
Simulation-Based Test Algorithm Generation and Port
Scheduling for Multi-Port Memories

Chi-Feng Wu, Chih-Tsun Huang, Kuo-Liang Cheng, Chih-Wea Wang, and Cheng-Wen Wu
Department of Electrical Engineering

National Tsing Hua University
Hsinchu, Taiwan

cww@ee.nthu.edu.tw

ABSTRACT
The paper presents a simulation-based test algorithm generation
and test scheduling methodology for multi-port memories. The
purpose is to minimize the testing time while keeping the test al-
gorithm in a simple and regular format for easy test generation,
fault diagnosis, and built-in self-test (BIST) circuit implementa-
tion. Conventional functional fault models are used to generate
tests covering most defects. In addition, multi-port specific defects
are covered using structural fault models. Port-scheduling is in-
troduced to take advantage of the inherent parallelism among dif-
ferent ports. Experimental results for commonly used multi-port
memories, including dual-port, four-port, andn-read-1-write mem-
ories, have been obtained, showing that efficient test algorithms can
be generated and scheduled to meet different test bandwidth con-
straints. Moreover, memories with more ports benefit more with
respect to testing time.

1. INTRODUCTION
Multi-port memories are commonly used components in VLSI

systems, such as register files in microprocessors, storage for media
or network applications. The content of a multi-port memory can
be accessed through different ports simultaneously. This feature
is especially valuable for high speed processors, media processors,
and communication processors. However, multi-port memories re-
quire more testing effort since all ports have to be verified.

A multi-port memory is usually tested as several single-port
memories, which are tested separately with test algorithms devel-
oped for single port memories. This approach is simple and easy to
deploy, but there are two major problems with it.

The first is the lack of detection for multi-port specific defects
that may occur in the memory. Multi-port memories need to
be verified with more fault models related to inter-port defects.
That makes the complexity of multi-port fault models significantly
higher than the complexity of single-port fault models.

The second is the inefficiency of the test procedure, because the
inherent parallelism of multi-port memories is not fully utilized
during testing. Test scheduling for a single-port memory is triv-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2001,June 18-22, 2001, Las Vegas, Nevada, USA.
Copyright 2001 ACM 1-58113-297-2/01/0006 ...$5.00.

ial, i.e., the entire test algorithm is applied to the one and only port.
When there are multiple ports, the test algorithm defines tests for
all ports. Cell faults, such as stuck-at faults and transition faults,
are testable through each one of the ports. On the other hand, an
inter-port fault is more difficult to test than a cell fault because the
fault activation needs not only a specific address, operation, and
data pattern, but also a specific port configuration. Test scheduling
is important when testing multi-port memories because testing time
can be significantly reduced by propertest scheduling.

Functional fault models and tests for two-port memories have
been proposed in [1, 2], The complexity of the tests isO(Nm),
whereN is the size of the memory, andm is the number of ports [1].
When the address scrambling scheme is known, the testing time can
be reduced toO(N), but with a large constant factor, e.g., ranging
from 81N to 269N for two-port memories [2]. Structural fault mod-
els, such as the adjacent bit-line short, has been used in [3–5]. In
general, functional fault models covers more defects, but require
longer testing time than structural fault models. Structural fault
models are based on the circuit structure of the memory, therefore
deriving tests for them need more design information. Also, test
patterns for structural fault models are usually not as regular as test
patterns for functional fault models.

In this paper, we present a methodology that adopts both func-
tional fault models and structural fault models. The purpose of our
methodology is to minimize the testing time while keeping the test
algorithm in a simple and regular format of March test for easy test
generation/scheduling, fault diagnosis, and built-in self-test (BIST)
circuit implementation [6–8]. Several popular RAM fault models,
such as stuck-at faults, coupling faults, etc., are used to cover most
memory defects, while structural fault models are used to cover de-
fects specific to multi-port memories. Port scheduling is introduced
to further optimize the testing time. All test algorithms presented
in this paper have been verified with the the fault simulator that we
have developed and constantly improved, called RAMSES [9].

