessible to
the embedded processor core(s). Based on this fact, we propose a
software-based methodology that enables an embedded processor
core in the SoC to test for crosstalk effects in these interconnects
by executing a software program. Unlike previous embedded
processor core-based self-testing methodologies [7][8][9][10], in
which the embedded processor cores themselves are the subjects
of testing, the focus of our methodology is on the testing of
interconnects connecting the processor cores and other cores.

Compared with the hardware-based approaches for crosstalk
testing, software-based self-test can be applied in the normal
operational mode of the processor. Therefore, no extra hardware
is needed. In addition, only the test patterns valid in the normal
operational mode of the processor are applied. Thus, the system
will not be over-tested.

In the rest of the paper, we first briefly describe the crosstalk
fault model used during the development of the proposed method.
The software-based self-test methodology for crosstalk defects is
introduced in Section 3. In Section 4, we illustrate the proposed
method in detail by constructing a self-test program for testing
interconnects in a particular CPU-memory system. In Section 5,
we validate the proposed method by extensive defect simulation
using an HDL-level simulation framework consisting of a high-
level crosstalk error model. Section 6 concludes the paper.

2. FAULT MODEL
During the development of the proposed self-test method, we

used the Maximum Aggressor Fault (MAF) model [2] for
modeling crosstalk effects. MAF model is a high-level
representation of all physical defects and process variations that
lead to crosstalk errors. It defines faults based on the resulting
crosstalk error effects, including positive glitch (gp), negative
glitch (gn), rising delay (dr), and falling delay (df). The
interconnect on which the error effect takes place is defined as the
victim. All the other wires are designated aggressors, acting
collectively to generate the glitch or delay error on the victim.

Figure 1 shows the signal transitions needed on the
victim/aggressors to produce the strongest error effects on a
victim wire. For example, to produce a positive glitch fault on
Victim Yi, a stable “0” is assigned to Yi, whereas rising transitions
are assigned to all aggressors. Each of these signal transitions,
consisting of two consecutive test vectors, is defined as the
Maximum Aggressor (MA) test for the corresponding MAF. For a
set of N-interconnects, a total of 4N faults need to be tested,
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requiring 4N unique MA tests. It has been proven in [2] that these
MA tests are necessary and sufficient for covering all possible
physical defects and process variations that can lead to any cross-
coupling induced crosstalk error effect on any of the N
interconnects.

In the next section, we describe the general strategy for
applying MA tests to system-level interconnects by executing a
self-test program using an embedded processor.

3. TEST METHODOLOGY
In a core-based SoC consisting of embedded processor,

memory and other cores, the address, data, and control busses are
the main types of global interconnects, with which the embedded
processors communicate with memory and other cores of the SoC
via memory-mapped I/O (Figure 2). The data bus and the address
bus are most susceptible to crosstalk defects, as they consist of a
large number of long interconnects running in parallel. Thus, we
focus in this paper on the testing of these busses.

To test the address bus and the data bus with an embedded
processor, our strategy is to let the processor execute a self-test
program, with which the test vector pairs (as described in Section
2) can be applied to the appropriate bus in the normal functional
mode of the system. In the presence of crosstalk-induced glitch or
delay effects, the second vector in the vector pair becomes
distorted at the receiver end of the bus. The processor can then
store this error effect to the memory as a test response, which can
later be unloaded by an external tester for off-chip analysis.

In this self-test approach, the loading of the self-test program
and the unloading of the test response can be done with a low-
speed tester. This prevents the corruption of the test program data
or test response data due to crosstalk errors on the data or address
busses, which can be activated at high speed. The self-test
program itself is executed at-speed in the normal functional mode
of the system without the monitoring of any external testers. Thus,
with this approach, at-speed testing for crosstalk effects can be
applied without a high-performance tester.

We next describe the general method for testing the data bus
and the address bus.

3.1 Testing Data Bus
For a bi-directional bus such as a data bus, crosstalk effects

vary as the bus is driven from different directions. Thus, crosstalk
tests need to be conducted in both directions [6]. Note that,
however, to apply a test vector pair (v1, v2) in a particular bus
direction, the direction of v1 is irrelevant. Only v2 needs to be
applied in the specified direction. This is because the signal
transition triggering the crosstalk effect takes place only when v2
is being applied to the bus.