2. FAULT MODELS AND DEFINITIONS
Fault models are defined to cover defects in memory cell arrays,

address decoders, and read/write circuits. Functional fault models
and March algorithms are widely used in the industry for this pur-
pose [10]. Several popular fault models are introduced to demon-
strate our methodology, including stuck-at fault (SAF), transition
fault (TF), address decoder fault (AF), stuck-open fault (SOF), read
disturbance fault (RDF), and coupling fault (CF), for which we con-
sider state coupling (CFst), inversion coupling (CFin), and idempo-
tent coupling (CFid). Table 1 shows several popular March algo-
rithms, following the notation of [10]. March tests are normally
short and easy to generate.



Table 1: Some March algorithms.
Name Algorithm
MATS++ m (w0);* (r0;w1);+ (r1;w0; r0)
March X m (w0);* (r0;w1);+ (r1;w0);m (r0)
March Y m (w0);* (r0;w1; r1);+ (r1;w0; r0);m (r0)
March C� m (w0);* (r0;w1);* (r1;w0);+ (r0;w1);

+ (r1;w0);m (r0)

Structural fault models specific to multi-port memories are inter-
port bridge or short faults, including inter-portword line shortsand
inter-portbit line shorts. Figure 1 shows a two-port memory topol-
ogy example, in which defects result in a word line short and a bit
line short. The bit lines are simplified as single-ended for easy read-
ing, but we actually consider differential pairs and all combinations
of shorts during fault simulation.

WL

Interport BL short

Interport WL short
WL

WL

WL

WL

WL

WL

WL

BL BLBL BL

BL BL BL BL

A

B

A

B

A

A

A

A

B

B

B

A

B

B

B

A

1

αβ

γ

2

3

Figure 1: Example of two-port memory layout topology.

When an inter-port word line short occurs as in Figure 1, one of
the possible results is shown in Figure 2. Address 2 of port B has a
multiple access to Cell 2 and Cell 3 when port A is accessing Cell
1. The resulting value of a read to multiple cells depends on the
memory design: possible faulty results are the logic-and or logic-
or of the two cells. When an inter-port bit line short occurs as in
Figure 1, one of all possible results is shown in Figure 3. Port A
Addressα has a multiple access to Cellα and Cellβ, so has port B
Addressβ. The resulting value of a read to multiple cells depends
on the memory design: possible faulty results are the logic-and or
logic-or of the two cells. Note that Figure. 2 and 3 describe possible
results because an inter-port short can lead to more than one faults
on the same bit line or word line.

Faulty

Address 1

Port B

Port A

Fault−Free

Cell 2

Address 3

Address 2

Cell 3
Cell 2Address 2

Cell 1Address 1Cell 1

Figure 2: Functional behavior of an inter-port word line short.

Availability of the physical information determines the complex-
ity of inter-port faults. When the address scrambling scheme is un-
known, all possible ways of short between all addresses have to be
considered. From Figure. 2 and 3, when the physical information
is missing, the complexity of inter-port word and bit line shorts are
O(N3) andO(N2), respectively, if they are mapped to functional
faults, i.e., address decoder faults.

On the other hand, given the address scrambling data, test algo-

Faulty

β Cell β

Port A

Port B

Fault−Free

Cell

Address Cell

Addressα

β β

α

Addressα Cell α

Addressβ Cell β
Addressα Cell α

Address

Figure 3: Functional behavior of an inter-port bit line short.

rithms can be developed to detect most likely shorts in the circuit.
The complexity is reduced to the order of the number of bit lines
and word lines, i.e.,O(N

1
2 ) to O(N), depending on the aspect ratio

of the memory layout.

3. TEST STRATEGY
A multi-port memory consists of multiple ports that access the

same cell array with their own read/write circuits and address de-
coders. Applying a March test (such as March C�) on one port
can detect most defects in the memory, including the cell array, the
port’s read/write circuit and the port’s address decoder.

Our test strategy is to test the cell array, read/write circuits and
address decoders using functional fault models that have been well-
developed for single port memories. Inter-port specific defects are
covered using structural fault models. The specification of logical
address fields such as word line select, bit-line select, I/O select,
etc., are required in order to derive the address translation. An ex-
ample of address translation is depicted in Figure 4.

bit2bit3

3 0

bit0bit1

A B C D

7 6

B − I/O select

3 2 1 045 5 4 3 2 1 0

row column

Logical
Address

Physical
Address

C − bit line select

8

A − word line select

7

D − bit position in a word

6

Data word A

Address A

Figure 4: Scrambling.

We propose a novel test pattern that extends March algorithms
to test structural fault models that involving neighboring cells on
physical locations. The neighboring cells, calledMarch guards,
are shown in Figure 5. For each address, four reads are defined
on its neighboring cells, denoted asrN, rS, rE, and rW, respec-
tively. When reaching the boundary, a March guard can be either
degraded to a no-operation (NOP) or pushed-back to the base (B)
cell, depending on the implementation preference. The NOP can
be implemented as adummy read, i.e., a read without comparison
with the fault free value. When degraded to a NOP, the detection
capability is slightly reduced but can be recovered by proper port-
scheduling, which is explained in the next section.

The expected value of a March guard depends on the address
sequence and the data background, as shown in Figure 5. When
the address sequence is ascending and the march element changes
the base cell from 0 to 1, the expected value forrN and rS are 0
and 1, respectively. One or more of the four reads can be used in
a March algorithm to detect memory faults. Because of the reg-
ularity of March tests, the expected value in(rN; rS) or (rW; rE)
are always complementary except on the boundary, therefore they
provide a good and simple mechanism for checking line shorts for
both AND-type and OR-type shorts.

March guards is an extension to conventional March tests. A



March test with guards for a two-port memory is illustrated in Fig-
ure 6. The test algorithm is executed as a normal MATS++ [10]
for port A. Two test elements of March guards, i.e.,(rN1; rS0) and
(rW1; rE0), are applied to port B. For proper scheduling of the test
elements, a NOP (shown as ”�”) is used to match the timing. In
M1, when port A executes(r0;w1), port B executes(rN1; rS0) us-
ing the same address sequence, i.e., port B is checking the adjacent
cells. When March guards are employed,(rW1; rE0) detects word
line shorts, while(rN1; rS0) can detect word line shorts and bit line
shorts. In Figure 1, for example, a read fromα or β can detect
the bit line short, a read fromγ can also detect the bit line short,
and a read from 2 can detect the word line short. In general,rN

andrS are more versatile, butrW andrE are still useful for certain
special conditions, such as boundaries. Their applications will be
demonstrated later.

1 1/0 0

1 1 1

0 0 0

E

N

W

S

B

0 0 0

0 1

1 1 1

0/1

Figure 5: March guards.

M0 M1 M2
Port A m (w0) * (r0;w1) + (r1;w0; r0)
Port B (�) (rN1; rS0) (rW1; rE0;�)

Figure 6: March X with March guards extension.

4. TEST ALGORITHM GENERATION
To generate test algorithms efficiently for various architectures of

multi-port memories, a systematic methodology is proposed based
on TAGS, a simulation-based test algorithm generator for RAM [6].
Test algorithm generation with port scheduling is an extension to
TAGS, named TAGS-PS. On fault simulation for multi-port mem-
ories, several assumptions are made:

1. Each memory port has a preset access priority. When access-
ing an address simultaneously from more than one ports, the
operations are arranged according to the order of access pri-
orities, from high to low. For simplicity, we assign the port
with the highest access priority as port 1, the next as port 2,
and so on.

2. Simultaneous writes to an address from multiple ports are
considered as invalid operations.

3. For n-read-1-write memories, its write port and one of the
read ports are combined into a read/write pair during the op-
eration of cell fault detection. The write port is assigned port
1, without loss of generality.

The test generation methodology provides automatic test gener-
ation by minimizing the testing time and guarantees the fault cov-
erage. The test generation algorithm consists of three phases. The
procedure is stated as follows. An example will be given later for
dual-port memories.

1. Base algorithm generation

(a) Generate a single port complete test, i.e., a 100% fault
coverage test for all cell array faults. The test is per-
formed by accessing port 1, initially.