To apply a test vector pair (v1, v2) to the data bus from an
SoC core to the CPU, the CPU first exchanges data v1 with the
core. The direction of the data exchange is irrelevant. For

example, if the core is the memory, the CPU may either read v1
from the memory or write v1 to the memory. The CPU then
requests data v2 from the core (a memory-read if the core is
memory). Upon the arrival of v2, the CPU writes v2 to memory
for later analysis.

To apply a test vector pair (v1, v2) to the data bus from the
CPU to an SoC core, the CPU first exchanges data v1 with the
core. The CPU then sends data v2 to the core (a memory-write if
the core is memory). If the core is memory, v2 can be directly
stored to an appropriate address for later analysis. Otherwise, the
CPU must execute additional instructions to retrieve v2 from the
core and store it to memory.

3.2 Testing Address Bus
To apply a test vector pair (v1, v2) to the address bus, which

is a unidirectional bus from the CPU to an SoC core, the CPU
first requests data from two addresses (v1 and v2) in consecutive
cycles. In the case of a non-memory core, since the CPU
addresses the cores via memory-mapped I/O, v2 must be the
address corresponding to the core. If v2 is distorted by crosstalk,
the CPU would be receiving data from a wrong address, v2’,
which may be a physical memory address or an address
corresponding to a different core. By keeping different data at v2
and v2’ (i.e., mem[v2] ≠ mem[v2’]), the CPU is able to observe
the error and store it to memory for analysis. Figure 3 illustrates
this process. For example, in the case where the CPU is
communicating with a memory core, to apply test (0001, 1110) in
the address bus from the CPU to the memory core, the CPU first
reads data from address 0001. The CPU then reads data from
address 1110. In the system with the faulty address bus, this
address becomes 1111. If different data are stored at address 1110
and 1111 (mem[1110] = 0100, mem[1111] = 1001), the CPU
would receive a faulty value from memory (1001 instead of 0100).
This error response can later be stored to memory for analysis.

4. APPLICATION TO A CPU-MEMORY
SYSTEM
In this section, we illustrate the proposed method in detail by

applying the guidelines introduced in Section 3 to a CPU-memory
system. Since memory-mapped I/O is a common mechanism for
CPU to communicate with other cores, the same methodology can
be generalized for testing interconnects between the CPU and
non-memory cores.

The particular CPU-memory system we used here consists of
an 8-bit accumulator-based multi-cycle processor core with 23
instructions [11] and a 4K instruction/data memory. The CPU
communicates with the memory via a 12-bit unidirectional
address bus and an 8-bit bi-directional data bus.

4.1 Testing Data Bus
We chose to use the load instruction (LDA) of the processor

to apply tests to the data bus. The load instruction takes a 12-bit
address (Ax) as operand and loads the content of this address
(M[Ax]) to the accumulator. As shown in Figure 4, the load
instruction is stored as two bytes in the memory. The addresses of
these two bytes are Ai and Ai+1, respectively. In the first byte, the
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first 4 bits contain the opcode of the instruction. The last 4 bits
contain the page number of Ax, which is the first 4 bits of Ax. The
second byte in the load instruction contains the offset of Ax, which
is the last 8 bits of Ax.

Figure 5 shows the timing diagram of the load instruction. In
the system under consideration, access to busses is controlled by
tri-state buffers. When all tri-state buffers are disabled, the signal
on the bus becomes high impedance (“z”). When “z” appears, we
assume the bus holds the last defined value before “z”.

To fetch the instruction from the memory, the CPU first
requests the first byte of the instruction by placing the address of
the instruction, Ai, on the address bus. The memory responds by
sending the content of Ai (M[Ai]) to the CPU through the data
bus. After decoding the first byte of the instruction, the CPU
recognizes that the current instruction is a load instruction, which
contains two bytes. Thus the CPU fetches the second byte of the
instruction from memory (M[Ai+1]). After receiving the complete
instruction, which contains the data address Ax, the CPU fetches
the content of Ax (M[Ax]) from memory and places it into the
accumulator.