(b) Append additional tests for multiple-port specific
faults, i.e., address decoder faults (AFs) for each port
and inter-port faults. There are possibilities that these
tests require simultaneous operations on two or more
read/write ports.

Consequently, the phase consists of three sections: the sec-
tion of a single-port complete test, the section of AFs, and
the section of inter-port faults, as shown in Figure 7(a). To
detect multi-port specific faults, one or more March guards
are inserted, therefore two or more ports may be accessed si-
multaneously in the test sections 2 and 3, as indicated in the
figure.

Single-port
Test Algorithm

Multi-port
AF Test

Single-port
Test Algorithm

March Test

Section 1 Section 2 Section 3

Port 1

Port 2

Port m

Port 1

Port 2

Port m

(a)

(b)

Multi-port Inter-port
TestAF Test

Inter-port
MPF Test

Figure 7: (a) The complete test (b) Port scheduling and test
reduction.

2. Port scheduling

Each test element in the base algorithm has certain degree of
freedom, i.e., there may be other elements that can achieve
the same fault detection capability. Port scheduling is to
search possible compaction ways to reduce the testing time.
The procedure is as follows.

(a) Initial test set contains one or more base algorithms.

(b) For each test in the test set, select one that contains all
test elements in test sections 2 and 3.

(c) Search for appropriate positions where the selected el-
ement matches an element in test section 1. When the
selected element is on porti andi 6= 1, the matched ele-
ment in section 1 can be swapped with the test element
in port i only when it is a NOP. Acompacttest is gen-
erated by embedding the selected test element in test
section 1 and deleting it from its original position. All
possible compact tests are generated and appended to
the test set.

(d) Simulate each and every test in the test set with RAM-
SES [9], then delete incomplete tests. Complete tests
are sorted by their test length. A threshold value is set
for keeping additional tests that are not the shortest test.
The default threshold value is 0, i.e., only the tests with
the shortest test length are kept in the test set, others are
deleted.

(e) Repeat steps 2b to 2d using the new test set until no
further compaction is possible. Report the shortest test
in the test set as the final test.



Test section 1 of the base algorithm consists of test elements
for port 1. There are certain degree of freedom for test ele-
ments in other test sections to be embedded in section 1 since
all ports except port 1 perform NOPs in section 1. Moreover,
the test elements in port 1 can be swapped with other ports
with NOPs, which increases the degree of freedom for fur-
ther compaction. As indicated in Figure 7(b), the test algo-
rithm is compacted after the scheduling because the detection
capability of test elements in various test sections are over-
lapped. The port scheduling steps will be illustrated in the
following example.

3. Redundancy check

(a) Examine the redundancy among the test for March op-
erations which perform read for only one port and per-
form NOP for all other ports, calleddangling reads.
Search fordangling readsand verify their redundancy
by RAMSES. Delete redundant operations.

(b) Repeat until no further redundancy can be found.

The detection capability of a dangling read is likely to be
covered after port scheduling, e.g., the read operation for de-
tecting SOF through port 1 can be removed because of the
insertion of March guards.

For a common dual-port memory, which has two separate
read/write ports, the test generation is illustrated in Figure 8.
Firstly, a 12N test is generated to cover all SAF, TF, SOF, RDF,
and CFs (see test section 1 of Figure 8(a)). A test for AFs for each
read/write port is generated as test section 2, and an inter-port spe-
cific test is generated as test section 3. After the base algorithm is
determined, the port-scheduling is performed.

� Read/write operations in test section 1 are not restricted to
the specific port. The operation can therefore be swapped be-
tween different ports with the same fault coverage. The port
swapping provides the degree of freedom for the compaction
of multiple-port operations. For example, test section 3 can
be directly matched and embedded in test section 1, as shown
in Figure 8(b). Test section 2 can only be embedded into test
section 1 after the port swapping of the two consecutiverwr
operation, resulting in the algorithm in Figure 8(c). Different
orders of compaction steps will alter the result. In general,
dealing with the test elements of inter-port faults first obtains
better result than dealing with the test elements of AFs first,
because the constraints of testing AFs are less strict and can
be dealt with after the compaction of other tests. However, all
possible ordering can be applied to explore the search space
for better results. Shorter tests are considered as better ones.

� Moreover, some tests such as that for inter-port faults have
alternatives. Figure 9(a) shows two equivalent patterns to
detect the inter-port shorts between porti and portj . The pat-
terns also have varieties for different access directions or dif-
ferent data backgrounds. The variations increase the degree
of freedom to generate the final test. A possible pattern com-
bination for all inter-port shorts is shown in Figure 9(b). The
result of port scheduling helps derive alternatives depending
on the choice of equivalent tests. Again, an optimized test is
selected among different alternatives, according to the simu-
lation results of RAMSES and the test lengths.

After port scheduling, some test elements may still have redun-
dancy because cell array faults may be covered by March guards.

The dangling reads are examined for redundancy because remov-
ing the operation and other NOPs will not affect correct timing. As
in Figure 8(c) and (d), three March operations are tested and two of
them are stripped. Consequently, a 10N algorithm is generated for
a dual-port memory.

− −−−− − − − − −

(a)

(b)

(c)

−

(d)

−

− − −− − −

− − − − − −

0r0w

0r

0r 0r 1w 1r 0w

0r 1w 1r 0w

0r0r1r0r 1w 1r 0w0w

0r 1w 1r 0w1r N
0r S

0rN
1r S

0w 0r 1w 1r 0w 0r

0r 1w 1r 0w1r N
0r S

0rN
1r S

1r N
0r S

0rN
1r S

Section 1

− − − −

Section 2 Section 3

Section 1 Section 2

Section 3

− − − − − −

− − − −

Section 1

Section 2

− −

−

− −

− − − −

−

− −

Port 1

Port 2

Port 1

Port 2

Port 1

Port 2

Port 1

0

Port 2

r 1w 1r 0w0r 1w 1r 0w

0r 1w 1r 0w 1r N
0r S

0rN
1r S

0r 1w 1r 0w 0r 1w 1r 0w1r 0r0w

0r 1w 1r 0w 0r 1w 1r 0w1r

Figure 8: (a) The complete test; (b) Port scheduling for test
section 3; (c) Port scheduling for test section 2; (d) Redundancy
reduction.

(a)

(b)

-- - - - -

- -

-

-

-

-

1w 1r 0w0r

1w 1r 00r

1 1r 0wr

w

w 1r 0w0r

1w 1r 0w0r

1r N
0rN

1r S
0r S

1r

w

0rN
1r S

0

0

1r N
0rN

1r S
0

1

S

1

N

0rN
1r S

0r S
1r N

0rN
1r S

0r S

1r N
0rN

1r S
0r S

1r N
0rN

1r S
0r S

1r S
0r S

0rN
1r N

r Sr

Port i

r

Port j

Or

Port 1

Port 2

N

Port m

Figure 9: Test of inter-port faults for multi-port memories.

The base algorithm generation and the port scheduling are simple
and systematic. In the base algorithm generation, the target fault
models are cell array faults. Multi-port address decoder faults and
inter-port specific faults are detected in different test sections. The
separation of the target faults significantly reduces the complexity
of automatic test generation. Once the test is completed, TAGS-PS
can be used to compact the algorithm. The systematic methodology
of port scheduling prevents the test generation from complicated
manual derivations. When including new inter-port fault models,
only the new test constraints are required for generating new test
sections. RAMSES and TAGS are both easily extensible for new
fault models.

5. EXPERIMENTAL RESULTS
We demonstrate the test generation and port scheduling results

with several commonly used multi-port memories, including dual-
port, four-port, andn-read-1-write memories.



5.1 Dual-port memories
The test generation for dual-port memories is already discussed

in the previous section. The final test is shown in Figure 8(d). The
test length is 10N.

5.2 Four-port memories
The test generation methodology for a dual-port memory can be

generalized for other multi-port memories, assuming each port is a
read/write port. After port scheduling, the overall test algorithm is
shown in Figure 10 and the scheduling result is highlighted. Note
that the trailing read element is removed as opposed to the dual-port
case, because the element becomes redundant after the additional
rw elements for address decoder faults are inserted.