During the execution of the load instruction, there are two
signal transitions on the data bus, which can be used to apply the
vector pair for crosstalk testing. The first transition is from M[Ai]
to M[Ai+1]. As M[Ai] contains the opcode of the instruction, we
are constrained when applying vector pairs using this transition.
The second transition is from M[Ai+1] to M[Ax], where M[Ai+1]
contains the 8-bit address offset of the data to be loaded and
M[Ax] contains the actual data to be loaded. We chose this
transition over the first transition, as it does not come with any
constraints.

To apply an arbitrary vector pair (v1, v2) to the data bus, we
need to have M[Ai+1] = v1 and M[Ax] = v2. Hence, we need to
load from an address with a specific offset (v1) containing a
specific data (v2). For example, to apply (00000000, 11110111),
one of the tests for positive glitch faults, we may load from
address 1110:00000000 (offset = 00000000), which contains data
11110111). If the test passes, v2 (11110111) is loaded to the
accumulator. If the test fails due to a positive glitch, v2 becomes
11111111. Thus a wrong value is loaded into the accumulator.
The error response can be collected by storing the accumulator
content to a specific memory address, which can be checked by an
external tester upon the completion of the tests. Thus, a two-
instruction sequence is needed for applying this test: (
1110:00000000,  ), where the content of memory address
1110:00000000 must be set to 11110111, and  is the memory
address where the test response will be stored.

Similarly, the same strategy can be used to apply tests for
other types of crosstalk faults (negative glitch, falling delay, and
rising delay) on the data bus.

4.2 Testing Address Bus
During the execution of the load instruction, there are two

transitions on the address bus. The first transition is the increment
from Ai to Ai+1. The second transition is from Ai+1 to Ax. Since

the first transition comes with a much more strict constraint than
the second one, we choose to use the second transition to apply
the vector pair.

To apply an arbitrary vector pair (v1, v2) to the address bus,
Ai+1 must be v1 and Ax must be v2. Thus, the second byte of the
instruction must be located at memory address v1, which implies
that the instruction itself must be located at memory address v1-1.
In addition, the data address accessed by the instruction must be
v2.

For example, to apply (0000:00010000, 1111:11101111),
one of the tests for falling delay faults, we place the load
instruction at address 0000:00001111 (v1-1), and load from
address 1111:11101111 (v2). If the test fails due to a falling delay
defect, v2 becomes 1111:11111111 and we would be loading
from address 1111:11111111 instead of address 1111:11101111.
To observe the error, we store different values at address
1111:11101111 and 1111:11111111 (e.g., 00000001 at
1111:11101111 and 00000000 at 1111:11111111). If the test
passes, 00000001 is loaded to the accumulator. If the test fails,
00000000 is loaded instead. Again, the error response can be
collected by storing the accumulator content to memory. Thus, a
two-instruction sequence is needed for applying this test: (
1111:11101111,  ), where the  instruction is placed at memory
address 0000:00001111, and the contents of memory address
1111:11101111 and 1111:11111111 are set to 00000001 and
11111111, respectively.

Tests for rising delay faults can be applied in a similar
manner. However, tests for positive glitch/negative glitch faults
are considerably different. This is because all tests for positive
glitch faults start with vector 0000:00000000 (Figure 1). To apply
such a test using one instruction, the second byte of the
instruction must be placed at memory address 0000:00000000.
Moreover, to apply two vector pairs starting with the same vector
(0000:00000000 in this case), two instructions need to be placed
at the same memory location, causing an address conflict. This
problem can be solved by utilizing the signal transition between
two instructions, which we will not elaborate in this paper.
Moreover, without losing any diagnostic information, we were
able to compact test responses from different tests by instructions.

Depending on the actual instruction set of the processor core
used in the SoC, the detailed constructs of the test programs may
be different. Nonetheless, the general testing strategy we
described here may be used to test the address/data busses
between any CPU-memory pair. Moreover, since the cores in an
SoC are often addressable by the CPU via memory-mapped I/O,
the same test strategy can be applied to test address/data busses
between any CPU-core pair.