-

- - -

-

w 1w r

-

r

-

0

1

1

1r 0w0r

1

0

1r

w

w

0

r

1

-w

r 0w0r

w

r N
0rN

1r S
0r S

1r N
0rN

1r S
0 0

S

1r w0rN
1 10

1

S
1r N

0rN
1r S

0r

0 1r S
0r S

0rN
1r N

1r S
0r S

0rN
1r N S

r

N rrS

Port 1

Port 2

-

-

Port 3

Port 4

- - - - - - - -- - - -

- - - -

-

Inter-port Test

AF Test

Figure 10: 100% test for four read/write-port memories.

As the number of read/write ports increases, the testing time is
dominated by the test for multi-port AFs. The complexity of the
March test for multi-port memory is

T(N) =

�
(4m+2)N for m= 2;
(4m+1)N for m> 2;

(1)

wherem is the number of ports.

5.3 n-read-1-write memories
For a memory of one write port and several separate read ports,

the test elements of multi-port specific faults are different from that
for memories of several read/write ports. The write operation can
only be applied to the write-only port.

Figure 11 shows two test categories to detect AFs inn-read-1-
write memories. The use ofrW andrE are restricted. They can be
used only when March guards are pushed back to the base cell on
the boundaries.

(a)

−

− −

−

− −

−−

−−

−−

(b)

−

−

− − − −

− − − − −

−

−

−

− −

−
−

− −

−

Port 1

Port j

Port i

Port l

Port k

− −
0w 1w 0w 1w

1r 0r

0r 1r 1r 0r

1rW
0r E

0rW
1r E

Port 1

Port k

Port i

Port j

r

− − −

1ErW1 0rW rE0

0w 1w 0w 1w 0w

1r 0r 1r0r

1r 0r 1r 0r

0r E
1r E

0rW
1rW

Figure 11: Test alternatives of address decoder faults forn-
read-1-write memories.

The write operation has to be applied through the write port (port
1), as shown in Figure 11(a). To detect the AFs of port 1, tests of
both port 1 and porti are required. For AFs of read ports, the
combination test of port 1 and portj , or port 1 and portk is needed.
Figure 11(b) shows four alternative test elements for AF. The test
elements of port 1 and porti detects the AFs for port 1 andi. The
test elements of other read ports, together with the test elements of

port 1, detects the AFs of portj , k andl . All the three patterns are
equivalent for the AFs of the read-only ports.

Similarly, Figure 12(a) illustrates the pattern for the detection
of inter-port faults between each read port and the write-only port.
For the inter-port faults between two read ports, the pattern in Fig-
ure 12(b) can be applied, with proper write operation of port 1.

− −

− −

−r S
1r S

0rN

Port 1

Port i

(a)

−− −

−−− 0r 1r

1r N

0r S

0r S
1r S

1r S

0rN

Port j

Port k

0

(b)

w 0w 0w1w 1w

1r N
0

Figure 12: Test alternatives of inter-port faults for the n-read-
1-write memories.

Results for 2-read-1-write and 6-read-1-write memories are
shown in Figures 13 and 14, respectively. The time complexity
can be summarized as

T(N) =

8<
:

13N for 1< n� 4;
15N for 4< n� 8;
(1+4� (blognc+1))N for n> 8;

(2)

wheren= m�1 andm is the total number of ports.

w 0w

0r 1 r rr0 0
S

0r S
1

N
1r N

1

r

N
0

1

S
1r

1w0

r

0r 0rN
1r 1r N

0r 1r

0w w

r S

1w1w

0

0

rN r

Port 1

Port 2 -

Port 3

- - - -

-

- - - ---

--

Figure 13: 100% test for the 2-read-1-write memories.