5. VALIDATION
To validate the proposed software-based self-test

methodology, we composed a complete test program for the CPU-
memory system described in Section 4 and evaluated its defect
coverage under an HDL-level defect simulation environment
(Figure 6). During simulation, the CPU exercises the busses by
executing the crosstalk test program stored in the memory. To
simulate the effect of crosstalk on HDL-level, we used the high-
level crosstalk error model proposed in [12]. Coded in HDL, the
error model takes as input a parameter file containing the values
of the coupling capacitance among interconnects. Given an input
transition on the driver end of the bus, the error model determines
whether a crosstalk error happens on the receiver end. Note that
with this high-level crosstalk error model, we are able to take into
account the effect of fault masking when evaluating defect
coverage, since a crosstalk defect on the bus is indeed activated
many times as the CPU executes the test program.

During the executing the test program, the CPU stores test
response signatures to the memory. Upon the completion of the
simulation, we determine whether the defect has been detected by
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the test program by comparing the resulting response signature
with its expected value. To estimate the defect coverage, the same
defect simulation process is repeated on all defects from a pre-
constructed defect library.

To generate the defect library, we first randomly perturb the
nominal values of coupling capacitances among interconnects
according to a given defect distribution. Given the resulting
perturbation, we use the criteria in [2] to determine whether the
perturbation is large enough to be detectable by any tests. If so,
we record the perturbation as a defect. The process is repeated
until a satisfactory number of defects are generated. In this paper,
we only consider crosstalk within the same bus when injecting
defects. It is possible to inject defects causing crosstalk between
two busses by treating them as one bus.

In our experiments, we used a Gaussian distribution to model
the defect distribution in terms of the variation of capacitance
values (in %). A 3δ point of 150% was chosen. A total number of
1000 defects were generated for each bus.

For the CPU-memory system described in Section 4, there
are 64 MAFs on the 8-bit bi-directional data bus (8x4x2) and 48
MAFs on the 12-bit address bus (12x4). With the test program,
we were able to apply 64 out of 64 MA tests for the databus and
41 out of 48 tests for the address bus. Some of the tests cannot be
applied due to address conflicts – i.e., multiple tests compete for
the same instruction address. This problem can be solved by
separating conflicting tests into multiple test programs, which can
be executed in different sessions. The total execution time of the
programs is 1720 processor cycles. The size of the test program is
proportional to the width of the busses, as a certain number of
instructions are needed for testing for each MAF.

Figure 7 shows the individual and cumulative defect
coverage obtained by applying each of the MA test for the address
bus of the CPU-memory system. The horizontal axis indicates the
MA test for each interconnect of the bus, with the ith test being the
MA test for the ith interconnect. The individual defect coverages
are shown in light gray, while the cumulative coverages are shown
in dark gray. It can be seen that different MA tests have different
levels of defect coverages, with the MA tests for the center
interconnects having more coverage than the MA tests for the side
interconnects. This is because the chance of a side interconnect

being defective is small, as the net coupling capacitance on a side
interconnect is smaller than the one on a center interconnect (i.e, a
much larger perturbation is needed to render the side interconnect
defective). Figure 7 also shows that the MA tests combined
together provide a 100% coverage of the crosstalk defects on the
address bus interconnects.

Since the MA tests are necessary for detecting all detectable
defects [2], in theory, some of the defects can only be detected by
the missing tests. However, using our defect library, the defect
coverage of the test program is 100% on both address and data
busses. This is because a large overlap exists among the defects
set detected by different MA tests. Of all the defects detectable by
one MA test, only a tiny fraction cannot be detected by any other
MA tests.

6. CONCLUSIONS
At-speed testing for crosstalk effects is expensive with

external testers. Built-in self-test for crosstalk may result in high
test overhead or over aggressive testing. To address these issues,
we proposed a cost-effective method for testing system-level
interconnects using embedded processor cores. By executing a
self-test program, a processor is able to test the address and data
busses through which it communicates with memory components.
The same method can be applied for testing the interconnects
between the processor and non-memory cores, as these cores are
typically addressed by the processor via memory-mapped I/O.
We have constructed an HDL level defect simulation environment
to validate the proposed method and evaluate the defect coverage
of any given test program. Experimental results show that a self-
test program written following the proposed method is able to
achieve its projected defect coverage.
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