0r

0r

0r0r

r 0

1r

1r

1r

0 r

1

r

1

1

1r

1r

1r

1r

0r S

0r

r

r

r S

1r S

0

r

S

r

r S

0

S S

1r S

1r S

0r S
1r N

1r N
0r S

1r S

1r S

1r

r

1

rN

0rN

0rN

0rN

0

r

N

1

rN

0

1

N

0

0

N

1

0

S
0r S

0r S

0r S

1r N

1r N

w

r N

1r N

1r N

1r N
1r N

1r N

1r N

1r N
0rN

0rN

0rN

0rN

w1

0

w

r

0

r

0 1w1

r

Test for ports of
distance 3distance 2

Test for ports of
distance 1

w0w0w

N

r

Test for ports of

1

Port 1 - - - ---

Port 3 - --

Port 2 - - -

Port 4 - - -

Port 5 - --

Port 6 - - -

Port 7 - --

M0 M1 M2 M3 M4 M5 M6

Figure 14: Port scheduling of inter-port faults for the n-read-1-
write memories.

6. DISCUSSION
For simplicity, the above cases have been discussed for bit-

oriented memories. When test generation is applied to a word-
oriented memory, the test algorithm consists of multiple data back-
grounds. The single-port algorithm is acocktail March test[6].
The test insertion for address decoder faults and inter-port faults
are similar to the procedure for bit-oriented memories. Note that
for word-oriented memories, in addition to address scrambling, the
data may also be scrambled, as illustrated in Figure 4. In this case,



the March guards are applied in parallel, therefore the test is more
efficient than testing bit-oriented memories.

Testing time comparison for several commonly used multi-port
memories are listed in Table 2. The testing time are linear with
small constant factors. Thanks to the efficiency of port scheduling,
the testing time is shorter than previous works, especially for large
number of ports. Certain hard-to-detect cell faults that need specific
test elements to detect, e.g., stuck-open or read disturbance, are
easier to detect with port scheduling. For example, to test SOF in
a single-port memories, we need* (r0;w1; r1) or * (r0;w1; r1) in
the test algorithm. With port scheduling and March guards, these
specific test elements are no longer needed, since fault effects in
the cell array are observable through other ports.

Our methodology has a requirement that the address scrambling
of the memory core must be available. Functional tests do not have
this limitation because the scrambling data is only used to lower the
complexity, i.e., fromO(Nm) to O(N), though it is not mandatory.
However, even with the scrambling data, the testing time is still
very long, e.g., most of them are longer than 100N [1,2]. When the
long testing time is affordable, complex functional tests may have
high fault coverage on complex fault models. The investigation of
complex fault models are beyond our discussion here, i.e., we only
compare our approach with recent works that adopt structural fault
models for multi-port specific defects. Results in Table 2 show that
TAGS-PS generates more efficient tests than previous works when
there are more ports.

Table 2: Testing time comparison (results in [5] are estimated
for the best case).

Memory type TAGS-PS results Zhaoet al. [5]

Dual-port 10N 10N
m-port,m> 2 (4m+1)N 10(m�2)N

n-read-1-write
n> 1

13N for 1< n� 4
15N for 4< n� 8
(1+4� (blognc+1))N
for n> 8

10(n�1)N

Test bandwidth is a common concern in practice. To apply par-
allel testing on a multi-port memory, the need for test bandwidth
increases proportionally to the port number. When the test pins are
not enough to deliver patterns simultaneously to all ports, trade-offs
have to be made between testing time and number of test pins by
re-scheduling. Table 3 shows the rescheduling results when avail-
able test pins can provide parallel access to ports ranging from 2
to 6. In case only one port can be accessed, the test will be de-
graded to testing each port separately and suffers from fault cov-
erage loss on inter-port faults. In Figure 15, we show a four-port
rescheduling with a limited test bandwidth for only 2 ports accessed
simultaneously. The testing time is increased from 17N to 25N.
Rescheduling can also reduce the bandwidth requirements without
testing time penalty in certain cases, e.g., using 4 ports to test a
6-port memory as shown in Table 3. Proper multiplexing or dis-
patching has to be arranged for delivering test patterns.

-

- - - -- -

-

- - - - -

-

-

-

-

-

-

- -

-

- - -

- - - -

0w 0r

-

w

-

w 0

-

1

-

1r

-

w 0r 1w1 r 0w

0r 1w 1r 0w

0r 1w 1r 0w

0r 1

r 1

r 0w

-

0

N
1r

r

1r N
0r

w

0rN

0

r S
1r 1

1

r S
0rN

1r S
1r N wr S

1r S
0r S

1r N
0rN

1r S
0r S

1r N
0rN

1r S
0r S

1r N
0rNr 0

0

SS

1
N

-

0

Port 1

Port 2

-

-

Port 3

Port 4

-

- - - - - - - -- - - -

Figure 15: A four-port test rescheduling example.

Built-in self-test (BIST) is a popular solution for the test ac-
cess/bandwidth problem. The test algorithms generated by TAGS-

Table 3: Port constraints and testing time.
Total portsn Test ports 6 5 4 3 2

6 25N 25N 25N 33N 61N
5 - 21N 21N 21N 41N
4 - - 17N 17N 25N
3 - - - 13N 13N

PS are especially suitable for this purpose, since the simplicity and
regularity of test operations can reduce the hardware overhead of
the BIST circuit. Moreover, the address generator for March guards
can be implemented easily, with a +1 or�1 on the row/column ad-
dresses.

7. CONCLUSION
A test algorithm generation and port scheduling methodology

for multi-port memories is proposed in this paper. The notion of
simulation-based test algorithm generation, March guards, and port
scheduling is introduced and discussed in detail. The resulting tests
are efficient and cost-effective. The regularity and simplicity of
TAGS-PS make it especially suitable for generating test algorithms
for built-in self-test (BIST) implementations. Port scheduling pro-
vides not only effective pattern compaction but also be able to make
trade-offs between test bandwidth and testing time. Our future
work includes supporting more fault models, diagnosis algorithm
generation, and BIST designs for multi-port memories.

8. REFERENCES
[1] M. Nicolaidis, V. Castro Alves, and H. Bederr, “”testing complex

couplings in multiport memories””,IEEE Trans. VLSI Systems, vol.
3, no. 1, pp. 59–71, Mar. 1995.

[2] A. J. van de Goor S. Hamdioui, “Fault models and tests for two-port
memories”, inProc. IEEE VLSI Test Symp. (VTS), 1998, pp.
401–410.

[3] T. Matsumura, “An efficient test method for embedded multi-port
RAM with BIST circuitry”, in Proc. IEEE Int. Workshop on Memory
Technology, Design and Testing (MTDT), 1995, pp. 62–67.

[4] Y. Wu and S. Gupta, “Built-in self-test for multi-port RAMs”, in
Proc. Sixth IEEE Asian Test Symp. (ATS), 1997, pp. 398–403.

[5] J. Zhao, S. Irrinki, M. Puri, and F. Lombardi, “Detection of inter-port
faults in multi-port static RAMs”, inProc. IEEE VLSI Test Symp.
(VTS), 2000, pp. 297–302.

[6] C.-F. Wu, C.-T. Huang, K.-L. Cheng, and C.-W. Wu,
“Simulation-based test algorithm generation for random access
memories”, inProc. IEEE VLSI Test Symp. (VTS), Montreal, Apr.
2000, pp. 291–296.

[7] C.-F. Wu, C.-T. Huang, C.-W. Wang, K.-L. Cheng, and C.-W. Wu,
“Error catch and analysis for semiconductor memories using March
tests”, inProc. IEEE Int. Conf. Computer-Aided Design (ICCAD),
San Jose, Nov. 2000, pp. 468–471.

[8] C.-T. Huang, J.-R. Huang, C.-F. Wu, C.-W. Wu, and T.-Y. Chang, “A
programmable BIST core for embedded DRAM”,IEEE Design &
Test of Computers, vol. 16, no. 1, pp. 59–70, Jan.-Mar. 1999.

[9] C.-F. Wu, C.-T. Huang, and C.-W. Wu, “RAMSES: a fast memory
fault simulator”, inProc. IEEE Int. Symp. Defect and Fault
Tolerance in VLSI Systems (DFT), Albuquerque, Nov. 1999, pp.
165–173.

[10] A. J. van de Goor,Testing Semiconductor Memories: Theory and
Practice, John Wiley & Sons, Chichester, England, 1991.


	Main
	DAC01
	Front Matter
	Table of Contents
	Session Index
	Author Index


